- Lecture Notes in

‘Computer Smence

Bernhard Moller Helmut Partsch
Steve Schuman (Eds.)

Formal
Program Development

IFIP TC2/WG 2.1 State-of-the-Art Report

NS
LA

IFIP

| Springer-Verlag



Bernhard Moller Helmut Partsch
Steve Schuman (Eds.)

Formal
Program Development

IFIP TC2/WG 2.1 State-of-the-Art Report

N9
A
IFIP

Springer-Verlag
Berlin Heidelberg New York
London Paris Tokyo

Hong Kong Barcelona
Budapest



Series Editors

Gerhard Goos Juris Hartmanis

Universitédt Karlsruhe Cornell University

Postfach 69 80 Department of Computer Science
Vincenz-Priessnitz-Strafle 1 4130 Upson Hall

D-76131 Karlsruhe, Germany Ithaca, NY 14853, USA

Volume Editors

Bernhard Moller
Institut fiir Mathematik, Universitidt Augsburg
Universititsstr. 2, D-86135 Augsburg, Germany

Helmut Partsch
Fakultit fiir Informatik, Universitiat Ulm
Oberer Eselsberg, D-89069 Ulm, Germany

Steve Schuman
Department of Mathematics, University of Surrey
Guildford, Surrey GU2 5XH, United Kingdom

CR Subject Classification (1991): F3.1,D.2.1,D.2.4,D.2.2,D.1.1,D.2.10, G.2.m,
1.1.3,D.2.6

ISBN 3-540-57499-9 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-57499-9 Springer-Verlag New York Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, re-use
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other
way, and storage in data banks. Duplication of this publication or parts thereof is
permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from
Springer-Verlag. Violations are liable for prosecution under the German Copyright
Law.

© Springer-Verlag Berlin Heidelberg 1993
Printed in Germany

Typesetting: Camera-ready by author
Printing and binding: Druckhaus Beltz, Hemsbach/Bergstr.
45/3140-543210 - Printed on acid-free paper



Lecture Notes in Computer Science 755
Edited by G. Goos and J. Hartmanis

Advisory Board: W. Brauer D. Gries J. Stoer




Preface

Since the late 1960s, much has been done to establish the new field of software
engineering. The common objective has been to overcome the well-documented
difficulties of software development by adopting the methods, techniques and
professional practices of more traditional engineering disciplines. Such efforts
have led to significant improvements insofar as project organization and man-
agement are concerned, but unfortunately, too many programs produced today
still do not behave as expected. However, the last decade has also seen the emer-
gence of a number of approaches wherein software development is viewed as a
fully formal activity. All of these approaches have correciness as their primary
focus — that is, their aim is to obtain programs which provably satisfy some given
specification (a formal statement of the problem to be solved). Thus research in
this area necessarily encompasses two principal concerns:

— formal specification of solutions to problems, and
— formal development/calculation of programs from such specifications.

These two topics form the core interests now represented within IFIP Working
Group 2.1 on Algorithmic Languages and Calculi.

In former times, IFIP Working Group 2.1 was mainly concerned with defini-
tion of the algorithmic languages ALGOL 60 and ALGOL 68, for which it still
has international responsibility. In those days the syntax and semantics of pro-
gramming languages were at the forefront of computing science research. Since
1975, the Working Group has increasingly focused on systematic approaches to
programming in its broader sense, and on appropriate concepts and notations to
support such approaches. Today, the calculation of programs from specifications
constitutes the central theme of the group’s work. This is reflected in its official
Aim and Scope, which are as follows:

Aim:
To explore and evaluate new ideas in the field of programming, possibly leading
to the design of new languages.

Scope:
1. The study of calculation of programs from specifications.
2. The design of notations for such calculation.



3. The formulation of algorithm theories, using such notations.
4. The investigation of software support for program derivation.
5. Continuing responsibility for ALGOL 60 and ALGOL 68.

For some time the group had felt that its work had reached a state to be
presented to a wider audience in the form of in-depth surveys of the various
strains of thought. This met well with the emergence of a global activity of IFIP
of sponsoring State-of-the-Art Seminars in developing countries. As a result, such
a seminar was conceived as to provide access to the foremost front of research
on Formal Program Development. This book contains background texts for the
seminar lectures.

The first actual presentation of the seminar took place in January 1992 near
Rio de Janeiro, Brazil. It was hosted by Armando Haeberer from the Pontifica
Universidade Catoélica at Rio de Janeiro and took place in most splendid tropical
surroundings on Itacurugd Island. We are most grateful to Armando for making
this seminar possible and for his excellent arrangements. We also express our
gratitude to IBM-Brazil, Conselho Nagional de Pesquisa e Disenvolvimiento and
Pontifica Universidade Catélica at Rio de Janeiro for their generous support. Fi-
nally we wish to thank the referees for their detailed evaluations and M. Russling
for his help in preparing the manuscript for this volume.

Augsburg, Ulm and Surrey, July 1993

Bernhard Moller, Helmut Partsch, Steve Schuman



Lecture Notes in Computer Science

For information about Vols. 1-685

please contact your bookseller or Springer-Verlag

Vol. 686: J. Mira, J. Cabestany, A. Prieto (Eds.), New
Trends in Neural Computation. Proceedings, 1993. XVII,
746 pages. 1993.

