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Prolusione al Corso.

G. RAacan

Direttore del Corso

Whe:1 I was told that, according to tradition, I would have to deliver the
opening address at this gathering, I glanced at the addresses of my predecessors
in order to discover what that tradition was.

I found that there were two categories of opening addresses: if the speaker
were an Italian, it was his main task-to thank the foreign teachers who had
agreed to participate in the courses: if he were a foreigner, his function was
to thank the Societa Italiana di Fisica which had organized the Course.

Being at the same time both an Italian and a foreigner, it is my very pleas-
ant duty to thank both parties. And I should like to start by expressing our
gratitude to the Ente Villa Monastero, our host in this magnificent spot on
the Lake of (fomo, in this beautiful building which was once the residence of
Marco and Rosa De Marchi who donated it for the )purpose of furthering the
development of science. -

Next, I should like to thank the Societa Italiana di Fisica, and particularly
its President, Professor PoLvaNI, who organized this Course in the same exem-
plary manner as he has organized all the preceding courses. I arrived only
yesterday, but I have already had time to see that everything is in perfect
order.

The fact that I have been asked to serve as Director of the School precisely
this year is cause for particular emotion as far as I am concerned, because this
is the first time that the School of Varenna has been named after ENRIcO
FerMI, my own unforgettable teacher and the teacher of all of us. It is ap-
propriate indeed that the School should bear his name, not only for the obvious
reasons but also because the lectures he delivered here, in this room, were
the last lectures of his life.

Since I am more familiar with the Mathematics than with the Physies of
Nuclear Spectroscopy, it was not an easy task for me to organize the programme
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for this course; however, I did my best, which means that I tried to find the
best. I. Tarmr and B. MoTTELsON will lecture on Nuclear Structure. They
are typical representatives of two different approaches: the independent par-
ticle model and the collective model. T hope that the clash between these
two opposite points of view will be one of the most interesting features of
this course.

G. AnacA and G. MorpURGO will lecture on nuclear radiations, and J.
GoLpsTONE will deal with the most recent developments in the theory of
Nuclear Matter.

T hope that many of the participants will contribute to the discussion on
their subjects by recounting their own particular experiences in order to sup-
plement the official lectures.

To the lecturers 1 wish to express my deep gratitude, and to the parti-
cipants T extend a warm welcome to this School.
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LEZIONI

Mathematical Techniques.

G. RAacAH

Department of Physics, Hebrew Universily of Jerusalem

1. — Coupling of angular momenta.
L ]

The first task of the theoretical nuclear spectroscopist is to calculate the
energy levels of the nuclei; the second task is to calculate other properties of
the nuclear states, like magnetic moments, quadrupole moments, transition
probabilities, ete. In these lectures we shall mainly concentrate on the energy
levels: some of the other lectures will deal with the other properties.

The official method for calculating energy levels both in atomic spectro-
scopy and in nuclear spectroscopy is first to write down the Schrodinger
equation,

Hy = Ey,

and then to solve it. In atomic spectroscopy the first step is very easy, but
the second step is very difficult if we have an atom with 10, 20, or 102 electrons.
In nuclear spectroscopy even the first step is very difficult, because we do
not know very much about the nuclear forces, and therefore we cannot write
down the Hamiltonian. The difference between the two cases is not so fun-
damental as it seems at first sight, because, if we cannot solve the Schrodinger
equation, the fact that we can write it down is not very helpful.

Since it is impossible to solve directly the Schrodinger equation, the practical
method for calculating energy levels in -atomic spectroscopy is to take an
orthonormal set of functions

(1) Yay Yoy Yoy ---

which are as near as possible to the eigenfunctions of the Schrodinger equation,
to calculate the matrix elements

(2) (a|H |b) :J@H%af,
and then to proceed by approximation methods.

1 — Rendiconti S.I.IF. - XV.
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In nuclear spectroscopy even this program is difficult to execute, because
we do not know the Hamiltonian and we know very little about the functions.
But if we know some properties of the Hamiltonian and some features of the
functions (1) it is possible to get some information about the matrix elements.
I would therefore like to define the task of the theoretical nuclear spectroscopist
to say as much as possible about the matrix elements (2) by assuming as
less as possible about the Hamiltonian and about the functions (1).

