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Douglas C. McMahon, 1947-1986

Professor Douglas McMahon of Arizona State University died December 29 in

a mountain climbing accident on Mount Orizaba in Mexico.

Doug, who participated in the ergodic theory conference at Maryland in
October, was an active researcher in topological dynamics. He received his
Ph.D. in 1972 from Case-Western Reserve University under the direction of
Ta Sun Wu, with whom he continued to collaborate. Amcng the topics he studied
were local almost periodicity, weak mixing and its generalizations, structure
theorems (including a non-metric Furstenberg structure theorem for distal
flows), disjointness, and the equicontinuous structure relation. He also
contributed a number of illuminating examples. In particular, we single out
two of his results. The first (Trans. Amer. Math. Soc. 236 (1978), 225-237)
is an elegant proof that in a minimal flow which admits an invariant measure,
the regionally proximal relation is an equivalence relation (and hence
coincides with the equicontinuous structure relation). The second (Proc.
Amer. Math. Soc. 98 (1986), 175-179) is an ingenious proof of a "multiple
disjointness'" theorem: Let T be an abelian group and let (X,T) be a family of
weakly mixing regular minimal flows which are pairwise disjoint. Then the

product flow (HXi,T) is minimal.

Doug was very much a lover of the out-of-doors, an avid climber, hiker
and rafter, who had pursued these activities extensively throughout North

America.

To many of the participants of the 1986-87 Special Year in Ergodic Theory
and Dynamics at the University of Maryland, Doug was both a friend and

stimulating colleague. We shall all miss him.

The Organizers



During the academic year 1986-1987, the Mathematics Department of the University of Maryland
devoted its special year to various aspects of Dynamics. In addition to having a number of both long and
short-term visitors, the Department sponsored three separate conferences on different aspects of dynamics.
These were: Ergodic Theory and Topological Dynamics October 13 through October 17, 1986, Symbolic
Dynamics and Coding Theory. December 1 through December 5, 1986, and Smooth Dynamics, Dynamics
and Applied Dynamics, March 9 through March 13, 1987.

The papers in this proceedings reflect the richness and diversity of the subject of dynamics. Some of
the papers in this proceedings are lectures given at the conferences, some are work which was in progress
during the special year, and some are work which was done because of questions and problems raised at
the conferences. In addition, a paper of John Milnor and William Thurston. versions of which have been
available as notes, but which has not been published, is included. The editor would like to thank those
individuals, both at Maryland and elsewhere, who acted as referees, often on short notice.

One of the reasons for the success of the special year was the financial support of the Department
of Mathematics of the University of Maryland, the Institute for Physical Science and Technology of the
University of Maryland, and the National Science Foundation (through grant DMS86-10332). In addition,
the Department of Mathematics contributed administrative and logistical support, and some typing for
this proceedings.

The special year, and especially the conferences, were full of mathematical excitement. The editor
and the organizers hope these papers convey some of that excitement.

J. C. Alexander
November, 1987
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Discerning Fat Baker’s Transformations

J. C. Alexander and William Parry
Department of Mathematics Department of Mathematics
University of Maryland University of Warwick

College Park, MD 20742 Coventry, CV4 7TAL

1. Introduction.

Define a piecewise-linear transformation T' = T} of the square {(z,y):0 < z,y < 1} for % <B <1

21, By). if
Tote) = { Gy,

For f = %, Tp is the classical baker’s transformation. More generally, T stretches horizontally

L
L
2’ (1.1)

by a factor of 2 and compresses vertically by a factor of 3. Hence the name ‘fat baker’s transforma-
tion.” For 8 > 1, Tj is not invertible. In [1], these transformations were introduced and studied as
interesting examples in the context of fractional metric dimensions. Moreover, each T has a natu-
ral (Bowen-Ruelle) ergodic invariant measure pg which can be more-or-less explicitly written down
(either combinatorially or in terms of its characteristic function).

Here we consider the T in the context of measure-preserving transformations. Let L2 (resp.
¥7) be the two-sided (one-sided) Bernoulli shift on two symbols of equal weight. Of course T, is

conjugate to £,. More generally, we show the following.