Vol. 687: H. H. Barrett, A. F. Gmitro (Eds.), Information
Processing in Medical Imaging. Proceedings, 1993. XVI,
567 pages. 1993.

Vol. 688: M. Gauthier (Ed.), Ada-Europe '93. Proceedings,
1993. VIII, 353 pages. 1993.

Vol. 689: J. Komorowski, Z. W. Ras (Eds.), Methodolo-
gies for Intelligent Systems. Proceedings, 1993. XI, 653
pages. 1993. (Subseries LNAI).

Vol. 690: C. Kirchner (Ed.), Rewriting Techniques and
Applications. Proceedings, 1993. XI, 488 pages. 1993.

Vol. 691: M. Ajmone Marsan (Ed.), Application and Theory
of Petri Nets 1993. Proceedings, 1993. IX, 591 pages. 1993.

Vol. 692: D. Abel, B.C. Ooi (Eds.), Advances in Spatial
Databases. Proceedings, 1993. XIII, 529 pages. 1993.

Vol. 693: P. E. Lauer (Ed.), Functional Programming,
Concurrency, Simulation and Automated Reasoning. Pro-
ceedings, 1991/1992. XI, 398 pages. 1993.

Vol. 694: A. Bode, M. Reeve, G. Wolf (Eds.), PARLE '93.

Parallel Architectures and Languages Europe. Proceedings,
1993. XVII, 770 pages. 1993.

Vol. 695: E. P. Klement, W. Slany (Eds.), Fuzzy Logic in
Artificial Intelligence. Proceedings, 1993. VIII, 192 pages.
1993. (Subseries LNAI).

Vol. 696: M. Worboys, A. F. Grundy (Eds.), Advances in
Databases. Proceedings, 1993. X, 276 pages. 1993.

Vol. 697: C. Courcoubetis (Ed.), Computer Aided Verifi-
cation. Proceedings, 1993. IX, 504 pages. 1993.

Vol. 698: A. Voronkov (Ed.), Logic Programming and
Automated Reasoning. Proceedings, 1993. XIII, 386 pages.
1993. (Subseries LNAI).

Vol. 699: G. W. Mineau, B. Moulin, J. F. Sowa (Eds.),
Conceptual Graphs for Knowledge Representation. Pro-
ceedings, 1993. 1X, 451 pages. 1993. (Subseries LNAI).
Vol. 700: A. Lingas, R. Karlsson, S. Carlsson (Eds.), Au-
tomata, Languages and Programming. Proceedings, 1993.
XII, 697 pages. 1993.

Vol. 701: P. Atzeni (Ed.), LOGIDATA+: Deductive
Databases with Complex Objects. VIII, 273 pages. 1993.

Vol. 702: E. Borger, G. Jiger, H. Kleine Biining, S. Mar-
tini, M. M. Richter (Eds.), Computer Science Logic. Pro-
ceedings, 1992. VIII, 439 pages. 1993.

Vol. 703: M. de Berg, Ray Shooting, Depth Orders and
Hidden Surface Removal. X, 201 pages. 1993.

Vol. 704: F. N. Paulisch, The Design of an Extendible
Graph Editor. XV, 184 pages. 1993.

Vol. 705: H. Griinbacher, R. W. Hartenstein (Eds.), Field-
Programmable Gate Arrays. Proceedings, 1992. VIII, 218
pages. 1993.

Vol. 706: H. D. Rombach, V. R. Basili, R. W. Selby (Eds.),
Experimental Software Engineering Issues. Proceedings,
1992. XVIII, 261 pages. 1993.

Vol. 707: O. M. Nierstrasz (Ed.), ECOOP '93 — Object-
Oriented Programming. Proceedings, 1993. X1, 531 pages.
1993.

Vol. 708: C. Laugier (Ed.), Geometric Reasoning for Per-
ception and Action. Proceedings, 1991. VIII, 281 pages.
1993.

Vol. 709: F. Dehne, J.-R. Sack, N. Santoro, S. Whitesides
(Eds.), Algorithms and Data Structures. Proceedings, 1993.
XII, 634 pages. 1993,

Vol. 710: Z. Esik (Ed.), Fundamentals of Computation
Theory. Proceedings, 1993. IX, 471 pages. 1993.

Vol. 711: A. M. Borzyszkowski, S. Sokotowski (Eds.),
Mathematical Foundations of Computer Science 1993. Pro-
ceedings, 1993. XIII, 782 pages. 1993.

Vol. 712: P. V. Rangan (Ed.), Network and Operating Sys-
tem Support for Digital Audio and Video. Proceedings,
1992. X, 416 pages. 1993.

Vol. 713: G. Gottlob, A. Leitsch, D. Mundici (Eds.), Com-
putational Logic and Proof Theory. Proceedings, 1993. X1,
348 pages. 1993.

Vol. 714: M. Bruynooghe, J. Penjam (Eds.), Programming
Language Implementation and Logic Programming. Pro-
ceedings, 1993. XI, 421 pages. 1993.

