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Preface

This book has evolved from my experience over the past decade in
teaching and doing research in functional analysis and certain of its appli-
cations. These applications are to optimization theory in general and to
best approximation theory in particular. The geometric nature of the
subjects has greatly influenced the approach to functional analysis presented
herein, especially its basis on the unifying concept of convexity. Most of
the major theorems either concern or depend on properties of convex séts:
the others generally pertain to conjugate spaces or compactness properties,
both of which topics are important for the proper setting and resolution of
optimization problems. In consequence, and in contrast to most other
treatments of functional analysis, there is no discussion of spectral theory,
and only the most basic and general properties of linear operators are
established. :

Some of the theoretical highlights of the book are the Banach space
theorems associated with the names of Dixmier, Krein, James. Smulian,
Bishop-Phelps, Brondsted-Rockafellar, and Bessaga-Pelczynski. Prior to
these (and others) we establish to two most important principles of geometric
functional analysis: the extended Krein-Milman theorem and the Hahn-
Banach principle, the latter appearing in ten different but equivalent formula-
tions (some of which are optimality criteria for convex programs). In
addition, a good deal of attention is paid to properties and characterizations
of conjugate spaces, especially reflexive spaces. On the other hand. the
following (incomplete) list provides a sample of the type of applications
discussed:

Systems of linear equations and inequalities;

Existence and uniqueness of best approximations;

Simultaneous approximation and interpolation ;
. Lyapunov convexity theorem;

Bang-bang principle of control theory;

Solutions of convex programs;

Moment problems;

Error estimation in numerical analysis;

Splines;

Michael selection theorem;

Complementarity problems;

Variational inequalities;

Uniqueness of Hahn-Banach extensions.

Also, ‘“‘geometric” proofs of the Borsuk-Dugundji extension theorem, the
Stone-Weierstrass density theorem, the Dieudonne ‘separation theorem,
and the fixed point theorems of Schauder and Fan-Kakutani are given as
further applications of the theory.
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Over 200 problems appear at the ends of the various chapters. Some
are intended to be of a rather routine nature, such as supplying the details
to a deliberately sketchy or omitted argument in the text. Many others,
however, constitute significant- further results, converses, or counter-
examples. The problems of this type are usually non-trivial and 1-have
taken some pains to include substantial hints. (The .design of such hints
is an interesting exercise for an author: he hopes to keep the student on
course without completely giving everything away in the process.) In any
event, readers are strongly urged to at least peruse all the problems. Other-
wise, I fear, a good deal of the total value of the book may be lost.

The presentation is intended to be accessible to students whose mathe-
matical background includes basic courses in linear algebra, measure
theory, and general topology. The requisite linear algebra is reviewed in §1,
while the measure theory is needed mainly for examples. Thus the most
essential background is the topological one, and it is freely assumed. Hence,
with the exception of a few results concerning dispersed topological spaces
(such as the Cantor-Bendixson lemma) needed in §25, no purely topological
theorems. are proved in this book. Such exclusions are warranted, I feel,
because of the availability of many excellent texts on general topology.
In particular, the union of the well-known books by J. Dugundjiand J. Kelley
contains all the necessary topological prerequisites (along with much
additional material). Actually the present book can probably be read
concurrently with courses in topology and measure theory, since Chapter I,
which might be considered a brief second course on linear algebra with
convexity, employs no topological concepts beyond standard properties
of Euclidean spaces (the single exception to this assertion being the use of
Ascoli’s theorem in 7C). '

This book owes a great deal to numerous mathematicians who have
produced over the last few years substantial simplifications of the proofs
of virtually all the major results presented herein. Indeed, most of the proofs
we give have now reached a stage of such conciseness and elegance that
I consider their collective availability to be an important justification for a
new book on functional analysis. But as has already been indicated, my
primary intent has been to produce a source of functional analytic informa-
tion for workers in the broad areas of modern optimization and approxima-
tion theory. However, it is also my hope that the book may serve the needs
of students who intend to specialize in the very active and exciting ongoing
research ir Banach space theory.