We shall start by looking what we can say about the eigenfunctions and
how we can build the orthonormal set (1). The first thing we know from the
experiment is that the nucleons are ordered in shells. Mathematically this
means that if we have a single nuclecn outside closed shells, the state of this
nucleon will be characterized by a radial quantum number n, an azimuthal
quantum number I/, a magnetic quantum number m, and a spin quantum
number m,. Moreover we know from the experiment that, except for very
light nuclei, the orbital momentum is strongly coupled with the spin so that
the actual quantum numbers will be nljm. States with the same quantum
numbers nlj will be said to belong to the same shell. In the following we shall
forget about »n and [, and characterize in general a shell by the sole quantum
number j, and the states of a nucleon by the symbol |[jm).

If we have two nucleons outside closed shells, one in a shell j, and the
other in a shell j, any state of the two particle system will be a superposition
of the states

(3) Ijama) {jbm'h) = |jllmajbmb) s

If we want to classify the states of this system according to the eigenvalues
of the total angular momentum, we have to replace the states (3) with the
states

(4) [Jadsd M) = > | JaMafoma) (Jamajsmu, | jujsd M) .

mamy

The coefficients of the transformation on the right-hand side of (4) are
called the Wigner coefficients. These coefficients have many important pro-
perties which are assumed to be well known; we shall only remember here
the symmetry property

(5) (jamajbmb ‘?‘ajb']ﬂ[) == (- 1)jur!rj“_‘,(jbm’lljumu ]]b]aJM) )

which is of particular interest for us.

In the case of three nucleons, the building of eigenfunctions of the total
angular momentum is not unique, and depends on the choice of a particular
coupling scheme. If the first two nucleons are coupled first, the eigenfunctions
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will be
(6) [Fajujed and M) =

= Z Ijumajbmbjr’nr)(ja majbmb !ju jb Jllb‘1Itlh)(’]uh JIah j:-my- ‘ e ubj:-'] JI) 5

MmampmeMay

if the last two sets are coupled first the eigenfunctions will be
(7) |Jafufecued M) =

= z | j(l'mﬂjbmbj!'ml')(jbmbjcmr | jbijb:' Mhr)(ja "LU’I[;,- J‘Ib,- I jaJ[”-?IAM ) .

Mampme M ye

The first nucleon may also be coupled with the third one.

From the mathematical point of view the three coupling schemes are
completely equivalent. The eigenfunctions of each scheme constitute a com-
plete set®of orthogonal eigenfunctions and may also be expressed as linear
combinations of the eigenfunctions of another scheme. The orthogonal substi-
tution which connects (6) and (7) is

(8) (jajbjr an'] Uajbjr Jva) -
= Z (JajJ M |JnIHMahjrmr')(jnjb']nb]'[ab |jrlmnjbmb) .

mampmeM gy My,

: (jl)ml)jr'7nt' ijhjr']br AMhr)(jumu']hr AMIn- |ju']y1-'] J[) .

The elements of this substitution can be calculated to be

i s 5 6 S PR : \ 7 ‘a ", ']n
(9) (}a?b]r Jnh']‘](l:,h:’(‘ ']bv"J) = (* ])7 Iy Ix/(:zf]ubJ'_ 1)(2!]b’—+ 1) I“ (; }7’ 7 b) ’

where the function W or «six-j-symbol » has the expression

__f[ab c) Cq/la+ ];:(l)'(l— b+e)l(b+c—a)l(dte—e)!(d—ete)! )
_“ (@a+b+e+1)!d+et+e+1)!

o Wi, ,
. /"_(('j(,:rd)!(7d+b—])!(djrb—kf)!(b—kf»(I)!i(ru:f—('—])!(a~(‘+f)!((l‘+fﬁa)!_
1 (d+b+7+1)!a+etf+1)!

P (1) (¢ +1)! .
~g—a—b—c)l(g—d—e—0c)! (q—d—b—f)l(g —a—e—f)!
1

atbtdte—q)l(atetdtf—qlbtetetrf—q!

From the physical point 0o view the three coupling schemes are not equi-
valent, but describe different situations. States of a three-nucleon system,
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which are eigenstates of the energy, do not belong to any of those coupling
schemes, because the matrix of the interaction between the nucleons is not
diagonal in any of the three schemes. However if the interaction between
the nucleons in the states « and b is much stronger than the interaction with
the third one, the energy eigenstates will be very near to the states (6). The
gtate of the pair a, b which is characterized by the quantum number J,, is
called the parent of the state (6).

2. — Antisymmetrization.

According to the Pauli principle the eigenfunctions of identical nucleons
must be antisymmetric with respect to permutations of the coordinates. We
shall indicate all the coordinates of the n-th nucleon by the numeral n, and
the eigenfunctions, representing eigenstates in terms of coordinates, b¥ brackets.