Vol. 715: E. Best (Ed.), CONCUR’93. Proceedings, 1993.
IX, 541 pages. 1993.

Vol. 716: A. U. Frank, 1. Campari (Eds.), Spatial Informa-
tion Theory. Proceedings, 1993. XI, 478 pages. 1993.

Vol. 717: 1. Sommerville, M. Paul (Eds.), Software Engi-
neering — ESEC *93. Proceedings, 1993. XII, 516 pages.
1993.

Vol. 718: J. Seberry, Y. Zheng (Eds.), Advances in
Cryptology — AUSCRYPT ’92. Proceedings, 1992. XIII,
543 pages. 1993.

Vol. 719: D. Chetverikov, W.G. Kropatsch (Eds.), Compu-
ter Analysis of Images and Patterns. Proceedings, 1993.
XVI, 857 pages. 1993.

Vol. 720: V.Maftik, J. LaZzansky, R.R. Wagner (Eds.), Data-
base and Expert Systems Applications. Proceedings, 1993.
XV, 768 pages. 1993.

Vol. 721: J. Fitch (Ed.), Design and Implementation of
Symbolic Computation Systems. Proceedings, 1992. VIII,
215 pages. 1993.



Vol. 722: A. Miola (Ed.), Design and Implementation of
Symbolic Computation Systems. Proceedings, 1993. XII,
384 pages. 1993.

Vol. 723: N. Aussenac, G. Boy, B. Gaines, M. Linster, J.-
G. Ganascia, Y. Kodratoff (Eds.), Knowledge Acquisition
for Knowledge-Based Systems. Proceedings, 1993. XIII,
446 pages. 1993. (Subseries LNAI).

Vol. 724: P. Cousot, M. Falaschi, G. File, A. Rauzy (Eds.),
Static Analysis. Proceedings, 1993. IX, 283 pages. 1993.

Vol. 725: A. Schiper (Ed.), Distributed Algorithms. Pro-
ceedings, 1993. VIII, 325 pages. 1993.

Vol. 726: T. Lengauer (Ed.), Algorithms — ESA *93. Pro-
ceedings, 1993. 1X, 419 pages. 1993

Vol. 727: M. Filgueiras, L. Damas (Eds.), Progress in Ar-
tificial Intelligence. Proceedings, 1993. X, 362 pages. 1993.
(Subseries LNAI).

Vol. 728: P. Torasso (Ed.), Advances in Artificial Intelli-
gence. Proceedings, 1993. XI, 336 pages. 1993. (Subseries
LNAI).

Vol. 729: L. Donatiello, R. Nelson (Eds.), Performance
Evaluation of Computer and Communication Systems. Pro-
ceedings, 1993. VIII, 675 pages. 1993.

Vol. 730: D. B. Lomet (Ed.), Foundations of Data Organi-
zation and Algorithms. Proceedings, 1993. XII, 412 pages.
1993.

Vol. 731: A. Schill (Ed.), DCE — The OSF Distributed
Computing Environment. Proceedings, 1993. VIII, 285
pages. 1993.

Vol. 732: A. Bode, M. Dal Cin (Eds.), Parallel Computer
Architectures. IX, 311 pages. 1993.

Vol. 733: Th. Grechenig, M. Tscheligi (Eds.), Human Com-
puter Interaction. Proceedings, 1993. XIV, 450 pages. 1993.

Vol. 734: J. Volkert (Ed.), Parallel Computation. Proceed-
ings, 1993. VIII, 248 pages. 1993.

Vol. 735: D. Bjgrner, M. Broy, 1. V. Pottosin (Eds.), For-
mal Methods in Programming and Their Applications. Pro-
ceedings, 1993. IX, 434 pages. 1993.

Vol. 736: R. L. Grossman, A. Nerode, A. P. Ravn, H.
Rischel (Eds.), Hybrid Systems. VIII, 474 pages. 1993.
Vol. 737:]. Calmet, J. A. Campbell (Eds.), Artificial Intel-
ligence and Symbolic Mathematical Computing. Proceed-
ings, 1992. VIII, 305 pages. 1993.

Vol. 738: M. Weber, M. Simons, Ch. Lafontaine, The Ge-
neric Development Language Deva. XI, 246 pages. 1993.
Vol. 739: H. Imai, R. L. Rivest, T. Matsumoto (Eds.), Ad-
vances in Cryptology — ASIACRYPT ’91. X, 499 pages.
1993.

Vol. 740: E. F. Brickell (Ed.), Advances in Cryptology —
CRYPTO ‘92. Proceedings, 1992. X, 593 pages. 1993.
Vol. 741: B. Preneel, R. Govaerts, J. Vandewalle (Eds.),
Computer Security and Industrial Cryptography. Proceed-
ings, 1991. VIII, 275 pages. 1993.

Vol. 742: S. Nishio, A. Yonezawa (Eds.), Object Tech-
nologies for Advanced Software. Proceedings, 1993. X, 543
pages. 1993.

