


GPSS

Simulation Made Simple

Thomas M. O’Donovan

Department of Statistics
University College, Cork

A Wiley—Interscience Publication

JOHN WILEY & SONS
Chichester + New York - Brisbane - Toronto



Copyright © 1979 by John Wiley & Sons Ltd.
All rights reserved.

No part of this book may be reproduced by any means, nor
transmitted, nor translated into a machine language without
the written permission of the publisher.

British Library Cataloguing in Publication Data:

O'Donovan, Thomas M.
GPSS simulation made simple.
—(Wiley series in computing)
1. GPSS (Computer program language)
1. Title
001.424 QA76.73.G18 79-40520
ISBN () 471 27614 6

Typeset by Preface Ltd., Salisbury, Wiltshire and Printed in
Great Britain by Page Bros. (Norwich) Ltd., Norwich



GPSS



WILEY SERIES IN COMPUTING

Consulting Editor
Professor D. W. Barron, Department of Mathematics, Southampton University
Numerical Control—Mathematics and Applications

P. Bezier

Communication Networks for Computers

D. W. Davies and D. L. A. Barber

Macro Processors and Techniques for Portable Software

P. J. Brown

A Practical Guide to Algol 68
Frank G. Pagan

Programs and Machines

Richard Bird

The Codasyl Approach to Data Base Management
T. William Olle

Computer Networks and their Protocols

D. W. Davies, D. L. A. Barber, W. L. Price, and C. M. Solomonides
Algorithms: Their Complexity and Efficiency
Lydia Kronsjé
Data Structures and Operating Systems
Teodor Rus
Writing Interactive Compilers and Interpreters

P. J. Brown

The Design of a Relational Data Base Management System

A. T. F. Hutt

GPSS
Simulation Made Simple

Thomas M. O’ Donovan



To
Vera



Preface

The objective of this book is to introduce the concepts of discrete-event
simulation using the programming language GPSS. A discrete system is one in
which only discontinuous changes of state occur. The term event is used to mean
such a change. In discrete-event simulation, the system is only studied at time
points when changes of state occur. GPSS (which stands for General Purpose
Simulation System) is a programming language which was specially designed for
discrete-event simulation. Programming such simulations in GPSS is very
simple, which makes GPSS an excellent medium for teaching the concepts of
discrete-event simulation since students can spend more time studying the
concepts instead of worrying about details of programming. No prior program-
ming experience is needed to learn GPSS, though a knowledge of elementary
probability is necessary to understand discrete-event simulation.

This book uses a new approach to introduce the concepts of discrete-event
simulation. The stages in any simulation problem are first described. Hand
simulation ofa simple queue isused toillustrate how simulation works. The point
is made that computer simulation performs exactly the same calculations but
much more quickly. A unique step-by-step approach is used to introduce the
features of GPSS. The emphasis is not on describing what GPSS is but on
showing what it can do. However, enough explanatory detail is given to enable
the student to make correct use of GPSS. A series of examples of standard
queueing systems is considered, ranging from the simple to the complicated. As
each new complication is introduced, the corresponding features of GPSS are
described. In this way, studentssee whateach feature isneeded forandits precise
function. In other textbook treatments of GPSS, the examples used introduce
several new features of GPSS simultancously and students may be confused as to
the precise function of each. In this text, as soon as a student has studied several
new features separately, his understanding of the use of these features is tested
by numerous exercises to which the solutions are given.

The plan of the book is straightforward and should be clear from the table of
contents. Finally, it should be mentioned that GPSS exists in many dialects. The
most widely used is GPSS/360, which is the version discussed here.

I would like to thank Dr. P. D. Bourke of the Department of Statistics,
University College, Cork, who read the manuscript and made many helpful

vii



viii
suggestions. I am also indebted to Mr. Michael Crowley, Statistical Computing
Analyst, for help with the illustrations and to Ms. Norma Gallwey for her

excellent typing.

