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Chapter 1

Introduction

A small program is presented to motivate the concerns for programmer
productivity and program quality that are the central issues of this set of essays.
The example is one which demonstrates the performance aspect of
programming.

In order to achieve program quality, where a program is understood and
known to be correct, we need a primary program description. This primary
program description not only describes the program but is also used to generate
the program. The method of applying primary program descriptions to produce
programs is called metaprogramming and is described in Chapter 3.

In the later chapters, we show how the method can be analyzed from an

economic point of view to address the issues of productivity as well.



Introduction

In thinking about programming over the last decade, I have
concluded that very little is known about the process of
programming or the engineering of software [1]. The consequence of
having very little established truth to use as a basis for thinking
about programming is that almost every conclusion must be
reasoned out from first principles. Also, you cannot rely solely on
textbooks but must use experimentation and direct observation to
gain some experience with which to proceed.

It is also likely that if you proceed to examine the reality, you
will conclude, as I and others have, that much of the accepted
practice in the field is grossly inefficient. Moreover, in many cases,

the quality is not very high, neither in the products nor in the
documentation.

In the next few pages I talk through the development and
modification of a very small program, less than one page at double
spacing. The design and analysis that I discuss is a model of the
development of larger programs. This process is very labor intensive
and, consequently, the productivity must of necessity be low and
the quality difficult to control.

[1] Much of the material in this introduction is taken from [Broome].
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The programs that most interest me are several orders of
magnitude larger than the example program. If we are to find a way
to radically improve both the quality and productivity of
programming, then we must find a way to make programming less
labor intensive. However, before considering solutions let us examine
this small program fragment:

Ezample. The following "toy" program should serve to illustrate
much of what is wrong with the current software practice. If I were
to choose a larger program to make the point we would be
overwhelmed by its sheer size. Here we can concentrate on some
fundamentals.

The program is one which inverts a permutation [2]. It is

[2] A permutation is a rule which "rearranges" a set of numbers. The rule which
takes 1 to 2, 2 to 3, and 3 to 1, is a permutation of the set of numbers 142,
and 3. The inverse of this permutation is the rule which determines what
number is permuted into the given number. The inverse permutation takes
1 to 3, 2 to 1, and 3 to 2. The way that the inverse permutation may be
easily calculated is to arrange the permutation as follows:

1 2
2 3
3 1

To determine what the permutation is we can look for a number in the left
hand column and find the number that it is permuted to by moving across
the row into the right hand column. To determine the inverse problem, look
in the right hand column to find the number and then move across the row
into the left hand column.
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convenient to represent such a permutation of numbers as an array,
A, where A[i] stores the number to which 1 is permuted. In
practice, if the set of elements being permuted is not too large one
can construct the inverse permutation as a second array, B, and
then write a simple program which proceeds through the array A
and for each index 1 in A makes the assignment B[A[1]] := 1.
Thus, B[A[1]] := 1, or B[2] := 1. This method uses two
memory cells for each element of the permutation, one cell for the
original permutation, and one cell for the inverse element.

If the set of elements being permuted is large and you are
interested primarily in computing the inverse permutation, then you
may write a subroutine to invert the permutation, in place. While
this subroutine is running, the values stored in the elements of A
will be unpredictable, but when the subroutine has concluded, the
element A[1] will contain the inverse of 1 under the permutation.
The in place permutation inversion will use only one cell for each
element. (Of course, after the inverse permutation has been
computed the original permutation will not be available.)

Readers interested in more information about permutations, can see
[Levy 1980c].
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Here is the body of a subroutine to invert a permutation:

1 for m := n step -1 until 1 do

2 begin

3 1 := A[m];

4 if 1 < O then A[m] := -i
5 else if 1 <> m then

6 begin

7 k = m;

8 while 1 <> m do

9 begin

10 j = A[i]; A[1] := -k;
11 =1; 1 :=3;
12 end;

13 Alm] := k;

14 end

15 end

Program 1. Invert A Permutation in Place

Now each permutation consists of one or more disjoint cycles. An
example of a permutation, A, with its cycle structure is shown in
Figure 1.1.a. The corresponding inverse permutation, B, with its
cycle structure is shown in Figure 1.1.b. The cycle structure of B is
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] —3 —a ] -—— 3 —
2 6 2 6
R ~——_
7 5 (D e Q
(a) A permutation (b) The inverse permutation

Figure 1.1 A Permutation and its Inverse

similar to A except that the arrows are reversed.
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The algorithm of our initial in-place permutation inverter can be described
as follows:

for each m between 1 and n do

if the cycle beginning at m
has not been inverted then
invert and mark

each element of the cycle (except for m)

else remove the marker from this element.

This algorithm inverts one cycle at a time, marking each element
with a negative sign ( - ). When the algorithm later encounters an
element with a marker, the marker is removed.

Program 1 has few variables. The idea of the algorithm is simple
but the program causes us difficulty. How do we know that the
program is correct? How can we retain the link between the
algorithm and the program so that when the program is written the
design is not thrown away?

The communication medium between the programmer and the
computer is often the source of the problem. When we must contort
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our ideas to fit the syntax of a particular programming language, the
idea is sometimes lost. Luckily we are beginning to realize that a
program’s purpose is not to instruct the computer but to have the
computer execute our program.

Nonetheless, even if we accept the constraints that machines and
programming languages impose on us, something can still be done to
better represent the idea of Program 1.

One major cause of errors in a program is the concern for
(machine) efficiency. Only if we know that a program is correct can
we then be concerned about efficiency. If a program is not correct, it
matters little how fast it runs.

In line 5 of Program 1 there is a test for 1 <> m so that we can
avoid inverting a singleton cycle. But the average number of
singleton cycles in a permutation of size n is just 1, [Knuth]. So this
attempt to increase efficiency has actually decreased efficiency!

Because of the early introduction of the variable, 1, it is not
readily apparent that the test 1 <> m is a test for a singleton
cycle. An attempt such as this to avoid reevaluation of A[m] is
usually unnecessary because most compilers can recognize a
duplicate expression and avoid a recalculation for us.

In order to obtain a better program we should return to the
design stage. Another outline of the algorithm is:
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for m := 1 to n do
if cycle at m has not been inverted then
invert and mark every element of the cycle
remove the marker from this element

It is more natural to take m from 1 to n than to go the opposite
way. We can avoid special cases by marking (with a minus sign (-))

every element of the cycle, whereas Program 1 leaves element m
unmarked.

The most difficult part of Program 1 is that for chasing around a
cycle, especially the part for moving from one element to the next.

All ways of moving around a cycle are similar in that they have the
following outline:

start at m
while not done do
begin
process the current element
move to the next element
end

As an example, consider the problem of finding an element x which
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we know to be somewhere in the cycle. The program part:

i := m;
while A[i] <> x do
1 := A[i];

will return 1 such that A[1] = x. Other than the array, A, and
the value, x, this program part requires one other variable, the
variable 1. As we shall see, the number of additional variables
increases with the complexity of the process.

As a second example of loop chasing, assume that we want to
break a cycle into all singleton cycles. The program part

i1 :=m;
J = A[1];
while A[i] <> 1 do
begin
Ali] = 1;
i:=173;
J = A[1i];
end
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