Theorem 1. Tp is a factor of ¥3. Thus Tg is a K-endomorphism. The projection of Tg to the
x-axis represents ©§ as a (marginal) factor of Tys. Thus the entropy of Ty equals log 2 for all 8. The

natural extension of Ty is E,.

We also consider whether, for 8 # 8', T is conjugate to Tsr. We do not give a complete answer to
the problem. We show that for those 3 for which pg is absolutely continuous with respect to Lebesgue
measure, the T are different for different 3. It is not known which pg are absolutely continuous,
although it is conjectured to be so for almost all 8, % < B < 1. It is known that pg is absolutely
continuous for almost all 8 > Bo for some 3 < 1 [3]. In particular, we obtain an uncountable number
of distinct T3. On the other hand, it known there is at least a countable set of 3 for which pg is not
absolutely continuous [2]. See also [4,7,13].

To differentiate between two T, of course we seek a measure-theoretic invariant which is different
for the two transformations. The most obvious invariant, the entropy, equals log 2 for all the T, and
hence does not work. Since the T3 are not invertible, some measure of non-invertibility could be
considered. One choice is some function of the Jacobian T = dupTps/dug of Tg [11, chap. 10]. In

fact, we prove the following result.

Theorem 2. Consider B for which pg is absolutely continuous with respect to Lebesgue measure.
Then

/log Ty dug = log(28). (1.2)
Also for such 3, [T} dug is a strictly increasing function and pg({Tj = 1}) is a strictly decreasing
function of 3.

To compute with Jacobians, one has to have good control over null sets. In particular, one needs

to know that the transformation is positively non-singular. Theorem 2 is valid for any 3 for which

* Partially supported B;‘N.S.F.



Tp is positively non-singular. The following result is what permits us to have such control when pg

is absolutely continuous with respect to Lebesgue measure.

Theorem 3. If pp is absolutely continuous with respect to Lebesgue measure, then it is equivalent

to Lebesgue measure (i.e. has the same null sets).

2. The measures ug

The natural measure for T3, 8 > %, is the product of the uniform (Lebesgue) measure in the horizontal
direction and a measure o in the vertical direction. The measure og is an infinite convolution of
(two-point) Bernoulli measures. It can be described combinatorially as follows. For any interval
I C [0,1], and integer N > 1, let

(1)

N
:2_(N+1)[#{(ao,al,...,aN):(1 —,B)Za;ﬂié I, with each a; = 0 or I,i:O,...,N}]. (2.1)

1i=0

That is aéN) (I) is the fraction of S-adic sums Zfio a;B*, with coefficients 0 or 1, of length N contained

in the interval I. The measure aéN)(I) is a finite convolution of Bernoulli measures and
_ (N)
og(l) = Nll_rpoo oy (I). (2.2)
For example, if 8 = 1, then o4 is uniform. If dz is Lebesgue measure on the interval [0, 1], then [1]
ug = dz X og. (2.3)

on the square [0, 1] x [0,1].

The continuous measures o3 were defined and studied in the 1930’s in the context of harmonic
analysis. In particular, the question of which og are absolutely continuous was studied. The complete
answer remains open. A number of results are known, of which we quote three:

(i) the limit og exists and is pure, i.e., o4 is either absolutely continuous or totally singular [6],
(ii) there exist 8 for which oy is totally singular (e. g., 8 = 3(v/5 — 1)) [2] (more generally for 8 the

reciprocal of a Pisot-Vijayarghavan number: see [13]),

(iii) there exists fo < 1 such that og is absolutely continuous for almost all 8 > B¢ [3] (there are

other isolated 3 for which o4 is known to be absolutely continuous [4]).

Proof of Theorem 1.
Let ¥4 be the shift defined on the sequence space

{(...,a_g,a_l,ao,a.l,ag,...): each a; = 0 or 1}.