THOMAS M. O’ DONOVAN



Contents

Chapter 1 Simulating a single line, single server queue

1.1
1.2
1.3
1.4
1.5
1.6
1.7

Simulation and its uses

Stages in a simulation problem
A single line, single server queue
Defining the problem
Formulating a model

Hand simulation

Exercises

Chapter 2 Computer simulation of a single line, single server queue

2.1
2.2
2.3
2.4
2.5
2.6

Choice of a computer language
The GPSS block diagram

The GPSS computer program
How the GPSS processor works
The computer printout
Exercises

Chapter 3 Controlling the length of the simulation

3.1

3.2

Omitting the QUEUE and DEPART blocks: the dummy
ADVANCE block

Omitting the SEIZE and RELEASE blocks: the
ADVANCE block

Running the simulation for a specified period: the
GENERATE and TERMINATE blocks

Removing initial bias: the RESET card

Suppressing printout for the initial period: the START card
and the abbreviation NP

How the GPSS processor generates interarrival and holding
times: the pseudo-random number generator RN
Repeating the simulation with a different set of customers:
the CLEAR card

Exercises

X

(o)W SN US B O RN OO

O

11
11

12

16
17

21

L

24



X

Chapter 4 Complexities in the arrival pattern

4.1
4.2

4.3

4.4

4.5

4.6

First arrival at a specified time: the GENERATE block
Nonempty queue at start of the simulation: the
GENERATE and unconditional TRANSFER blocks

No waiting room: the TRANSFER BOTH and PRIORITY
blocks

Limited waiting room: the ENTER and LEAVE blocks and
the STORAGE card

Mean interarrival time depends on time of day: redefining
the GENERATE block

Exercises

Chapter 5 Sampling from distributions

5.1

5.2

5.3

W
»

o n
N WD

o
o0 ]

)
Ne

Discrete distributions: the FUNCTION card and the
abbreviations RN, D, and FN

Changing the mean haircut time: redefining the
ADVANCE block

Mean haircut time depends on time of day: the
abbreviation C1

Mean haircut time depends on queue size: the abbreviation
Q

Sampling from a uniform distribution: the abbreviation C
Assigning haircut times to customers on arrival: the
ASSIGN block and the abbreviation P

Sampling from an exponential distribution

Assigning exponential haircut times to customers on arrival:
the ASSIGN block

Exercises

Chapter 6 Queues with two or more barbers

6.1

6.2

0.3

6.4
6.5

6.6

6.7

6.8

Single line, identical barbers: the STORAGE card and the
abbreviation S

Minimum number of barbers required: omitting the
STORAGE card

Changing the number of barbers: redefining the
STORAGE card

Many lines, identical barbers, barber picked at random
Many lines, different barbers, different percentages to each
barber: the statistical TRANSFER block

Many lines, identical barbers, customers join the shortest
line: the SELECT block and the abbreviation MIN
Collecting overall queue statistics: the QUEUE and
DEPART blocks

Queues in series (first model)

38
38

40

58
59

60

60

62

62
63

64

66

67
68



xi

6.9 Queues in series (alternative model): the LOOP and

ASSIGN blocks and indirect addressing 69
6.10 Customers get haircut and manicure simultaneously: the
SPLIT, MATCH, and ASSEMBLE blocks 70
6.11 Exercises 72
Chapter 7 Priority queues 73
7.1 Two types of customer, no priority distinctions, single
barber 73
7.2 Non-preemptive priority, single barber: the GENERATE
block 74
7.3 Preemptive resume priority, single barber: the PREEMPT
and RETURN blocks 76
7.4 Non-preemptive priority, shortest job first, single barber:
the LINK, UNLINK, and PRIORITY blocks 77
7.5 Non-preemptive priority, two or more barbers 79
7.6 Exercises 80
Chapter 8 Duplicating experimental conditions 81
8.1 Comparing two single line systems under the same
experimental conditions: the RMULT card 81
8.2 Multiple runs under the same experimental conditions 84
8.3 Comparing single line and many line systems under the
same experimental conditions 86
8.4 Comparing alternative priority disciplines under the same
experimental conditions 88
8.5 Exercises 90
Chapter 9 User-defined input, calculations, and printout 91
9.1 Mean interarrival time depends on time of day: the
INITIAL card and the abbreviation X 91
9.2 Barbershop takings depend on number of customers served:
the SAVEVALUE block 92
9.3 User-defined calculations: the SAVE VALUE block, the
VARIABLE card and the abbreviations N and V 93
9.4 User-defined calculations: the FVARIABLE card 94
9.5 Multiple input, calculations and printout: the MATRIX 97
card. the MSAVEVALUE block, and the abbreviation MX 95
9.6 Recording event times for each customer 97
9.7 Exercises 98
Chapter 10 User-defined tests, tables, and graphical printout 99

10.1 Stopping the simulation when all customers have left: the
GATE and LOGIC blocks and the abbreviations LR, NU,
S, and R 99



X1l

10.2

10.3

10.4

10.5

10.6

10.7
10.8

10.9

Alternative model: the TEST block and the abbreviation
E

Alternative model: the BVARIABLE card and the
abbreviations BV and FNU

Arriving customers baulk if there are too many customers
waiting: the abbreviations LE and S

