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Preface

This book is intended as an undergraduate senior level or beginning
graduate level text for mathematical logic. There are virtually no prere-
quisites, although a familiarity with notions encountercd in a beginning
course in abstract algebra such as groups, rings, and fields will be useful in
providing some motivation for the topics in Part I]I.

An attempt has been made to develop the begmm}xg of each part slowly
and then to gradually quicken the pace and the complexity of the material.
Each part ends with a brief introduction to selected topics of current
interest.

The text is divided into three parts: one dealing with set theory, another
with computable function theory, and the last with model theory. Part 11
relies heavily on the notation, concepts and results discussed in Part I and
to some extent on Part II. Parts 1 and II are independent of each other,
and each provides enough material for a one semester course.

The exercises cover a wide range of difficulty with an emphasis on more
routine problems in the earlier sections of each part in order to familiarize
the reader with the new notions and methods. The more difficult exercises
are accompanied by hints. In some cases significant theorems are devel-
oped step by step with hints in the problems. Such theorems are not used
later in the sequence.

The part dealing with set theory is intended to provxde a notational and
conceptual framewdrk for areas of mathematics outside of logic as well as
to introduce the student to those topics that are of particular interest to
those working in the foundations of set theory.

We hope that the part of the text devoted to computable functions will
be of interest to those who intend to work with real world computers.



X Preface

We believe that the notation, methodology, and results of eleméntary
logic should be a part of a general mathematics program and are of value
in a wide variety of disciplines within mathematics and outside of mathe-
matics.

Boulder, Colorado J. MALITZ
March 1979
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PART I

An Introduction to Set Theory

1.1 Introduction

Through the centuries mathematicians and philosophers have wondered if
size comparisons between infinite collections of objects can be made in a
meaningful way. Does it make sense to ask if there are as many even
numbers as odd numbers? What does it mean to say that one infinite
collection has greater magnitude than another? Can one speak of different
sizes of infinity?

Before the last three decades of the nineteenth century, mathematicians
"and philosophers generally agreed that such notions are not meaningful.
But then in the early 1870s, a German mathematician, Georg Cantor
(1845-1918), in a remarkable series of papers, formulated a theory in
which size comparisons between infinite collections could be made. This
theory became known as set theory. As with many radical departures from
traditional approaches, his ideas wersat first violently attacked but now
have come to be regarded as a useful and basic part of modern matnemat-
ics. This chapter is an introduction to set theory.

1.2 Sets

We use the term ser to refer to any collection of objects. The objects
composing a set will be referred to as the members or elements of the set.
There are various ways to denote sets. One approach is to list the elements
of the set in some way and enclose this list in braces. For example, using
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this convention, the set consisting of the numbers 1, 2, and 3 is denoted by
{1,2,3}. A set is completely determined by its members, and so the order
in which we list the-elements is immaterial. Thus (1,2,3}={2,3,1}=
{3,2,1}={1,3,2}=(2,1,3) =(3,1,2}.

A set may have so many members belonging to it that it is impractical
or impossible to use the above method of notation, and so other notational
devices must be used. For example, instead of using the method described
above to denote the set of all positive integers less than or equal to 10'°, we
might use {1,2,3,...,10'°} to denote this set. The three dots indicate that
some members of the set being described have not been listed explicitly. Of
course, in using this notational device it is important to include enough
members of the list before and after the three dots so that the reader will
know which elements belong to the set and which do not. For example, the
set of even integers between — 100 and 100 inclusive should not be
denoted by {—100,...,100} but by something like {—100, —98,...,
--4,-2,0,2,4,...,98,100} or by {0,2,—-2,4,—4,...,98, —98,100, — 100}.
Again, the order in which the <lements are listed is arbitrary as long as the
reader understands which elements of the set have not been mentioned
explicitly.