Define a map F from this sequence space to the square [0, 1] x [0, 1]:

F ( ,aAg,a,l,ao,al,ag,...) = <Z aizi,Za‘ﬂ’).

i<0 i>0

It is routine to verify from the definitions that F' 15 a semiconjugacy from ¥, to Tg; that is, F is
measure-preserving and F¥X, = TgF. Hence, Tg is a factor of ¥,. Since the horizontal component of
pp is uniform, it is clear that the projection onto the horizontal axis is a semiconjugacy from Tg to

E,:f. Since semiconjugacies do not increase entropy, the entropy of T equals log 2.



Let Tﬂ be the natural extension of Ts. That is, Tﬂ is invertible and if S is any invertible measure-
preserving map and f is a semiconjugacy from S to T, then there is a semiconjugacy f from S to
f‘g. In particular, let S = £, and f = F above. Then F represents T[; as a factor of £,. Hence 9]
Tp is a Bernoulli shift and hence [8] is isomorphic to ;.

This completes the proof of Theorem 1 and in particular shows that entropy does not distinguish
the Tp.

3. Absolutely continuous ug
Proof of Theorem 3.

Let dy be Lebesgue measure on [0, 1] and o as in (2.1-2.2). Assuming oy is absolutely continuous
with respect to dy, let h(y) = dog/dy. Then if dz dy is Lebesgue measure on the square [0, 1] x [0, 1],
the derivative dug/dzdy = h(y). To prove Theorem 3, we show: h(y) > 0 almost everywhere
mod dz dy.

Divide the square into three regions by two horizontal lines, one at y = 1 — 3 and one at y = 3.
Call the three regions the lower, central and upper regions. Note that the preimage under T of the
lower (resp. upper) region is contained in the left (right) half of the square, whereas the preimage of
the central region intersects both halves. Consider a small rectangle I x J in the lower region which
is the product of intervals I and J of lengths |I| and |J|. The preimage T[;l is a rectangle which is
the product of the intervals I/2 and J/B. By the invariance of pg,

/ h(y) dzdy:/ h(y) dz dy,
IxJ 1/2xJ/8

so that 1
[I|/ h(y) dy = 5 h(y) dy.
J J/8

Dividing by |J| and letting |J| — O, we obtain the functional relation
h(y) = (28) 'h(y/B) almost everywhere mod dy for y < 1 — f. (3.1)
Similarly, considering the upper region,
h(y) = (28) 'h ((y — (1 — B))/B) almost everywhere mod dy for y > 3. (3.2)
For I x J in the central region,

h(y) = (28) " *h(y/B) + (28) " h ((y - (1= ﬂ))/ﬂ) almost everywhere mod dy for 1 — 8 < y < 3.

(33)
Let
A={y:h(y)=0,2-8 1 <y<1} (3.4)
Define the map Q on the interval [2 — 371, 1] by the formula
_Ju/B if2—g'<y<p,
Qy"{(y—(l—ﬂ))/ﬂ ifA<y<l. (8:5)

By (3.1)-(3.3), QA C A.

Consider Q' defined on [0, 1] by Q'y = 7'y mod 1. The affine thap ¢:[0,1] — [2— 37!, 1] defined
by ¢(y') = (1 — B71)y’ + 1 satisfles gQ' = Qg. Let A’ = g7 !(A). Note that Q'A’ C A'. There is
a Q' invariant, ergodic measure on [0, 1] which is equivalent to Lebesgue measure [12] (the explicit



form of this measure is given in [5,10]). Thus the Lebesgue measure of A’ is either 0 or 1. Hence the
Lebesgue measure of A is either 0 or 71 — 1.

Suppose the second is true, so that h(y) = O almost everywhere on [2 — 871, 1] D [3,1]. By
symmetry h(y) = 0 almost everywhere on [0,471 — 1] > [0,1 — B]. For y < 1 - 8, h(y) = 0 implies
h(y/B) =0 ((3.1), (3-3)). Accordingly h(y) = 0 almost everywhere on [0,1 — ] implies by induction
that h(y) = 0 almost everywhere on [0, *"! — 7] and thus almost everywhere on [0, 1]. This is an
obvious contradiction. That is, the Lebesgue measure of A is zero and h(y) > 0 almost everywhere in
[0,871 —1]U[2— 871, 1]. Now let [0, o] be the largest interval such that h(y) > 0 almost everywhere
n [0,a]. Eithera =1or1—f < a < f. In the second case, h(y) = 0 on a set of positive measure in
[a, + €] C [, B], and then (3.3) implies h(y) = 0 on a set of positive measure in [0,a]. Thus a =1

and h(y) > 0 almost everywhere. This proves the theorem.