In this notation eq. (4) becomes

(11) (A2 [T M) = 3 (L] jama)(@ | joms) amajoms | jojod ) .

MaMy

Permutation of the particle coordinates yields the eigenfunctions

(12) (21 [fjud M) = 3 (2 jama) (1| o) (Gamnajums | T M)

MmNy

-
[

and using the symmetry property (7) these eigenfunctions become

(13)  (— 1)t (2] am,) (1] fym) (Gomfata | jojod M) = (— 1)<~ (12 ] M) .

M eIy

Therefore

(14) (21 |jajed M) = (— 1Y« (A2|jyj.d M) .

In the particular case j, = j, = j the eigenfunction on the right side
of (14) coincides with (11), and therefore (12]j2/M) is symmetric or anti-
symmetric according to the parity of 2j —J. In the general case j, # j, the
eigenfunction on the right side ot (14) is different from, and actually orthogonal
to (11), and neither of them has a definite symmetry. We may, however
construct antisymmetric eigenfunctions by taking an antisymmetric combi-
nation of (11) and (14). We indicate antisymmetric eigenfunctions by the
notation (12[}j.j,J M), and write

(15) (120 T M) = 75[(12 Jado J M) — (21|jafnd M)],



St

MATHEMATICAL TECHNIQUES

or
s 1
(15") (12Yjujo T M) = —=

Ve [(A2|fajs I M) — (— 1)iat2=7(12|j,j. T M)],

(S]]

where the factor 1/v/2 preserves the normalization.

Notice that for j, = j, = j the right side of these equations would vanish
for odd J and would have the wrong normalization for even .J. In this last
case we must write

(16) (12)j2I M) = (12[j2T M), (] even);
(12[}j2J M) does not exist for odd .J.

The equation
(17) % (A2} jajud M) = — (— 1Y 27/ (12}j,je] M)

holds independently of whether j, coincides with j,.
In the case of three nucleons, if j, & j, # j., the analog of (15) is

(]8) (]231}711717](-']abJJM) - ‘\/—(_j [(]23 i}a]l;]c’]ub']J]) - (:-)']3 ‘,]u,’l»,’r']uh']J[) =
+ (231 |jadsiednd M) — (321 afojcdasd M) + (312 |jujujeT T M) — (132 |jafvjedund M)] .

For j, = j, = j. = j the six terms on the right side of this equation are
no more orthogonal; and therefore (18) is no more normalized. In order to
construct antisymmetric normalized eigenfunctions, we start from the eigen-
functions

(19) (1233 |2, jI M) =3 (12[}j2To M) (3 | jm)(JoMojm | Joj ] M) (J, even) ,

Mym

which are antisymmetric only with respect to the first two nucleons, and
apply to them the « antisymmetrizator » 4 defined by

(20)  A(12)3|jT,, jT M) =

= 5 [(A2}3 2o, jT M) + (2331 |3, jI M) + (31)2|j3],, jJ M)] .

We reduce now all three terms on the right side to the same coupling
scheme as the first one. The second term is

(21a) (233152, jJ M) =
~Z 1)% V/ (2, +1)(2J'+1) W() 7 ‘;") (123|521, j I M),
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and the third term is

(21b) (312

) =
=3 (=1 x/(zfl,,;l)(zei'?j)l_( 3 ;) 123 |§2J", jJ M) .
“
The contributions of these two terms are equal if J'— J, is even, and

opposite if J'— J, is odd. Since J, is itself even, the expansion of (20) contains
only terms with J' even. Introducing (21a) and (21b) into (20) we get

©22) AU, JTM) = 3 (1233 |20, JI M) |AW) [Ty, (T, s even),
where
(23) (T | ACT)|Ty) — :

1
= (J,,g/l(r]) \J/) - 3 ()J'J.,—]—

Wl o

, i Jy
V(2d, +1)(2J" +1)u( ¢ J)

No antisymmetric eigenfunctions of three nucleons exist for those values
of J for which every (J'|A(J)|J,) vanishes. When these eigenfunctions exist,

the functions (22) are still not normalized and have to be divided by \/l\;,:(J),
where

(24) N, (J) = 3 (J' | AW) | )

7

Nince the antisymmetrizator A is normalized in such a way that it leaves
invariant a function which is already antisymmetric, it satisfies the equation

(25) A*= 4,
from which we get that
(26) N, (J) = (Jo| A(T) | o) -

Therefore the functions

@1 (128} )T M) = (1| AW [ 10) 3 (1231320, GT (I AW |T4)