The method for denoting sets using the three dots abbreviation can also
be used for infinite sets. For example, the set of even integers can be
denoted by {0,2,-2,4,—4,...} or by {...,—6,-4,-2,0,2,4,6,...}. We
will use N to denote the set {0,1,2,3,...} of natural numbers, while N*
will denote {1,2,3,...}. I will denote the set of integers
{0,1,—-1,2,-2,3,—3,...}. Q will denote the set of rationals, Q* the set of
positive rationals, R the set of real numbers, and R* the set of positive
reals.

If a set-consists of exactly those objects satisfying a certain condition,
say P, we may denote it by {x:P(x)}, which is read: “the set of all x such
that P(x) is true.” For example, {x:3<x <8 and x is a rational number} is
the set of rationals -between 3 and 8 inclusive. Notice that x merely
represents a typical object in the set under consideration, and any letter
will serve just as well in place of x. Thus {1,2,3}={x:x is an integer and
1<x<3}={y:y is an integer and 1<y<3}={x:x is an integer and
0<x<4}. Notice that the last two conditions are different but define the
same set. '

We consider as a set the collection which has no members. We call this
set the null set and denote it by &, rather than { }.

A set may contain other sets as elements. For example, the set
{1,{2,3})} is the set whose elements are the number 1 and the set {2,3}. It
is important to understand that this set has only two elements, namely 1
and (2,3}. 2 is an element of {2,3}, but 2 is not an element of {1,{2,3}}.

We write x €4 when x is an element of .4, and x & A otherwise.

Let A be a set. We say that a set B is a subset of A if each element of B
is an element of A. If B is a subset of A we write BCA orADB.If BCA
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and, in addition, 4 # B, we write B C 4 or AD B and say that B is a proper
subset of 4. So {1,{2,3}} c{1,{2,3},4} but {1,{2,3}}2{1,{2},{3}}.

Notice that 4 C A and JC A4 for every set 4 (since & has no elements, it
is true that every element of & is an element of A4). Another trivial
observation is that if AC B and BCC, then A CC.

We note that if A and B are sets such that A C B and B C A4, then A = B.
For if x €A, then since A C B, x € B. Similarly, if y € B we have yEA.
Thus A and B contain precisely the same elements and so are equal. This
will be used frequently in what follows; two sets 4 and B will be shown to
be equal by proving both A C B and B CA.

Next we consider ways of combining sets to get new sets.

The union of A and B, denoted by AU B, is the set whose elements
belong either to 4 or to B. In other words AU B={x:xE€A4 or xEB}. (In
mathematics we use the word “or” in the inclusive sense. So when we say
that an object is in 4 or in B we include the case where the object is in
both 4 and B.) For example

(1,2}U{3.4)=(1,2,3,4),
{a,b,c}u{a,c,d}={a,b,c,d},
{x:x is an even integer } U { x:x is an odd integer}

= {x:x is an integer }.

Some of the elementary properties of the union operation are summarized
below.

Theorem 2.1.

i. AC.B implies that AU B=B.
. AUB=BUA.
. AU(BLUC)=(AuUB)UC.

The proof of the theorem is very easy, and we leave all parts-but iii as
exercises.

To prove part iii, first suppose that x €4 U (B U C). Then either x € 4
or xEBUC. If x€EA, then xEAU B, and so x€E(AUB)UC. If xEBU
C,then x€EBorxeC.If xEB, then xEAU B, andso x€(AU B)U C. If
x € C, then x €(4A U B)U C. Hence we have shown that whenever x€A4 U
(B U C), then x€(A4 U B)U C, in other words, we have shown that A U (B
UC)C(AU B)UC. In the same way one proves that A U(B U C)D (AU
B)U C (the reader should check this). Hence A U(BU C)=(4 U B)U C as
claimed.

Because of part iii, no confusion can arise if parentheses are omitted
from (AU B)U C and we write AU BU C.