4. Jacobians

If T is a map from a measure space with measure u to one with measure v, the Jacobian T’ is the
derivative dvT/du. This definition is valid for transformations T for which: (i) T~! is countable
for each z, (ii) T(A) is measurable if A is measurable (T is positively measurable), and (iii) T(A)
has measure zero if A has measure zero (T is positively non-singular). A general almost everywhere
countable-to-one T can be replaced by a conjugate 7" which satisfies (i)—(iii). However to compute
with an explicit 7', one needs to know (i)-(iii) hold. In the present case, Theorem 3 has the following

corollary.

Lemma. As defined in (1.1), Ty satisfies (i)—(iii) if og is absolutely continuous with respect to

Lebesgue measure.

Proof of Theorem 2. Consider the sets
Ly ={(z,9):0<z<
R, = {(z,y):% <z<

50 <y < (1-8)/8},
1, (28 )/ﬂ<y<1}~

Note that R; and L; are symmetric images of each other through the center of the square, so that
ps(l1) = pg(R1). Clearly Tp is one-to-one on these sets and so T = 1 on these sets. We claim that
up to a set of pg-measure 0,

LyUR ={T;=1} (4.1).

If not, we may suppose there is a set A of the form A, x [0,1] with A, C [1 — §,1] such that
ppA = LtogA, #0and Tj = 1on A, so that pg(TpA) = pg(A). Then, since T is measure-preserving,
p.g(Tl;ngAﬂ ([%, 1] x [0, 1])) = 0. This set has the form A, x ([%, 1]), where A, = A, — (1-8)/87".
By Theorem 3, if 05 A, # 0, then oA, # 0. This proves (4.1).

Let 7(8) = wp(L1). We next claim that j(8) is a strictly decreasing function of 8, 1 < 8 < 1.
From (2.1),

N
UE;N)[ﬁ, 1] = 27(N“)[#{(a0,a1,...,aN);Za‘ﬂ" < B! each a; =0 or 1,1 = 0,...,N}}
i=0
N
= 172_(1\'*1){#{(110,(11,...,aN):Za.ﬁ' >3 ! eacha; =0or l,i:O,...,N}}
1=0 k
N

=1 72_(N+1)[#{(a0,a,,...,aN):Ea,ﬂH] > 1, each a; = 0 or l,i:O,...,N}].

1=0



Since vazo a;3**! is increasing as a function of 3, the number of terms contributing to the last
expression increases as 3 increases, so that j(3) decreases.

To prove that j(3) decreases strictly, we construct a sequence {a;}, ¢ = 1,2,...,00, such that
32, @i = 1. Inductively let a; = 0 if Z;;; a;3°"! > 1 and let a; = 1 otherwise. We claim that

for each 1,

Doap 21 g (4.2)
1=0

Equation (4.2) is true for 1 = 0, since 1 — 8 < 3. Use induction on t. By the inductive definition,

(4.2) is certainly true if a; = 0. If a; = 1, then by the inductive assumption,
1: 5
Y et 21— p g 21 =1 -1 ) 21
7=0

since 1 — 3 < 8. Thus (4.2) is proved, which in turn shows that for this particular sequence of a;,
Zzo 2,81 = 1.

For any 8 > 8, Yoy a;#**1 > 1. Therefore there exists N such that E?Lo a;*T! > 1. Hence
UéM)[B, 1] < a[(iM)[ﬁ, 1]-2"N for M > N and j(f) is strictly decreasing. Since ;Lg({T['i =1}) = 25(A)

if ug is absolutely continuous, ug({T} = 1}) is strictly decreasing in these cases.