I am grateful to Professor Paul Halmos for his invitation to contribute
the book to this series, and for his interest and encouragement along the
way to its completion. Also my thanks go to Professors Philip Smith and
Joseph Ward for reading the manuscript and providing numerous correc-
tions. As usual, Nancy Eberle and Judy Snider provided expert clerical
assistance in the preparation of the manuscript.
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Chapter 1

Convexity in Linear Spaces

Our purpose in this first chapter is to establish the basic terminology
and properties of convex sets and functions, and of the associated geometry.
All concepts are “primitive”, in the sense that no topological notions are
involved beyond the natural (Euclidean) topology of the scalar field. The
latter will always be either the real number field R, or the complex number
field C. The most important result is the “basic separation theorem”, which
asserts that under certain conditions two disjoint convex sets lie on opposite
sides of a hyperplane. Such a result, providing both an analytic and a
geometric description of a common underlying phenomenon, is absolutely
indispensible for the further development of the subject. It depends implicitly
on the axiom of choice which is invoked in the form of Zorn’s lemma to
prove the key lemma of Stone. Several other equally fundamental results
(the “support theorem”, the “subdifferentiability theorem”, and two extension
theorems) are established as equivalent formulations of the basic separation
theorem. After indicating a few applications of these ideas we conclude the
chapter with an introduction to the important notion of extremal sets (in
particular extreme points) of convex sets.

§1. Linear Spaces

In this section we review briefly and without proofs some elementary
results from linear algebra, with which the reader is assumed to be familiar.
The main purpose is to establish some terminology and notation.

A. Let X be a linear space over the real or complex number field. The
zero-vector in X is always denoted by 0. If {x;} is a subset of X, a linear
combination of {x;} is a vector x € X expressible as x = 2i;x;, for certain
scalars 1;, only finitely many of which are non-zero. A subset of X is a (linear)
subspace if it contains every possible linear combination of its members. The
linear hull (span) of a subset S of X, consists of all linear combinations of its
members, and thus span(S) is the smallest subspace of X that contains S.
The subset S is linearly independent if no vector in S lies in the linear hull of
the remaining vectors in S. Finally, the subset S is a (Hamel) basis for X if
S is linearly independent and span(S) = X.

Lemma. S is a basis for X if and only if S is a maximal linearly independent
subset of S.

Theorem. Any non-trivial linear space has a basis; in fact, each non-empty
linearly independent subset is contained in a basis.
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B. As the preceding theorem suggests, there is no unique choice of
basis possible for a linear space. Nevertheless, all is not chaos: it is a re-
markable fact that all bases for a given linear space contain the same number
of elements.

Theorem. Any two bases for a linear space have the same cardinality.

It is thus consistent to define the (Hamel) dimension dim(X) of a linear
space X as the cardinal number of an arbitrary basis for X. Let us now
recall that if X and Y are linear spaces over the same field then a map
T:X — Y is linear provided that

T(x + z) = T(x) + T(2), x,ze X,
Ty =6 F(x), xe X, o scalar.

It follows that X and Y have the same dimension exactly when they are
isomorphic, that is, when there exists a bijective linear map between X atid Y.

C. We next review some constructicns which yield new linear spaces
from given ones. First, let {X,} be a family of linear spaces over the same
scalar field. Then the Cartesian product I1,X, becomes a linear space (the
product of the spaces X,) if addition and scalar multiplication are defined
component-wise. On the other hand, let M,,..., M, be subspaces of a
linear space X and suppose they are independent in the sense that each is
disjoint from the span of the others. Then their linear hull (in X) is called
the direct sum of the subspaces M, ..., M, and written M; @~ & M, or

simply @ M,. The point of this definition is that if M = @ M, then each
i=1 i=1

x € M can be uniquely expressed as x = Z m;; wherem; e M;,i = 1,...,n

< i=1

Now let M be a subspace of X. For fixed x € X, the subset x + M =
{x + y:ye M} is called an affine subspace (flat) parallel to M. Clearly,
x; + M = x, + M ifand only if x; — X, € M, so that the affine subspaces
parallel to M are exactly the equivalence classes for the equivalence relation
“~ )" defined by x, ~, x, if and only if x; — x, € M. Now, if we define

x+M)+(y+M)=(x+y+ M,
ax + M) =ax + M, o scalar

then the collection of all affine subspaces parallel to M becomes a linear
space X/M called the quotient space of X by M.

