Springer Books on

Lleon S. lewy

Taming
the Tiger

Software €ngineering
and Software €conomics

D Springer-Verlag



8764228

E8764228

(il

ATsT

Toming the Tiger

Software €ngineering and
Software €conomics

leon S. lewy
AT&T Bell Laboratories

Springer-Verlag
New York Berlin Heidelberg
London Paris Tokyo



#8842%1

Leon S. Levy
AT&T Bell Laboratories
Warren, NJ 07060

Series Editor

Henry Ledgard

Human Factors Ltd.

Leverett, Massachusetts 01054
U.S.A.

With 9 Figures

© 1987 by Bell Telephone Laboratories, Incorporated

All rights reserved. This work may not be translated or copied in whole or in part without
the written permission of the publisher (Springer-Verlag, 175 Fifth Avenue, New York, New
York 10010, USA), except for brief excerpts in connection with reviews or scholarly analysis.
Use in connection with any form of information storage and retrieval, electronic adaptation,
computer software, or by similar’er dissimilar methodology now known or hereafter developed
is forbidden. 5

The use of general descriptive names, trade names, trademarks, etc. in this publication,
even if the former are not especially identified, is not to be taken as a sign that such names,
as understood by the Trade Marks and Merchandise Marks Act, may accordingly be used
freely by anyone.

Printed and bound by R.R. Donnelley & Sons, Harrisonburg, Virginia

Printed in the United States of America.

987654321

ISBN 0-378-96468-1 Springer-Verlag New York Berlin Heidelberg
ISBN 3-540-96468-1 Springer-Verlag Berlin Heidelberg New York



By64228

Acknowledgment

As usual in any scientific endeavor, many people and institutions con-
tribute directly and indirectly to any research effort. Some have a larger
share which should be noted:

e Professor J.R. Clark of Fairleigh Dickinson University who introduced
me to the discipline of economics and its modes of thought and who
read early versions of this work and helped to improve it;

e Professor Todd Idson under whose guidance the chapter on transfer
pricing was written;

® AT&T Bell Laboratories where 1 developed the notion of wultra high
programmer productivity techniques and who encouraged this work by
citing it in the distinguished staff award presented to me in 1983;

® Ben Gurion University of the Negev in Beer Sheba, Israel, where I was
a visiting Professor in the academic year 1983-84 and where the first
draft of this paper was composed, and particularly Professor Michael
Lin who first furnished me with the proof of my generalized synergy
theorem;

® Fuirleigh Dickinson University where my studies in the M.B.A. program
have contributed to my understanding of the managerial and economic
aspects of software engineering;

® Dr. Martin Freeman of Signetics Corporation and Mike Bianchi of
AT&T Information Systems who discussed many of these ideas with
the author while they were in the formative stages;



Vi

Acknowledgment

Dr. James B. Salisbury, of AT&T Bell Laboratories, who gave me moral
support;

my brother, Joel, who read portions of the manuscript and offered val-
uable comments; and, especially,

my wife, Millie, without whose patience and encouragement none of
this would have been possible.



Contents

I INtroduCtion ......oouininii e e

2 Unifving Themes .::::osmmmnanss oo nngfomd N 5 5 s
2.1 Software Engineering ........... - P TIY T
2.2 Software Economics ........... 4 .......2 + i— ................

2.3 Quasi-Expert Systems ..........\. B)- de e

3 Metaprogramming . ......c.oeeeeeeneenemgeneeeop@eeenneennnss
3.1 The Problem .......c.oiiiiiiii i
3.2 What Is a Method? ...t
3.3 The Class of Programs Considered ........................
3.4  Some Typical CASES :suwmmsszssssovmmenssssss summens 55855 598
3.5 The Method. wuwe.:s:ssmmaumasvssssmemmmasssssssmmammeisss s
3.6 Why Metaprogramming WOrks ..............ccoevvvnennn..
3.7 Limits of the Method .uwessssssemmmmassasssimammasssssnsmss
3.8 The Economic Justification .......................cooo.....
3.9 Comparison with the Operational Approach ..............
3.10 ConClUSION ..uuii et e

4 The Cartesian Programmer and the Hacker ....................
4.1 IntroducCtion ......oiiiiii i e
4.2 What is Programming? .............oeiiiiiiineinenninnenaenns
4.3 The Liegal Status of SOftWATE :: .. umummssssssomwwannssssssns
4.4, Multibngual SYStEMS :«seumenssssssompmmnsssssssommanes 556 sas
4.5 SIMPHOILY . cinmicsssssssmmmnsasssssommmmesssissonsmeeidsssssm
4.6 Summing Up Simplicity ...,
4.7 ConcluSION .....iini it