J'

are normalized antisymmetric eigenfunctions of the configuration j.
It should be emphasized that for different values of J, these eigenfunctions
are not orthogonal or even linearly independent. In many cases they are
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actually identical. This fact is easy to understand, because eq. (25) shows
that the antisymmetrizator 4 is a projection operator, i.e. an operator which
transforms every function into its orthogonal projection in the subspace of
the antisymmetric functions. It is then evident that by projecting into a
subspace a complete set of orthogonal vectors of the whole space, we get a
set of vectors which are linearly dependent. This set of linearly dependent
functions can easily be replaced with an orthogonal set by the well known
orthogonalization procedures of vector algebra. These orthogonal antisym-
metric eigenfunctions are, in general, no longer characterized by the quantum
numbers J,, but by different quantum numbers «. A general antisymmetric
eigenfunction has then the form

(28) (123} jpad M) = 3 (12}3[§2", JI M), §, T joac]) |

J'

® . . . . .
and the coefficients of this expansion satisfy the equation

(29) Z (Jo ‘ A(']) 1’],)(7.2J/7 ?'7 JI} :"30‘(]) = (jz']ov j’ J[} jgfx']) ’

e
which identifies them as eigenvectors of the matrix A corresponding to the
eigenvalue 1.

In conclusion the states (19) have a well defined parent, but are not anti-
syminetric, the states (27) and (28) are antisymmetric but have no well defined
parent. Therefore the coefficients of the expansion (28) are called « coeffi-
cients of fractional parentage ».

The estension to antisymmetric functions of » nucleons belonging to the
same shell is almost immediate. These eigenfunctions will be obtained by
starting from eigenfunctions (12 ...r — 1}7|j™'aely, j, J M), which are antisym-
metric only with respect to the first » — 1 nucleons, and by taking those
linear combinations of them,

(30)  (A2..ofyjrad M) =3 (12 ...r — |/’ j, J M) (2", j, I} jre])

&' J

which are antisymmetrical with respect to all the nucleons. The coefficients
of these linear combinations will satisfy the equations

(31) 2 (aodo | A(T) ') (=T, j, I} jrad ) = (jr2agedy, §, I jrad)

Iy

where
(32) (' |A(T) |y y) = (otgJo | A(J) |a'T") =
1 5 r—1 : - . {3 (Iu J/
= —O0pn O,y + RS ¢ o T/ (] .
~Oaa 00, el G V(2 +1)(2d +1) W (j 7 u,)

’ (?.hlx/’],ﬂjr_zan‘]”y 7 ’],)(7”’_2 o"J", g, JO]}jr‘lo‘oJo) .
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3. — The energy matrix. Part I.

After having seen how to build wave functions of a nuclear system which
may be hoped to be fairly near to the real eigenfunctions, we can go back
to the problem of calculating the energy matrix. In the shell-model approxi-
mation we write the Hamiltonian as

(33) H = Z [T, 4+ Ufr, )]+ Z V..

where the summation is extended only to the particles outside closed shells,
T, is the kinetic energy of the i-th particle, U(r,) its potential energy in the
field produced by the closed shells, and V7, the interaction between the par-
ticles ¢ and k. ¢

If we assume that in the zero-th approximation the external particles move
independently in the central field U(r), the single-particle functions will be
eigenfunctions of

(34) H,' = TL + L?(ri) + ;-;(si‘l,;) ’

corresponding to the eigenvalues ¢, and the problem will reduce to the cal-
culation of the matrix of the last term of (33).

For a system of two particles outside closed shells we have to calculate
the matrix of V,,. Since the single-particle functions are the product of a
radial function (1/r)R,,(r) times a function of the angular and spin coordinates,
if Vi, = V(ry) with 1'12 =2 4 7] — 277, cOS wy,, We shall separate also here
the radial dependence from the angular dependence by expanding V(r,) into
a series of Legendre polynomials of cos wy,.

(35) V(re) = 3 0(ry, 1) P (CO8 wy) .
k

Then the matrix elements of V(r;,) get the form

(36) (Malafaolyfod M| V (i) [ Reljonalajad M) =
= > R¥nudanyly, ndngdy)(lajadsjd M | Pr(cos oy,) [Ljdj.d M),
k

where the R* are the generalized Slater integrals

Nabla

(37) R¥nglanyly, nolongly) :”R 1 (P) Ry 1, (r2) 0 (ry s 70) Ry (7)) R () dry iy