Vol. 743: S. Doshita, K. Furukawa, K. P. Jantke, T. Nishida
(Eds.), Algorithmic Learning Theory. Proceedings, 1992.
X, 260 pages. 1993. (Subseries LNAI)

Vol. 744: K. P. Jantke, T. Yokomori, S. Kobayashi, E.
Tomita (Eds.), Algorithmic Learning Theory. Proceedings,
1993. XI, 423 pages. 1993. (Subseries LNAI)

Vol. 745: V. Roberto (Ed.), Intelligent Perceptual Systems.
VIII, 378 pages. 1993. (Subseries LNAI)

Vol. 746: A. S. Tanguiane, Artificial Perception and Mu-
sic Recognition. XV, 210 pages. 1993. (Subseries LNAI).
Vol. 747: M. Clarke, R. Kruse, S. Moral (Eds.), Symbolic
and Quantitative Approaches to Reasoning and Uncertainty.
Proceedings, 1993. X, 390 pages. 1993.

Vol. 748: R. H. Halstead Jr., T. Ito (Eds.), Parallel Sym-
bolic Computing: Languages, Systems, and Applications.
Proceedings, 1992. X, 419 pages. 1993.

Vol. 749: P. A. Fritzson (Ed.), Automated and Algorith-
mic Debugging. Proceedings, 1993. VIII, 369 pages. 1993.
Vol. 750: J. L. Diaz-Herrera (Ed.), Software Engineering
Education. Proceedings, 1994. XII, 601 pages. 1994.
Vol. 751: B. Jdhne, Spatio-Temporal Image Processing.
XII, 208 pages. 1993.

Vol. 752: T. W. Finin, C. K. Nicholas, Y. Yesha (Eds.),
Information and Knowledge Management. Proceedings,
1992. VII, 142 pages. 1993.

Vol. 753: L. J. Bass, J. Gornostaev, C. Unger (Eds.), Hu-
man-Computer Interaction. Proceedings, 1993. X, 388
pages. 1993.

Vol. 754: H. D. Pfeiffer, T. E. Nagle (Eds.), Conceptual
Structures: Theory and Implementation. Proceedings, 1992.
IX, 327 pages. 1993. (Subseries LNAI).

Vol. 755: B. Moller, H. Partsch, S. Schuman (Eds.), For-
mal Program Development. Proceedings. VII, 371 pages.
1993.

Vol. 756: J. Pieprzyk, B. Sadeghiyan, Design of Hashing
Algorithms. XV, 194 pages. 1993.

Vol. 757: U. Banerjee, D. Gelernter, A. Nicolau, D. Padua
(Eds.), Languages and Compilers for Parallel Computing.
Proceedings, 1992. X, 576 pages. 1993.

Vol. 758: M. Teillaud, Towards Dynamic Randomized
Algorithms in Computational Geometry. IX, 157 pages.
1993.

Vol. 759: N. R. Adam, B. K. Bhargava (Eds.), Advanced
Database Systems. XV, 451 pages. 1993.

Vol. 760: S. Ceri, K. Tanaka, S. Tsur (Eds.), Deductive
and Object-Oriented Databases. Proceedings, 1993. XII,
488 pages. 1993.

Vol. 761: R. K. Shyamasundar (Ed.), Foundations of Soft-
ware Technology and Theoretical Computer Science. Pro-
ceedings, 1993. XIV, 456 pages. 1993.

Vol. 762: K. W. Ng, P. Raghavan, N. V. Balasubramanian,
F. Y. L. Chin (Eds.), Algorithms and Computation. Pro-
ceedings, 1993. XIII, 542 pages. 1993.



Table of Contents

Introduction
Bernhard Méller, Helmut Partsch, Steve Schuman

Elements of a relational theory of datatypes
Roland Backhouse, Paul Hoogendijk

From dynamic programming to greedy algorithms
Richard Bird, Oege de Moor

Practical transformation of functional programs
for efficient execution: a case study
James Boyle, Terence Harmer

Behavior-oriented specification in Gist
Martin Feather

Derivation of graph and pointer algorithms
Bernhard Moller

The refinement calculus, and literate development
Carroll Morgan

Formal problem specification on an algebraic basis
Helmut Partsch

Program development in an algebraic setting
Peter Pepper

Rules and strategies for program transformation
Alberto Petiorossi, Maurizio Proietti

Endomorphic typing
Michel Sintzoff

Automating the design of algorithms
Douglas Smith

Virtual data structures
Doaitse Swiersira, Oege de Moor

43

62

89

123

161

183

225

263

305

324

355



Introduction

Bernhard Méller!, Helmut A. Partsch?®, Stephen A. Schuman®

! Institut fir Mathematik, Universitat Augsburg, D-86135 Augsburg, Germany
2 Fakultat fir Informatik, Universitat Ulm, D-89069 Ulm, Germany
3 Dept. of Mathematics, University of Surrey, Guildford, Surrey GU2 5XH, UK.

1 The Topics

The book attempts to survey the area of Formal Program Development. The most im-
portant subthemes of this area are

— formal specifications (as starting points for subsequent calculations),

particular calculi and their theoretical foundations (inclusive of development calculi),
rules and strategies (contents of calculi) used in such calculations, and

systems to support these formal calculations.