viii

10

Contents
Software Engineering .............ooiiiiiiiiiiiiiiii 84
5.1 Software Engineering: Problems ............................ 87
5.2 Design Methodology ......o.oooniiiii 91
5.3 Software Economics .............oooiiiiiiiiiiiiiii.. 96
AWK—A Prototyping Language ................................ 104
6.1 Hello World ... ... . 106
6.2 Some AWK Syntax ........oooiiiiiiiiiiiiiaiiain. 113
6.3 Patlerns ... 115
6.4 More of the Language .................cooiiiiiiiiiiii... 120
6.5 EXAMPLE—A Data Validator ............................. 121
6.6 Significance of the Example .......cccooiiviiiviniiiiiinnen. 132
SOEWAFe: ECONOMICS - 1555 cummmmmm s 25555 sorssmaass 53 5 suamng 5535 5 s 135
il DT OA TGO wumarm s 4 5 5 5 soamsmsin 135 355 BSWHIAA £ 555 § bidilbioiors s o o » 9 sosnsr 136
7.2 On Ultra-High Programmer Productivity ................... 138
7.3 Economic Fundamentals .................................... 140
7.4 Investing in the Project ......... ... ... ...l 155
7.5 RISK oo 158
7.6 Competition ........iiueiie it 163
7.7 A Complete Example ..............oooiiiiiiiiiiiii... 164
The Model ..o 167
8.1 Parameters of the Model .................................... 170
8.2 A SAMPIE RUD . ;s oomummmass s s pummmmn s 3 55 womenss 11255 SBRma s 2 174
83 A Typical AMAIVEIS. umuwmesssessmmommmsss i 5 oammad £ 55 508 5 184
84 THe PrOSTANT :sssemmmmmsiossssnmsmassisssiostrnmye o s s smmmmme oo s 185
Transfer Pricing ... e 199
9.1 On Estimating the Costs and Benefits of Common Tools ... 203
9.2 Transfer Payment ............. .. ... i, 208
9.3 ConCluSiON .....oui 219
Summing Up ..o 220
10.1 Other Software Engineering Approaches ................. 224
10.2 Other Applications of Software Economics .............. 224
10.3 The Role of Software Economics ......................... 226
BIDNOSTAPRY s csvo s cmunmmsisssssmmnisscs s cnamossiiistamtemsseses 227
ITVHEIX: & cimiiaisi 55 5 5 5 5.0m656es 5 65 5 5 5 ibabisidiin o £ 2 o msusosesntonn n & » o wswgecsorsn o o o s 2 0 i 243



Chapter 1

Introduction

A small program is presented to motivate the concerns for programmer
productivity and program quality that are the central issues of this set of essays.
The example is one which demonstrates the performance aspect of
programming.

In order to achieve program quality, where a program is understood and
known to be correct, we need a primary program description. This primary
program description not only describes the program but is also used to generate
the program. The method of applying primary program descriptions to produce
programs is called metaprogramming and is described in Chapter 3.

In the later chapters, we show how the method can be analyzed from an

economic point of view to address the issues of productivity as well.



Introduction

In thinking about programming over the last decade, I have
concluded that very little is known about the process of
programming or the engineering of software [1]. The consequence of
having very little established truth to use as a basis for thinking
about programming is that almost every conclusion must be
reasoned out from first principles. Also, you cannot rely solely on
textbooks but must use experimentation and direct observation to
gain some experience with which to proceed.

It is also likely that if you proceed to examine the reality, you
will conclude, as I and others have, that much of the accepted
practice in the field is grossly inefficient. Moreover, in many cases,

the quality is not very high, neither in the products nor in the
documentation.

In the next few pages I talk through the development and
modification of a very small program, less than one page at double
spacing. The design and analysis that I discuss is a model of the
development of larger programs. This process is very labor intensive
and, consequently, the productivity must of necessity be low and
the quality difficult to control.

[1] Much of the material in this introduction is taken from [Broome].



Introduction

The programs that most interest me are several orders of
magnitude larger than the example program. If we are to find a way
to radically improve both the quality and productivity of
programming, then we must find a way to make programming less
labor intensive. However, before considering solutions let us examine
this small program fragment:

Ezample. The following "toy" program should serve to illustrate
much of what is wrong with the current software practice. If I were
to choose a larger program to make the point we would be
overwhelmed by its sheer size. Here we can concentrate on some
fundamentals.

The program is one which inverts a permutation [2]. It is

[2] A permutation is a rule which "rearranges" a set of numbers. The rule which
takes 1 to 2, 2 to 3, and 3 to 1, is a permutation of the set of numbers 142,
and 3. The inverse of this permutation is the rule which determines what
number is permuted into the given number. The inverse permutation takes
1 to 3, 2 to 1, and 3 to 2. The way that the inverse permutation may be
easily calculated is to arrange the permutation as follows:

1 2
2 3
3 1

To determine what the permutation is we can look for a number in the left
hand column and find the number that it is permuted to by moving across
the row into the right hand column. To determine the inverse problem, look
in the right hand column to find the number and then move across the row
into the left hand column.