It should be clear what is meant by 4,0 4,U ... UA,, namely, {x:x&
A, or XEA, or ... or x€A,}. An alternative notation for this set is
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U {4,:i€ENT and i <n}. In general, if X is a non-empty set of sets, then
(U X={y:thereis a Y €X such that y € Y}. This is called the union over
X.Soif X={A4,,4;...,4,}, then U X=A4,UA,U...UA,. For example,
if 4,;={x:x=i/n for some n€EN"} (so that 4,={5/1,5/2,5/3,5/4.... }).
then UJ {4;:iEN*}=Q". Instead of writing |J {4,:iE 1} we may write
U 4.

i€l

The intersection of A and B, AN B, is the set whose elements are

simultaneously elements of 4 and of B. In other words AN B={x:x€EA
and x € B). For example {1,3,9}N{1,5,9}={1,9} and {x:xE€ER* and
x<5}N{x:x€Q and x >3} ={x:xE€Q and 3<x<5}.

Theorem 2.1. (Cont.)

1. ACB implies that ANB=A.
iW. ANB=BnNA.
i’ AN(BNC)=(ANnB)NC.

The proofs are very easy and left as exercises.

As in the case of the union operation, the intersection operation
generalizes to the intersection over a set of sets. Letting X be a non-empty
set of sets, we define the intersection over X, (| X, tobe {y:forall Y €X,
YyEY). So if X={A4,,45....4,), then M X=A,N...NA4,. (As before,
we use iii’ to justify our omission of parentheses in 4,N...NA4,.) As
another example let 4, ={x:xER and |x|<1/n}. Let X={A4,:nEN"}.
Then (N X={0}.

We say that 4 and B are disjoini if AN B=. Similarly, X is a set of
pairwise disjoint sets if for all A,B € X, either A=B or ANB=4.

We next state some easily proved facts relating union and intersection.
The proofs are left for the exercises.

Theorem 2.1. (Cont.)

iv.ANBUC)=ANBYUANC), and more generally (Ui)ﬂ
(U Y)=U (ANB:AEX and BEY).

iv. AU(BNC)=(AUuB)N(AUC), and more generally (ﬂX)U
(N Y)=N ({AUB:AEX and BEY)).

The difference of A from B, denoted B— A, is the set of elements in B
- but not in 4; in other words we define B—A={x:xE€B and x&A4}. For
example, Q* — {x:x € Rand x <3} is the set of positive rationals greater
than 3. As another example, {1,4,9} —{3,4,8} =(1,9}). B—4 is also called
the complement of A in B.
We next state several relations between the above notions.
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Theorem 2.1. (Cont.)
v. AC B implies B—(B—A)=A.
vi. CDB DA implies C—-ADC—B.
vihC— (A UB) =(C —-—A4)nNn (C— B), and more generally
c-(UX)=N{c-4:4ex). ,
vii. C—(A NB) =(C—-A)U (C — B), and more generally
-(N x)=U (c-4:4€x).

We prove vii, leaving the proof of the other clauses for the exercises.
Here and throughout the text we use ‘iff’ to abbreviate ‘if and only if”.

xec—(U X) iff
xECand x& A4 forallAeX iff
xEC—A foraHAe X iff

xe M {C-A4:4€X}.

In other words, C—( U X) and [N {C—-A:4 €X) have the same mem-
bers and so are identical, as claimed in vii. )

Clauses vii and viii are called De Morgan’s rulks.

We next define the power set, P(X), of a set X. This is the set of all
subsets of X, i.e.,, P(X) is defined as {Y:Y CX}.

For example, if X={1,2,3}, then P(X)={¢,(1},{2},{3}, (L, 2}
{1,3},12,3},{1,2,3}}. Clearly, we always have ¢ €P(X) and X € P(X).
Elementa}ry properties of the power set operation will be found in Exercise
7 below.

EXERCISES FOR §1.2
1. How many elements are there in each of the following sets?
{L2¢}, {L{Le}}. {¢}, (1}, {{1}}.
2. Which of the following are true? '
sed, SC, {1} (1,2}, 1e{{1},2}.

3. Show that .
(@) if ACC and BCC, then AU BCC, and
(b) if CCA and CC B, then CCANB.

4. Supply the missing proofs for Theorem 2.1.
5. List the elements of P({1,2,3,4)).
6. List the elements of P(P(P(D))).
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7. Show that
(a) AD B implies P(4)D P(B);
(b) P(AuU B)D P(A)uU P(B), and more generally

P(U X)2 U {P(4):4€X};
(¢) P(AN B)C P(A)Nn P(B), and more generally

P(N X)C N {P(A):4€X);
When does equality hold-in (b) and in (c)?