1.1 Formal Specifications

A formal specification is intended to give a precise description of a problem to be solved
by some piece of software. Research on formal specification deals mainly with appropriate
concepts and the corresponding language constructs, including their theoretical founda-
tions. These aspects deal with the use of specification constructs in describing concrete
problems, with the construction of specifications in a systematic way. Additional aspects
of this research are concerned with methodological issues such as acquisition, evolution,
development and validation of formal specifications. Today, there is no commonly agreed
general-purpose specification formalism. Rather, there is a spectrum of specific techniques
based on different theoretical foundations and aimed at describing particular classes of
problems (or systems) in the most appropriate way. In this book, formal specifications
are explicitly addressed in the contributions by PARTSCH, PEPPER and FEATHER. In the
algebraic approach, as dealt with in the papers by PARTSCH and PEPPER, a software
system is specified in terms of its components through a hierarchically related structure
of algebraic types. In each of these types, objects, object classes and operations are de-
fined through algebraic axioms. These axioms describe the essential properties of the
individual operations without refering to their operational realization. Propositions on
the overall behaviour may then be inferred from the individual axioms, the interactions of
the various operations and the hierarchical relationships between the component types.

In the behaviour-oriented approach, as discussed in FEATHER’s contribution, a sys-
tem is specified in terms of its possible events and its reactions to those events. Static



2 Bernhard Moller, Helmut A. Partsch, Stephen A. Schuman

characteristics of the system concerned are captured in the notion of state, and sequences
of states (or state-changes) describe the system’s dynamic behaviour. Particular aspects
within this overall framework are constraints on states and their maintenance during
state-changes, inference mechanisms to extract information on prior and future states,
as well as demons which cause certain changes of state.

The issue of formal specification is also implicitly addressed by some of the other con-
tributions focussed mainly on calculi. Here too, different formalisms are used, partly due
to the specific semantic framework, but also influenced by the class of problems consid-
ered. PETTOROSSI/PROIETTI’s and BOYLE/HARMER’s derivations start from functional
specifications (ML and pure LISP with data abstraction, respectively), as do those by
BIRD/DE MOOR and SWIERSTRA /DE MOOR. SMITH’s specifications include set theoretic
data types, notations from first-order logic, as well as specifications by pre/post condi-
tions. MORGAN and PETTOROSSI/PROIETTI use logical specifications (in Z and Prolog,
respectively). MOLLER also deals with set-theoretic specifications.

1.2 Calculi

Calculi are the main focus of WG 2.1’s current activities. Therefore, various calculi and
their theoretical foundations are comprehensively dealt with in this book. Common to
all these calculi is the intent to provide a kind of mathematics of program construction.
Differences arise mainly in their underlying theoretical basis and, consequently, in the
concrete rules of the particular calculus.

As to the theoretical foundations, in all approaches theories are imported from math-
ematics. Predicate logic and implicational reasoning form the basis of MORGAN’s refine-
ment calculus. PEPPER’s calculus also uses first-order logic, but in the form of Gentzen
style rules of natural deduction. SMITH’s approach to algorithm design is essentially based
on the idea of translating one theory into another. Set theory with relational theory and
formal language theory as subtopics is the basis of MOLLER’s calculus. Relational theories
are also used in the calculi of BACKHOUSE/HOOGENDIIK and BIRD/DE MooOR. In addi-
tion, they adapt notions from category theory, which is a source of ideas for SINTZOFF’s
general development calculus as well.

The practically important part of each calculus lies in the formulation and use of
its associated rules and strategies. The rules and strategies discussed by PEPPER, PET-
TOROSSI/PROIETTI and SWIERSTRA /DE MOOR are general in the sense that they are
largely language-independent and applicable to a variety of problems — although partic-
ular languages and problem domains are used in their presentation. BoYLE/HARMER’s
rules also are applicable to a variety of problems, but they are mainly syntactical and,
as such, language-specific. In contrast to this, BIRD/DE MOOR, MOLLER and SMITH
present problem-oriented rules, i.e., language-independent rules targeted towards partic-
ular classes of problems.

1.3 Systems

There are many experimental systems which support formal program development. Like-
wise, a number of aspects amenable to automation are addressed by such systems. In the
context of this book, emphasis is given to those aspects related to the central activity,



Introduction

viz. calculation of programs; the relevant literature should be consulted for information
on support for other important aspects of software development. From the wide range
of possible approaches, two extreme positions w.r.t. the way programs are calculated are
represented here. BoyLE/HARMER’s system is essentially driven by syntactic rewriting,
according to built-in strategies and without user interaction. In SMITH’s system the user
is offered a choice between various built-in strategies for algorithm design, from which
the system then automatically derives the requested program using its knowledge-base
and inference mechanism.

2 Additional Interests of WG 2.1

In addition to the topics explicitly addressed by the contributions in this book, there are
other areas represented within WG 2.1 but only marginally reflected here. Nevertheless, it
seems worthwhile to at least mention them, in order to give an impression of the breadth
of the group’s interests. Moreover, many of these latter topics are subjects of ongoing
research, building on the results summarized in this book, rather than being state of the
art.