Theorem. Let M be a subspace of the linear space X. Then there exist
subspaces N such that M @ N = X, and any such subspace is isomorphic to
the quotient space X /M. N

Any subspace N for which M @ N = X is called a complementary
subspace (complement) of M in X. Its dimension is by definition the co-
dimension of M in X. The theorem also allows us to state that symbolically

codimy(M) = dim(X/M),
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where the subscript may be dropped provided the ambient linear space X
is clearly specified. In fact, this theorem seems to suggest that there is not a
great need for the construct X/M, and this is so in the purely algebraic case.
However, later when we must deal with Banach spaces X and closed sub-
spaces M, we shall sec that generally there will be no closed complementary
subspace. In this case the quotient space X/M becomes a Banach space and
serves as a valuable substitute for the missing complement.

Now let M be a subspace of X, and choose a complementary subspace
N:M @ N = X.Then we can define a linear map P: X — M by P(m + n) =
m, me M, ne N. P is called the projection of X on M (along N). We have
similarly that I — P is the projection of X on N (along M), where I is the
identity map on X. The existence of such projections allows us the luxury
of extending linear maps defined initially on a subspace of X:if T:M — Y
is linear, then T = To P is a linear map from X to Y that agrees with T on
M. Such a map T is an extension of T.

D. Let X be a linear space over the scalar field F. The set of all linear
maps ¢:X — F becomes a new linear space X’ with linear space operations
defined by

(@ + ¥)(x) = o(X) + Y(x),
(x)(x) = ag(x), ae F, xe X.

X' is called the algebraic conjugate (dual) space of X and its elements are
called linear functionals on X. Observe that if dim(X) = n (a cardinal
number) then X' is isomorphic to the product of n copies of the scalar field.
As we shall see many times, it is often convenient to write

H(x) = <{x, ¢,

for x € X, ¢ € X'. The reason for this is that often the vector x and/or the
linear functional ¢ may be given in a notation already containing parentheses
or other complications.

Since X' is a linear space in a natural fashion, we can construct its
algebraic conjugate space (X’)’, which we write simply as X". We call X" the
second algebraic conjugate space of X. We then have a map Jy: X — X"
defined by

(@, Ix(x)> = <{x, ¢, xe X, peX.

This map is clearly linear; it is called the canonical embedding of X into X".
This terminology is justified by the next theorem.

Theorem. The map Jy just defined is always injective, and is surjective
exactly when dim(X) is finite.

Thus, under the canonical embedding J, the linear space X is isomorphic
to a subspace of its second algebraic dual space, and this subspace is proper
(not all of X”’) unless X is of finite dimension. In either case, we see that if it
suits our purposes, we can consider that a given linear space consists of
linear functionals acting on some other linear space (namely, X).
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E. The proper affine subspaces of a linear space X can be partially
ordered by inclusion. Any maximal element of this partially ordered set is
a hyperplane in X.

Lemma. An affine subspace V in X is a hy;ﬁerplane if and only if there
is anon-zero ¢ € X' and ascalaro suchthat V. = {xe X:¢(x) = a} = [¢;a].

Thus the hyperplanes in X correspond to the level sets of non-zero lmedr
functionals on X. We can alternatively say that the hyperplanes in X consist
of the elements of all possible quotient spaces X/ker(¢), where ¢ € X',
¢ # 0,and ker(¢p) = [¢; 0], the kernel (null-space) of ¢. The hyperplanes in
X which contain the zero-vector are in particular seen to coincide with the
subspaces of codimension one. More generally, the subspaces of codimension
n (n a positive integer) are exactly the kernels of linear maps on X of rank n
(that is, with n-dimensional image).

F. Suppose that X is a complex linear space. Then in particular X is a
real linear space if we admit only multiplication by real scalars. This under-
lying real vector space Xy is called the real restriction of X. Suppose that
¢ € X'. Then the maps :

X = re ¢(x),

X b im @(x), xe X,

arc clearly linear functionals on X, that is, they belong to X. On the other
hand, since ¢(ix) = i¢(x), x € X, we see that

im ¢(x) = —re ¢(ix)

so that ¢ is completely determined by its real part. Similarly, if we start
with y € X%, and define
P(x) = Y(x) — W(ix),

we find that ¢ € X'. To sum up, the correspondence ¥ +— ¢ just defined is
an isormorphism between Xy = (Xg) and (X')g.