/ dugTy d
Ad Ha
[0,1] x[0,1] 12%]

:/ dugTy d#ﬁ*/ dpsTs
o, 3] x [0,1] drs 3,1 % [0,1] drg

=/ duﬂ+/ dug
[0,1]x[0,1—-3] [0,1]x[4,1]

=2(1-5(8)).

The penultimate equality holds because T is positively nonsingular. Thus this integral is a strictly

We compute

increasing function of § for pg absolutely continuous.

Finally we compute the integral of the logarithm. Note that log T > 0 almost everywhere.
Recall that h(y) is the Radon-Nikodym derivative of pg with respect to Lebesgue measure dz dy.
Note that since h(y) > 0 almost everywhere

dupTp  dupTy dzdyTp dzdy 2'Bh(Tg-)
dug ~ dzdyTs dzdy dps h(-)

Moreover, with respect to Lebesgue measure dz dy, the Jacobian of T3 equals the ‘actual’ Jacobian
2. Thus by the ergodic theorem,

/ log Tgdug = lim [log(Zﬂ) + (logh(TE‘(I, v)) - log h(z, y))] = log(20)
[0.1]x[0,1] =0 "

for almost all (z,y). This completes the proof of Theorem 2.
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Weakly Mixing Actions of F' have infinite subgroup actions

which are Bernoulli.

Vitaly Bergelson Daniel J. Rudolph
Ohio State University University of Maryland
Abstract

Let F be a finite field, and F  the direct sum of countably
many copies of F. Regarding F° as a vector space over F, we
extend the multiple recurrence theory of weakly mixing <-actions to
weakly mixing actions of F'. From this we argue that such a weakly
mixing action must have a subgroup action, isomorphic to Fm, that is

Bernoulli.

Introduction:

The central results of this paper were motivated by the work of
U. Krengel "Weakly Wandering Vectors and Weakly Wandering Partitions"
[K].

Given an isometry U of a complex Hilbert space #, a vector

f € ¥ 1is called weakly wandering if there exists a sequence

k.
0 =k, <k, <k, ... with U l(f), i € N pairwise orthogonal.

Krengel showed that such an isometry has continuous spectrum if and
only if weakly wandering vectors are dense.

This result translates into ergodic theory as follows. Let T
be a measure-preserving transformation of a probability space (X,7,u).
Consider the sets A € ¥ for which there is a sequence 0=ko<k1<k2...
with the sets

=T
T l(A), i e N, pairwise independent.

T 1is weakly mixing if and only if such sets are dense in 7.



This reformulation of Krengel's result is open to a natural
strengthening. Let P be a finite, measurable partition of X. 5
is called weakly independent (with respect to T) if there exists a

sequence O=k0<k1<k2 so that the partitions

T (P)s T (P) ,+++, are i.i.d.

Krengel defined 2-sided weakly mixing of T as
N-1
lim % zz |u(T_k(A)mBmTk(C)) - N(A)N(B)N(C)| = 0.
N-x k=0
He showed that weakly mixing is necessary for density of the
weakly independent partititions and 2-sided weakly mixing is

sufficient.

I
>
>
=
0]

Note: the distance between P = (A,---,An) and P

n
Z u(AiAAi).
i=1

Krengel also conjectured that weakly mixing was both necessary
and sufficient.

Furstenberg proved this by showing weakly mixing was weakly
mixing of all orders [F].

The present paper is devoted to the study of analogous results
for measure preserving actions of the infinite direct sum of copies of
a finite field F. We denote this group F

The study of measure preserving actions of such groups has led
recently to interesting combinational applications. 1In particular a
multiple recurrence theorem analogous to Furstenberg’s ergodic
Szemeredi theorem is true, and allows one to prove a density version
of the so-called geometric Ramsey theorem (see [B] section 3).

v 1is a weakly mixing action

What we show here is that if {

Tg)gEFL

then not only are weakly mixing partitions dense, but the independent

takes place along an infinite subgroup of Fm, isomorphic to F

Moreover this subgroup action is in fact Bernoulli.