1.3 Relations and Functions

The aim of this section is to supply definitions of ‘relation’, ‘function’ and
related notions in enough generality to be of service throughout the book.
These notions ultimately rest on that of the ordered pair (a,b). Although |
‘ordered pair’ can be defined in terms of the membership relation, as can
all the notions of the classical mathematics, we will not do this until later.
For the time being we shall take the ordered pair (a,b) to be an undefined
notion with the property that (a,0)=(c,d) if and only if a=c and b=d.
For example (3,8)+(8,3) (although ({3,8)=(8,3}). Similarly, the only
property of n-tuples that we shall use is that (a,,...,a,)=(b,,...,b,) iff
a;=b, for all i<n. ?

The Cartesian product of A and B, written A X B, is {(x,y):xEA and
»y € B}. More generally, we define 4,X A4, X ... XA, to be {(ag,...,a,):a,E
A; for each i €(0,...,n}}. For example, (1,5)ENXQ, but (3,1)&NXQ.

If for each i,j€{0,...,k—1} we have B=A4,=4, then we abbreviate
AgX ... XA, _, by [B],. For example, [R], is Euclidean n-space.

A binary relation is a set of ordered pairs. For example {(x,y):x <y and
xEN, y EN} is a binary relation. So is {(3,4),(1,1)}, as well as the circle
in Euclidean 2-space of radius 3 with center (4,7), namely {(x,y):(x —4)*
+(y—'rr)2=32}.

The domain of a binary relation R, sometimes written DomR, is
{x:there is a y such that (x,y)ER}; the range of R, RanR, is {y:for
some x, (x,y)&ER}. The field of R is DomR URanR. In the first of the
three examples above we have DomR=N, RanR=N%; in the second
DomR={3,1}, RanR={4,1}; and in the third DomR={x:1<x<7},
RanR={y:7—3<y<7+3}. One frequently writes x Ry instead of (x,y)
€R, and xRy if (x,y)&R.

More generally, a k-relation is a set of ordered k-tuples (so a 2-relation
is a binary relation). As an example of a 3-relation we have {(x,y,z):(x,
»,Z2)E[N]; and z is the least common multiple of x and y}. Another
example is {(x,y,2):(x,y,z)E[R]; and x+y=2z}. We do not define the
domain or range of a k-relation when k #2.

The set of all primes is an example of a 1-relation, as is the set of all
multiples of 7.
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A function f is a 2-relation such that for every x there is at most one y
for which (x,y)Ef. In other words, if (x,y)Ef and (x,z)Ef, then y=2z.
When f is a function, one usually writes f(x)=y instead of (x,y)Ef, and
says that y is the value of f at x.

For example, {(1,3),(3,1),(w, 1)} is a function, but {(1,3),(3,1) (I,7)} is
not. {(x,y):x=y> and xEN and y EN} is a function, but {(x,y):x=y?
and x €N and y €I} is not.

A function f is one to one, abbreviated 1-1, if {(y,x):f(x)=y} is a
function, i.e., if when f(x)=y and f(z)=y we have x=z. In our examples
of functions above, the second is 1-1 but the first is not.

We say that a function f is on A if Domf=A; into B if Ranf C B; onto
B if Ranf-B If f is a function on A4 into B, we may write f:4— B. The
notation f: A4 iy adds the condition that f is 1-1, while f: A4 = B adds the
condition that f is onto B. The set of all functions on A4 into B is denoted
by “B, ie.,*B={f: f:A>B}.

By f]C] we mean { y:for some x € C, f(x)=y}. Notice that no restric-
tion is placed on C; C need not be included in Domf. For example, if
f={(x,y);y=x* and x€N)} and C={x:x<7 and x€ER}, then f[C]=
{0,1,4,9}.