In addition to the semantic issues explicitly addressed in the context of calculi, the-
oretical aspects of languages such as type theory, non-determinism, parallelism, concur-
rency and distributed systems are discussed within WG 2.1, as are many more pragmatic
issues of language design.

With respect to methodology, reuse and adaptation of designs or developments and
transformation towards parallel execution are fairly recent research topics. On the bor-
derline between theory and methodology, the incorporation of efficiency considerations
and the formalization of reasoning must also be mentioned.

The issue of system support is considered within the Working Group in a much wider
sense, covering nearly all aspects related to automating the production of software. Such
interests include optimizing compilers, integrated development environments, end-user
interfaces, all kinds of language-oriented tools as well as their underlying databases or
knowledge-bases.

Although this book gives a fairly comprehensive account of the state of the art in for-
mal program development, not all subjects could be treated in depth (owing to its mainly
tutorial objectives). However, further information may be obtained by pursuing the ref-
erences provided here. In particular, the reader is referred to reports of ongoing research
in this area which are contained in the proceedings of the IFIP Working Conferences
organized by WG 2.1.

3 Summaries of the Contributions in this Book

BACKHOUSE/HOOGENDIIK’s paper introduces an algebra of data types oriented towards
the calculation of polymorphic functions and relations. Their approach is similar to theo-
ries of types in a functional setting, but differs in including non-determinism. Moreover, it
achieves a uniform treatment of data and control structures. The major goal of the paper
is to construct a framework in which a large class of type manipulation problems can be
reduced to straightforward calculation. Economical notation and elegant programming



4 Bernhard Moller, Helmut A. Partsch, Stephen A. Schuman

laws are used to express powerful fundamental concepts. Particular emphasis is laid on
comparing and contrasting the calculus with the Bird-Meertens formalism as used in the
contribution by SWIERSTRA /DE MOOR.

BIRD/DE MOOR introduce a calculus based on a categorical setting and involving
relational concepts and the theory of free inductive data types. They state and prove a
general theorem about problems treatable by greedy algorithms. The use of the calculus
and the theorem are demonstrated with the minimum lateness problem, a job-scheduling
application. BIRD/DE MOOR view greedy algorithms as refinements of dynamic program-
ming. This latter paradigm is applicable if the principle of optimality applies (i.e., an
optimal solution to a problem can be composed of optimal solutions to subproblems if a
certain monotonicity condition holds). Whereas dynamic programming decomposes the
input in all possible ways, a greedy algorithm considers only one (usually unbalanced)
decomposition and reduces the input in each step as much as possible. BIRD/DE MOOR’s
work has an obvious relationship with SMITH’s studies on divide and conquer algorithms.

BoYLE/HARMER'’s paper deals with the use of automated program transformations as
realized in the TAMPR system. The purpose of the TAMPR, transformations discussed in
this paper is the derivation of efficient vectorizable programs from functional specifications
in pure LISP enhanced by a data abstraction mechanism. TAMPR is built on Chomsky’s
idea of a transformational grammar; the laws of the underlying program algebra are
expressed as rewrite rules. TAMPR also tackles some general problems that are inherent
to functional languages, e.g., the speed and storage costs of higher-order functions and
the lack of selective updating. It has been used to derive a large number of realistic
programs, several of which are in everyday use. The particular application area considered
in BOoYLE/HARMER’s contribution is numerical solutions to a practical fluid dynamics
problem, stated in terms of hyperbolic partial differential equations. The results obtained
are remarkable. For instance, the derived program given in the paper runs faster on a
CRAY X-MP vector supercomputer than its hand-coded counterpart.

FEATHER gives a guided tour of the language Gist, a representative of formalisms for
behaviour-oriented specification. This kind of specification is based on the notions of state
and state-changes, which is motivated by the observation that it is difficult to express
ongoing behaviours in a functional setting. Such approaches address the need to describe
the interactions of a system with its environment, and to express complex behavioural
requirements. Apart from considering the advantages of constructing a formal specifica-
tion in general, FEATHER deals mainly with constructs appropriate for describing such
properties. Among others, the following specification constructs are identified as useful
for these purposes: sequences of states (to denote behaviours), access to information from
prior and future states, nondeterminism, constraints and demons. In addition, operations
on such specifications are discussed. Such operations are construction and maintenance
(modification and re-use) of the specification, presentation and analysis (paraphrasing,
symbolic evaluation, prototyping) and the transition to an implementation. The discus-
sions are illustrated by a package router (i.e., a mechanism to sort postal packages into
one of several bins according to their destinations), and an elevator system (for bringing
passengers to their destinations in a multi-story building). The paper is rounded off by
a brief comparison with related approaches.

MOLLER introduces some operators and laws of an algebra of formal languages, a
subalgebra of which corresponds to the algebra of multiary relations. Central operations



Introduction

are join and composition, in particular in their iterated forms where they describe sets
of paths and reachability. The common algebraic structure of these iterations is that of
a Kleene algebra, which allows the statement of a powerful uniform induction principle.
Using this structure, a number of lemmas on paths in subgraphs are proved in a very
concise way. The algebra is then used in the formal specification and derivation of some
graph and pointer algorithms. The examples treated are cycle detection and reachability
in graphs, in-situ concatenation and reversal of singly-linked lists, a copying algorithm
for general pointer structures and parts of a garbage collection problem.