This correspondence will be important in our later work with convex
sets and functions. The separation, support, subdifferentiability, etc. results
all concern various inequalities involving linear functionals; it is thus
necessary that these linear functionals assume only real values. Consequentiy.
in the sequel, linear spaces will often be assumed real. The preceding remarks
then allow the results under discussion to be applied to complex linear
spaces also, by passage to the real restriction, the associated linear functionals
being simply the real parts of the complex linear functionals. :

G. We give next a primitive version of the “quotient theorem”, which
allows us intuitively to “divide” one linear map by another. The more
substantial result involving continuity questions appears in Chapter Iil.
SRR ¥ U be linear spaces and let S: X — Y, T:X — Z be linear maps.
We ask whether there exists a linear map R:Y — Z such that T = R¢ §.
An obvious necessary condition for this to occur is that ker(S) = ker(T); it
is more useful to note that this condition is also sufficient.
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Theorem. Let the linear maps S and T be prescribed as above, and assume
that ker(S) < ker(T). Then there exists a linear map R, uniquely specified on
range(S), such that T = R o S.

One consequence of this theorem, important for later work on weak
topologies, is the following.

Corollary. Let X be a linear space and let ¢, ..., ¢, Y € X" Then
|// € Span {d)lv s ¢n} lf and only lf

ﬁx ker(¢;) = ker(y).

H. Let M be a subspace of the linear space X. The annihilator M° of

M consists of those linear functionals in X’ that vanish at each point of M.

It is clearly a subspace of X'. Similarly, if N is a subspace of X', its pre-

annihilator °N consists of all vectors in X at which every functional in N
vanishes. Thus:

M

M ker(Jx(x)),
xeM

°N = Jx!(range(Jx) n N°).

Let T:X — Y be a linear map. The trahspose T’ is the linear map from
Y’ to X' defined by

x T'W) = <Tx), ¥, xeX, yYel

It may be recalled that when X and Y are (real) finite dimensional Euclidean
spaces, and T is represented by a matrix (with respect to the standard unit
vector bases in X and Y), then T’ is represented by the transposed matrix,
whence the above terminology.

Lemma. Let T:X — Y be a linear map. Then ker(T’) = range(T)° and
range(T’) = ker(T)".

Thus we see that T is surjective (resp., injective) if and only if 7" is injective
(resp., surjective). The various constructs in the preceding sub-sections can
now all be tied together in the following way. Let us say that the linear spaces
X and Y are canonically isomorphic, written X = Y, if an isomorphism
between them can be constructed without the use of bases in either space.
For example, we clearly have X = Jx(X). On the other hand, it may be
recalled that none of the usual isomorphisms between a finite dimensional
space and its algebraic conjugate space is canonical.

Theorem. Let M be a subspace of the linear space X. Then

a) M° = (X/M);

B M = X /M. :

The proof of a) follows from an application of the lemma to the quotient
map Q:X — X/M, defined by Qpy(x) = x + M. Since Q) is clearly sur-
jective, its transpose Q) :(X/M) — X' is an isomorphism onto its range,
which is (ker(Q,))° = M°. The proof of b) proceeds similarly by applying
the lemma to the identity injection of M into X.




6 S Convexity in Linear Spaces
§2. Convex Sets

In this section we establish the most basic properties of convex sets in
linear spaces, and prove the crucial lemma of Stone. This lemma is, in effect,
the cornerstone of our entire subject, as we shall see shortly. Throughout
this section, X is an arbitrary linear space.

A. Let x, ye X with x # y. The line segment joining x and y is the set ~
Ix, y] = {ax + (1 — a)y:0 < a < 1}. Similarly we put [x, y) = [x, y]\{»},
and (x,y) = [x, y)\{x}. If 4 = X, then A is star-shaped with respect to
pe Aif[p,x] < A, for all xe A4, and 4 is convex if it is star-shaped with
‘respect to each of its elements. Clearly a translate of a convex set is convex,
hence each affine subspace of X is convex.