Define f~'[Y] to be {x:f(x)E Y}. f [ Y] is defined even if YgRanf
So if f(x)=3x+2 for all x€R™, then f~'[{y:0<y <11}]={x:0<x<3}.
As another example, if f(x)= x? for each x €R, then

l[{y}]-{ Vy,Vy} for each yER*. If f:4 —> B, then the set
{(b,a) f(a) b} is a 1-1 function on B onto A Wthh we call f nverse,
written f~!. Notice that f(f~'(b))=5b and f~'(f(a))=a for all aE A4 and
all be B.

The restriction of f to C, abbreviated fT C, is the function g with domain
cn Domf such that for each x € C N Domf we have g(x)=f(x). In other
words g={(x,y):x€ CNDomf and y = f(x)}.

Notice that C is arbltrary and need not be a subset of Domf. For
example, if f={(x,y):y =x?and x€N} and C={x:x <7 and x ER}, then
1C={0,0),(1,1),(2,4),3,9)}.

Jfg=f1C and C CDom/, then we say that f is an extension of g.

“Let SEBC and let g €*B. The composite of f and g, written fog, is that
element of “C defined by (feg)(x)=f(g(x)) for all x€E A.

Theorem 3.1. Let f€5C, gE4B. Then

1. if fand g are 1-1, then so is fog.
ii. if fis onto C and g is onto B, then fog is onto C.

PROOF OF i. Suppose f and g are 1-1, and (feg)(a)=(f°g)b). Then
Sf(g(a))=f(g(b)). Since fis 1-1, g(a)=g(b). Since g is 1-1, a=b. O

We leave the proof of part ii as an exercise (see Exercise 15).
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EXERCISES FOR §3.

1.
2.

10.

11.

12.

13.

What are the elements of {1,3} % {1,7,4}?

If A has m elements and B has n elements, how many elements does 4 X B
have?

. Prove that if 4;C B; for each i€(1,2,...,k} then A;X ... XA, CB;X ... X By.
. Show that the relation < on Q is not a set of the form 4 X B.

. If the following statement is true, prove it; if not, give a counter example:

If ADBUC then (AXA)—(BXC)=(A—B)X(A-C).

. Prove or disprove the following statement:

(A X A)U(B, X By)=(4,U B))X(4,U B,).

. Prove or disprove the following statement:

(A X A)N (B X By)=(A4,N B))X(4,N By).

. For each relation R below, find Dom R, Ran R, and the field of R:

(@) R={(1,4),(7,3),(m,1),(1,m)}.
(®) R={(x.p):|x|+|y|=1)}.
(©) R={(p:pE€[R}, and |p—(1,0)| +|p—(1,0)| =3}

[where |(x,,y|)"(x2’}'2)|=\ﬁx|_x2)2+()’|_)’2)2 ]

. Which of the following are functions; which of the functions are 1-1?

<+

@) {(x,y):x>0, x?+y*=1, and xER,y ER}.

®) {(x,»):y>0, x*+y?=1, and xER,y ER}.

() {(x,9):x>0,y >0, x>+y>=1 and xER, yER}
@) {(x,y,2):x,y,zEN" and z=2"3"}.

(e) {(x,,2):x,y,2EN* and z=2x+3y).

Prove:

@ /[ U X]= U (fl4):4€x).

®) /[ N X]c N {flA):4€X).

Show that equality need not hold in (b) by describing sets 4 and B and a
function f such that f{4 N B]==f[4]1Nf[B]

Show that

@) J1OID=f(CND)

® N {1C:CeK}=ft N {C:CEK).

Suppose A4 has n elements and B has m elements. How many elements are
there in “B? Give a proof.

Prove:

@ f'[ U Xx]=U {(f4):4€X).

® [N X]=N (f414E€X).

(c) f~'[A—B]2f'[A]-f"'[B].
Show that equality need not hold in (c).

. Find functions f and g such that Ranf=Rang=Domf=Domg and feg#g-°f.
15.

Show that iff:BozoC a:nd g:A4 OROB, then fog:A = C.