Table for customer residence times: the TABLE card, the
TABULATE block, and the abbreviation M1

Table for customer haircut times: the MARK block and
the abbreviation M1

Table for customer waiting times: the QTABLE card
Graphical printout for facility statistics: the abbreviations
FR and SYM

Graphical printout for tables: the abbreviation TF

10.10 Exercises

Appendices
A.1 References for further reading
A.2 Solutions to exercises
A.3 Alphabetical index of GPSS card types used in this book
A.4 Alphabetical index of GPSS abbreviations used in this

Index

book

100

101

102

103

105
105

106
107
110

111
111
112
121
123

125



Chapter 1

Simulating a single line, single server queue

1.1 Simulation and its uses

Computer simulation is widely used today as a decision-making tool in
business and industry. For the purposes of the present chapter, simulation may
be taken to mean constructing a mathematical model of a physical system. While
the idea of a mathematical model may seem strange to some readers, the
example discussed in this chapter should make the concept clear. The basic
requirement for this model is that it should ‘behave’ like the physical system it is
supposed to be modelling. The advantages of having such a mathematical model
will now be made clear. Suppose it is proposed to change an existing production
line by installing new machinery or employing extra staff at various stages. Such
changes will involve considerable expenditure and it would be very useful to
estimate in advance the effect these changes will have on the production line.
Simulation enables us to do this (see Figure 1.1). Suppose we have a mathemat-
ical model (model 1) for the existing production line and are confident that this
model behaves like the present system. Then, by changing the model to reflect
the proposed changes to the present system, we getanew model (model 2) which
we hope will behave like the proposed production line. Thus, by studying the
behaviour of our new model, we can forecast the behaviour of the proposed
production line, without going to the expense of making the proposed changes.
The only expense involved is that of building and running the simulation model.
Once the simulation model has been built, the behaviour of the proposed system
overaperiod of monthsoryearscanbe simulated ina matter of seconds. Because
of the speed of computer simulation, it is feasible to study a variety of proposed
systems in turn and in this way to identify the changes necessary to optimize the
performance of the existing system.

To avoid giving the impression that simulation is a cure-all, it should be said
that building a simulation model for a complex system can be extremely costly in
man-hours and computer time and thus simulation should only be used as a last
resort when other techniques, such as queueing theory, have failed. The sort of
simulation described here can only be used to model queueing systems. How-
ever, this is not as restrictive as it seems, because many systems can be regarded
as queueing systems.



Existing

production

line Model 1
—~——————————

Proposed

production

line Model 2

— — — ——————————— 3= t—A —]

Figure 1.1

1.2 Stages in a simulation problem

The stages in any simulation problem may be briefly outlined as follows:
(a) Defining the problem
(b) Formulating a model
(c¢) Running the model
(d) Experimenting with the model

Later in this chapter it will be made clear what the first two stages consist of.
Running the model involves checking to see that the simulation model behaves
like the present system. Ifit fails to perform satisfactorily, we have to go back and
formulate a different model and repeat the process until we find a model
that does behave like the present system. Only then can we proceed to the
last stage, which is to experiment with the model to reflect proposed
changes in the existing system. In this way, we can forecast the
performance of these proposed systems.

1.3 A single line, single server queue

Toillustrate what a simulation model looks like and what use can be made of
it, we consider asimple queueing system: a barbershop. Although thisexample is



3

very simple, it illustrates many of the elements in a general simulation problem
and the stages in its solution.

Joe has a one-man barbershop. If a customer arrives and finds Joe free, he
gets served immediately. If Joe is busy when a customer arrives, that customer
joins a waiting line of customers seated on chairs. Waiting customers are served
first-come-first-served. i.e. when Joe becomes free, he serves the customer who
has been waiting longest.

Joe’s problemis this. He hasa good business but he is worried by the fact that
some customers may have to wait too long. He knows thatif waiting times are too
long, some waiting customers may be inclined to leave without waiting to be
served. [tmay also happen thatcustomersmay arrive and leave without waiting if
they find too many customers before them. Joe has not noticed this happening
yet, but he is worried about it. For this reason, Joe is considering getting one or
more assistants, but he would like to know in advance the effect this would have
in reducing average customer waiting time, i.e. the time a customer would have
to wait on average. Simulation makes it possible to study this problem.