Since the intersection of a family of convex sets is agam convex, we can
define, for any A = X, the convex hull of A, written co(A4), to be the inter-
section of all convex sets in X that contain S. Thus co(A4) is the smallest
convex set in X that contains A. This set admits an alternative description,
namely

co(d) = {Zax;: 0, < 1,30, = 1, x,€ A},

the set of all convex combinations of points in 4. (We emphasize again that
all linear combinations of vectors involve only finitely many non-zero terms.)
We have, for instance, that co({x, y}) = [x, y]. More generally, if we define
the join of two sets A and B in X to be U {[x, y]:x € 4, y € B}, then

(2.1) co(A U B) = join(co(A), co(B)),

so that if 4 and B are convex, then their join is convex and is, in fact, the
convex hull of their union.

Let us define addition and scalar multiplication on the family P(X) of
non-empty subsets of X by

oA + BB = {aa + Ppb:ae A, be B},

where 4, B < X and a, f are scalars. This definition does not define a linear
space structure on P(X); nevertheless, it proves to be quite convement For
instance, we can state

2.2) co(xA + BB) = aco(A) + S co(B).

A set A < X is balanced (equilibrated) if tA = A whenever |o| < 1. The
balanced hull of A, bal(A4), is the intersection of all balanced subsets of X
that contain A4, and is therefore the smallest balanced set in X that contains
A. Alternatively:

bal(4) = U{ad:|a| < 1

Finally, a set which is both convex and balanced is called absolutely
convex. The smallest such set containing a given set A is the absolute convex
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hull of A, written aco(A). For example, aco({x}) = [—x, x], if X is a real
linear space. In general, we have
aco(A) = co(bal(4))
{Zox;: Zlo| < 1, x; € A},
the set of all absolute convex combinations of points in A. In particular, we

see that A4 is absolutely convex if and only if a, be A and |of + || < 1
implies aa + pb e A.

I

B. . We come now to the celebrated result of Stone. Two non-empty
convex sets C and D in X are complementary if they form a partition of X,
that is, Cn D = ¢, C u D = X. An evident example of a pair of com-
plementary convex sets occurs when X is real: choose a non-zero ¢ € X'
and put C = {xe X:¢(x) = 0}, D = X\C.

Lemma. Let A and B be disjoint convex subsets of X. Then there exist
complementary convex sets C and D in X such that A ¢ C, B < D.

Proof. Let & be the class of all convex sets in X disjoint from B and
containing A; certainly 4 € . After partially ordering & by inclusion, we
apply Zorn’s lemma to obtain a maximal element C € €. It now suffices to
put D = X\C and prove that D is convex. If D were not convex, there would
be x, ze D and y € (x, z) n C. Because C is a maximal element of %, there
must be points p, g € C such that both (p, x) and (g, z) intersect B, say at
points u, v, resp. (Reason by contradiction; if the last statement were false,
then the following assertion (*) would hold: for all pairs {p, g} = C, either
(p,x)"B=For(qz2)nB= . Now if (4,2) n B =, for all ge C,
then C < co({z, C}) and C is not maximal. Consequently, there is some
ge C for which (g, z) n B # . But then, if there were a point p € C such
" that (p, x) n B # &, the pair {P, g} would violate (*). Thus, for all pe C,
(p,x) "B # &, Cc co({x, C}), and C is not maximal.) Now, however, we
find that [u, v] n co({p, g, y}) # &, which contradicts the disjointness of
B and C. 0

C. Let A and B be subsets of X. The core of A relative to B, written
corg(A), consists of all points a € A such that for each b € B\{a} there exists
x € (a, b) for which [a, x] = A. Intuitively, it is possible to move from each
a € corg(A) towards any point of B while staying in A. The core of A relative
to X is called simply the core (algebraic interior) of A and written cor(A4).
Sets A = X for which A = cor(A4) are called algebraically open, while points
neither in cor(4) nor in cor(X\A) are called bounding points of A; they
constitute the algebraic boundary of A. It is easy to see that the core of any
(absolutely) convex set is again (absolutely) convex. ?