Introduction

convenient to represent such a permutation of numbers as an array,
A, where A[i] stores the number to which 1 is permuted. In
practice, if the set of elements being permuted is not too large one
can construct the inverse permutation as a second array, B, and
then write a simple program which proceeds through the array A
and for each index 1 in A makes the assignment B[A[1]] := 1.
Thus, B[A[1]] := 1, or B[2] := 1. This method uses two
memory cells for each element of the permutation, one cell for the
original permutation, and one cell for the inverse element.

If the set of elements being permuted is large and you are
interested primarily in computing the inverse permutation, then you
may write a subroutine to invert the permutation, in place. While
this subroutine is running, the values stored in the elements of A
will be unpredictable, but when the subroutine has concluded, the
element A[1] will contain the inverse of 1 under the permutation.
The in place permutation inversion will use only one cell for each
element. (Of course, after the inverse permutation has been
computed the original permutation will not be available.)

Readers interested in more information about permutations, can see
[Levy 1980c].



Introduction

Here is the body of a subroutine to invert a permutation:

1 for m := n step -1 until 1 do

2 begin

3 1 := A[m];

4 if 1 < O then A[m] := -i
5 else if 1 <> m then

6 begin

7 k = m;

8 while 1 <> m do

9 begin

10 j = A[i]; A[1] := -k;
11 =1; 1 :=3;
12 end;

13 Alm] := k;

14 end

15 end

Program 1. Invert A Permutation in Place

Now each permutation consists of one or more disjoint cycles. An
example of a permutation, A, with its cycle structure is shown in
Figure 1.1.a. The corresponding inverse permutation, B, with its
cycle structure is shown in Figure 1.1.b. The cycle structure of B is



Introduction

] —3 —a ] -—— 3 —
2 6 2 6
R ~——_
7 5 (D e Q
(a) A permutation (b) The inverse permutation

Figure 1.1 A Permutation and its Inverse

similar to A except that the arrows are reversed.



Introduction

The algorithm of our initial in-place permutation inverter can be described
as follows:

for each m between 1 and n do

if the cycle beginning at m
has not been inverted then
invert and mark

each element of the cycle (except for m)

else remove the marker from this element.

This algorithm inverts one cycle at a time, marking each element
with a negative sign ( - ). When the algorithm later encounters an
element with a marker, the marker is removed.

Program 1 has few variables. The idea of the algorithm is simple
but the program causes us difficulty. How do we know that the
program is correct? How can we retain the link between the
algorithm and the program so that when the program is written the
design is not thrown away?

The communication medium between the programmer and the
computer is often the source of the problem. When we must contort



Introduction

our ideas to fit the syntax of a particular programming language, the
idea is sometimes lost. Luckily we are beginning to realize that a
program’s purpose is not to instruct the computer but to have the
computer execute our program.

Nonetheless, even if we accept the constraints that machines and
programming languages impose on us, something can still be done to
better represent the idea of Program 1.

One major cause of errors in a program is the concern for
(machine) efficiency. Only if we know that a program is correct can
we then be concerned about efficiency. If a program is not correct, it
matters little how fast it runs.

In line 5 of Program 1 there is a test for 1 <> m so that we can
avoid inverting a singleton cycle. But the average number of
singleton cycles in a permutation of size n is just 1, [Knuth]. So this
attempt to increase efficiency has actually decreased efficiency!

Because of the early introduction of the variable, 1, it is not
readily apparent that the test 1 <> m is a test for a singleton
cycle. An attempt such as this to avoid reevaluation of A[m] is
usually unnecessary because most compilers can recognize a
duplicate expression and avoid a recalculation for us.

In order to obtain a better program we should return to the
design stage. Another outline of the algorithm is:



Introduction

for m := 1 to n do
if cycle at m has not been inverted then
invert and mark every element of the cycle
remove the marker from this element

It is more natural to take m from 1 to n than to go the opposite
way. We can avoid special cases by marking (with a minus sign (-))

every element of the cycle, whereas Program 1 leaves element m
unmarked.

The most difficult part of Program 1 is that for chasing around a
cycle, especially the part for moving from one element to the next.

All ways of moving around a cycle are similar in that they have the
following outline:

start at m
while not done do
begin
process the current element
move to the next element
end

As an example, consider the problem of finding an element x which



Introduction

we know to be somewhere in the cycle. The program part:

i := m;
while A[i] <> x do
1 := A[i];

will return 1 such that A[1] = x. Other than the array, A, and
the value, x, this program part requires one other variable, the
variable 1. As we shall see, the number of additional variables
increases with the complexity of the process.

As a second example of loop chasing, assume that we want to
break a cycle into all singleton cycles. The program part

i1 :=m;
J = A[1];
while A[i] <> 1 do
begin
Ali] = 1;
i:=173;
J = A[1i];
end

10