1.4 Defining the problem

The first stage in any simulation problem is to define the problem. This
involves identifying relevant variables of various types. A customer variable is
simply a customer characteristic that varies from one customer to the next.
Examples of customer variables are interarrival times and haircut times. Sup-
pose that the first three customers arrive at the barbershop 12, 30, and 53
minutes, respectively, after the shop is opened. Then the interarrival times for
these three customers are 12, 18, and 23 minutes. Similarly, suppose that the
times these three customers take to get a haircut are 18, 15, and 18 minutes,
respectively. Another customer variable is customer waiting time. An example
of asystem variable is the number of customers waiting for service at a specified
time point. However, these variables are not as basic as interarrival and haircut
times because it can be shown that they are determined by interarrival and hair-
cut times, as will be seen shortly. Interarrival and haircut times are known as
uncontrolled variables, because it is not possible for Joe to influence the times
between customer arrivals nor the time it takes to give a haircut. However, there
is a variable that Joe can control: the number of barbers, i.e. he can decide to get
one or more assistants. This variable is called a decision variable. To decide on
the ‘optimum value’ of the decision variable in the light of the uncontrolled
variables, we must have some criterion for measuring the performance of the
system. Here the criterion that Joe is using is average customer waiting time. The
problem can now be expressed as follows: how many barbers should there be to
give an ‘acceptable level” of average customer waiting time, for a given pattern of
customer arrivals and haircut times? To summarize, defining the problem
involves

(a) Identifying the basic uncontrolled variables



Decision
variables
"
certred Syster -~
Performance
criterion
- 5
Figure 1.2

(b) Identifying the decision variable or variables
(c) Deciding on a performance criterion or criteria

The problem can then be expressed as follows: what value(s) of the decision
variable(s) optimize system performance in the light of the basic uncontrolled
variables? (See Figure 1.2.)

1.5 Formulating a model

Here the existing system is a barbershop with a single chair. The first step
towards formulating a model for this is to draw a flow diagram. The purpose of
the flow diagram is to show the sequence of events that occur as each customer
passes through the shop. Recall that an event is just a change of state of the
system. In this case, the sequence of events is easily written down (see Figure
1.3).

Ateach of the time points when such anevent occurs, and only then, the state
of the system changes. For example, when a customer arrives, the number of
customersin the system increases by one; when a customer joins the waiting line,
the number of waiting customers increases by one, etc. Of course, some of these
events will occur simultaneously. For example, the first customer to enter the
shop on a particular day will arrive, join the (empty) waiting line, leave the
waiting line, and begin his haircut, all at the same time.

The flow diagram tells us the sequence in which events occur as each
customer passes through the barbershop. In order to complete our model of the
barbershop, we need to know the time points at which these events take place in
the barbershop. As will be made clear in the next section, if we knew the
interarrival times and the haircut times for each customer on a particular day in
the barbershop, we could work out the times at which all the events occurred on
that day and hence all statistics of interest, e.g., the average customer waiting
time. However, the only way to find out about interarrival times and haircut
times in the barbershop is to have records kept of the interarrival and haircut



Customer arrives

|

Joins waiting line

Leaves waiting line

:

Begins haircut

I

Ends haircut

l

Leaves shop

Figure 1.3

times for each customer over a period of days. Then it will be found that while
interarrival and haircut times vary from day to day as well as from customer to
customer on any particular day, when the data for several days is pooled,
interarrival times follow a certain ‘pattern of variability’; the same is true of
haircut times. It will be shown later how to incorporate these ‘the patterns of
variability’into the model. Atthisstage, however, we adoptasimplerapproach.
Suppose Joe tells us that the interarrival time between customers is 18
minutes ‘on average’ and that it takes 16 minutes to give a haircut, ‘on average’.
The simplest assumption we could make about interarrival and haircut times is
that a customer arrives every 18 minutes and every haircut takes exactly 16
minutes, i.e., to allow no variability at all. This, however, is rather unrealistic.
Suppose that Joe says thatan interarrival time can be asshortas 12 minutesor as
long as 24 minutes and that a haircut time could be as short as 12 minutes or as
long as 20 minutes. Then it would be reasonable to assume that the interarrival
time for each customer is ‘equally likely’ to be any of the integers 12, 13, ..., 24.
This could be achieved by having a thirteen-sided die, with one of the numbers 12
to 24 on eachside. If the die is rolled and the number 15 comes up, then the next
customer will arrive after 15 minutes. Alternatively, this could be achieved by
using a table of random numbers. Those familiar with probability theory will
realize that we are assuming that interarrival times are uniformly distributed in
the range 18 = 6 minutes. Similarly, we assume that haircut time for any
customer is equally likely to be any of the intergers 12, 13, ..., 20, i.e.
uniformly distributed in the range 16 * 4 minutes. These assumptions may be
highly unrealistic and bear no relationship to the actual ‘patterns of