MORGAN gives an introduction to his refinement calculus, a method of deriving im-
perative programs and presenting their developments. While based on Dijkstra’s calculus
of weakest preconditions, MORGAN’s approach has a number of novel characteristics. In
contrast with Dijkstra’s original approach, weakest preconditions do not appear explic-
itly in program developments. Moreover, specifications (which may contain predicates)
and programs are not distinguished semantically, and may therefore be mixed. For the
derivations, use is made of an extensible collection of refinement laws derived from a basic
refinement relation between programs. Particular emphasis is laid on literate program-
ming when constructing program developments using the refinement calculus starting
from specifications in Z. In addition to simple examples (e.g., swap of two variables), a
complete derivation of a square root program is presented.

PARTSCH introduces the theoretical foundations and the major concepts of an alge-
braically based formalism for problem specification (using essentially the one developed
within the CIP project as a representative). This approach is based on the notion of
an algebraic type, which defines objects, object classes, and operations on these object
classes by means of algebraic axioms. Particular emphasis is laid on the use of such a
formalism for the specification of concrete problems, including the methodological aspects
of formalization. Many standard examples (sets, sequences, bags, maps) are covered. In
addition, more comprehensive examples are treated such as various formalizations of fi-
nite directed graphs (mainly to illustrate the formalization process), a bounded buffer (as
part of a simple communication system) and the cube problem (a not too sophisticated
puzzle that shows many pitfalls of formalization).

PEPPER’s contribution models the programming activity as a deduction in a for-
mal calculus for program development based on concepts from algebra and logic. In this
framework, programming is viewed as a process that successively extends the program
under consideration by adding new axioms or theorems to it. In this setting, axioms
constitute design decisions, whereas theorems make deducible knowledge explicit. Tech-
nically, the power of the approach is achieved by combining concepts from two related
areas: algebraic specifications are used to represent programs, and Gentzen style rules of
natural deduction are used to represent derivation processes. The paper presents the al-
gebraic framework and a collection of characteristic derivation rules illustrated by various
examples such as binary logarithm, fast integer division and majority voting.

PETTOROSSI/PROIETTI give an overview of traditional transformational methods, fo-
cusing on the rules and strategies approach (as opposed to the schematic or dictionary
approach). Their contribution deals with the transformation of functional programs, for-
mulated in a variant of ML, and using basic rules such as definition, unfold, fold, together
with laws of the underlying data algebra. Various strategies are surveyed, such as elimi-
nation of composition (to avoid intermediate data structures), tupling (to avoid repeated



6 Bernhard Moller, Helmut A. Partsch, Stephen A. Schuman

visits of data structures, thus enabling on-the-fly garbage collection), generalization and
a particular strategy for online programs. The topic of transforming logic programs is also
covered. In this context, strategies similar to the functional case are given. The treatment
is illustrated by a large collection of examples, such as evensum, Towers of Hanoi, fac-
torial, collecting tree leaves, Fibonacci numbers, palindrome recognition, Hilbert curves,
common sublists, minimal leaf replacement and prime numbers.

SINTZOFF’s contribution on typing endomorphisms proposes the kernel of a meta-
calculus for formal program derivations. This kernel is described in terms of an intuitive
semantics and of corresponding algebraic concepts inspired by the theory of cartesian
closed categories. It defines operations for composing deductions in such a way that
typing is defined as an endomorphism on deductions. The approach is compared with
others based on typed A-calculi and is related to the language DEVA.

SMITH’s contribution is composed of two parts, one on the automation of program
construction (as implemented in the KIDS system) and another one on a general theory of
algorithm design. The KIDS system provides knowledge-based support for the derivation
of correct and efficient programs from specifications. The specification language includes
set theoretic data types, notations from first-order logic and extensions that support
specifications by pre/post conditions. The KIDS system has components for performing
algorithm design, deductive inference, program simplification, partial evaluation, finite
differencing optimizations, data type refinement and case analysis. All of the KIDS oper-
ations are automatic except the algorithm design tactics, which at present require some
user interaction. The use of KIDS is traced in deriving a scheduling algorithm as a rep-
resentative for the many programs that have been derived using that environment. This
derivation illustrates various aspects such as design, deductive inference, simplification,
finite differencing, partial evaluation, data type refinement and other techniques. The
second part discusses the theory of algorithm design used in KIDS. Important concepts
are problem theories, algorithm theories, program schemes as parameterized theories,
design as interpretation between theories (theory morphisms), algorithm design tactics
and refinement hierarchies of algorithm theories.

SWIERSTRA /DE MOOR demonstrate a number of techniques that may be used in
calculating algorithms for sequence-oriented problems, using the Bird-Meertens formal-
ism. Their central theme is the use of virtual data structures, which allow optimization
by reasoning at the level of function compositions and then eliminating intermediate
data structures at the final transformation step. These ideas are illustrated by two seg-
ment problems on lists, viz. the maximum segment sum and the length of a longest low
segment.



Elements of a Relational Theory of Datatypes

Roland Backhouse and Paul Hoogendijk

Department of Mathematics and Computing Science
Eindhoven University of Technology
P.O. Box 513, 5600 MB Eindhoven, The Netherlands.

Abstract

The “Boom hierarchy” is a hierarchy of types that begins at the level of trees and
includes lists, bags and sets. This hierarchy forms the basis for the calculus of total
functions developed by Bird and Meertens, and which has become known as the “Bird-
Meertens formalism”.

This paper describes a hierarchy of types that logically precedes the Boom hierarchy.
We show how the basic operators of the Bird-Meertens formalism (map, reduce and filter)
can be introduced in a logical sequence by beginning with a very simple structure and
successively refining that structure.

The context of this work is a relational theory of datatypes, rather than a calculus of
total functions. Elements of the theory necessary to the later discussion are summarised
at the beginning of the paper.

1 Introduction

This paper reports on an experiment into the design of a programming algebra. The
algebra is an algebra of datatypes oriented towards the calculation of polymorphic func-
tions and relations. Its design draws most inspiration from earlier research into theories
of type in a functional setting but differs from those theories in including an element of
indeterminacy. The selection of results chosen for presentation here has been made on the
basis of level of correlation with the work of other members of IFIP Working Group 2.1.
Other published selections from the work of the research team can be found in references
(18, 19, 24, 26].

The goal of our work is to reduce a large class of type-manipulation problems to
straightforward calculation. The hope is that within the next century it will become
feasible to pose a large variety of such problems in school-leaving examinations alongside
problems in, say, the differential calculus (with the implication that they are at the same
level of difficulty). In order to achieve this goal it is vital to design a programming algebra
in which the combination of economical notation with elegant programming laws is used
to express powerful, fundamental concepts.

Fluidity of calculation is considerably enhanced by attention to two design consider-
ations. The first is that the operators in one’s algebra should be total functions: their use
should not be hedged with conditions on the type of their arguments, however simple



8 Roland Backhouse and Paul Hoogendijk

those conditions may be. The second is that calculational rules should involve a mini-
mum of bound variables (at most four being our yardstick) and no complicated nestings
of universal and/or existential quantifications.

The axiomatic form of the calculus of relations developed by De Morgan, Peirce,
Schroder, Tarski and others has both these attributes par excellence as well as offering
mechanisms for modelling the indeterminacy that is pervasive in programming problems.
It has been chosen for these reasons as the basis for our experiment.

The contribution made in [5, 4, 3] is to extend the calculus of relations with the so-
called “polynomial relators”. That is, axioms are added defining a unit type, “junction”
and “split” operators, and then it is shown how, via the latter two operators, disjoint sum
and cartesian product are defined. Sum and product are so-called “relators” (a corruption
of the categorical notion of functor), and, with these as building blocks, new relators can
be constructed by composition and by the construction of fixed points.

In line with our design principles the junction and split operators are total functions:
this in contrast to most category-theory-inspired theories of type where type restrictions
are imposed on the corresponding operators. A consequence is that the laws in our system
have a recognisably different character to the laws in other systems. Instead of global type
restrictions on the variables in the laws the restrictions appear — where unavoidable —
in the laws themselves. One of our experimental objectives has been to explore to what
extent this would impede or enhance calculations. Our experience is that this design
decision was fortunate. Only occasionally do type restrictions occur in our formulae and
these act as a welcome reminder to the user of the calculus, and not as a tiresome detail.
In this paper only one such type restriction occurs — in the very last theorem.

The main concern of the current paper is to compare and contrast the calculus to
the so-called “Bird-Meertens Formalism”. This formalism (to be more precise, our own
conception of it) is a calculus of total functions based on a small number of primitives
and a hierarchy of types including trees and lists. The theory was set out in an inspiring
paper by Meertens [23] and has been further refined and applied in a number of papers
by Bird and Meertens [9, 10, 13, 11, 14].

Essentially there are just three primitive operators in the theory — “reduce”, “map”
and “filter”. These operators are defined at each level of a hierarchy of types called the
“Boom hierarchy” ! after H.J. Boom to whom Meertens attributes the concept.

The Boom hierarchy begins at the level of trees and subsequently specialises to lists,
(finite) bags and sets. In this report we describe a hierarchy of types that logically
precedes the Boom hierarchy and in which all three primitive operators of the Bird-
Meertens formalism can be defined. We call the hierarchy a hierarchy of “freebies” because
all types within the hierarchy are described by “free” algebras (i.e. algebras free of laws).
How the Boom hierarchy itself is captured in the spec calculus is described in a companion
paper [18].

Space limitations have dictated the form and content of this paper. The first eight
sections prepare the reader for section 9 in which the main contribution of the paper

! For the record: Doaitse Swierstra appears to have been responsible for coining the name
“Bird-Meertens Formalism” when he cracked a joke comparing “BMF” to “BNF” — Backus-
Naur Form — at a workshop in Nijmegen in April, 1988. The name “Boom hierarchy” was
suggested to Roland Backhouse by Richard Bird at the same workshop.