A second important instance of the relative core concept occurs when
B is the smallest affine subspace that contains 4. This subspace, aff(4) (the
affine hull of A), can be described as {Zo;x;:Zo; = 1, x; € A} or, equivalently,
as x + span(4 — A), for any fixed x € A. Now the set cor,q, (4) is called
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the intrinsic core of A and written icr(4). In particular, when A is convex,
aceicr(A) if and only if for each x € A\{a}, there exists y € A such that
a e (x, y); intuitively, given a € icr(4), it is possible to move linearly from
any point in 4 past a and remain in A.

In general, icr(4) will be empty; but in a variety of special cases we can
show icr(A4) and even cor(A4) are not empty. For example, it should be clear
that if X is a finite dimensional Euclidean space and A < X is convex, then
cor(A) is just the topological interior of A. But this last assertion fails in the
infinite dimensional case as we shall see later, after introducing the necessary
topological notions. We now work towards a sufficient condition for a convex
set to have non-empty intrinsic core.

A finite set {x,, Xy, ..., X,} <= X is affinely independent (in general position)
if the set {x; — xo,..., X, — Xo} is linearly independent. The convex hull
of such a set is called an n-simplex with vertices xq, Xy, . . ., X,. In this case,
each point in the n-simplex can be uniquely expressed as a convex com-
bination of the vertices; the coefficients in this convex combmatlon are the
barycentric coordinates of the point.

Lemma. Let A be an n-simplex in X. Then icr(A) consists of all points
in A each of whose barycentric coordinates is positive. In particular,
icr(4) # &.

Proof. Let the vertices of A be {xq, X;, ..., x,}. Let a = Za;x; and
b = XB;x; be points of 4 with all a; > 0. To show a € icr(4), it is sufficient
to show that b + A(a — b)e A for some A > 1. If we put 1 = 1 + ¢, the
condition on ¢ becomes

o + &l — Bi) = 2= 0 1 g
Z o + el — )=
i=0
Since Z (; — B;) =1 — 1 = 0, the second. condition always holds, and

since all o; > 0, the first condition holds for all sufficiently small positive
¢. Conversely, let a.= Zo;x; have a zero coefficient, say o = 0. Then we
claim that x, + A(a — x,) ¢ A, forany 4 > 1. For otherwise, for some 4 > 1
we would have

X + Aa — x). = ) Bix;e A
i=0
It would follow that

+ A -1
=BL”—_—_xk+Z'Vixia

A i#k

for certain coefficients ;. But in this representation of g, the x,-coefficient is
clearly positive (since B, = 0). This leads us to a contradiction, since the
barycentric coordinates of a are uniquely determined, and the x,-coefficient
of a was assumed to vanish. 0
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The dimension of an affine subspace x + M of X is by definition the
dimension of the subspace M. The dimension of an arbitrary convex set 4 in
X is the dimension of aff(4). A nice way of writing this definition symbolically

is
dim(A4) = dim(span(4 — A)).

It follows from the preceding lemma that every non-empty finite dimensional
convex set A has a non-empty intrinsic core. Indeed, if dim(4) = n (finite),
then 4 must contain an affinely independent set {Xo» X1, - - - » Xny and hence
the n-simplex co({Xg, Xy, - - - > Xn})-

Theorem. Let A be a convex subset of the finite dimensional linear space
X. Then cor(A) # & if and only if aff(4) = X.

Proof. Ifaff(A) = X, the last remark shows that cor(4) = icr(4) # .

Conversely, if p € cor(A4), and x € X, there is some positive ¢ for which
5. p o+ e(x — p)] = A. Then with 4 = (¢ — 1)/e, we have

x = ip + (1 = A)(p + &x — p)) € aff(4). O

Remark. The conclusion of this theorem fails in any infinite dimen-
sional space. More precisely, in any such space X we can find a convex
set A with empty core such that aff(4) = X. To do this we simply let A
consist of all vectors in X whose coordinates wrt some given basis for X
are non-negative. Clearly A — 4 = X, while cor(4) = &.

D. Let A c X. A point xe X is linearly accessible from A if there
exists a € A, a # x, such that (g, x) = 4. We write lina(A4) for the set of all
such x, and put lin(4) = A v lina(4). For example, when A is the open
unit disc in the Euclidean plane, and B is its boundary the unit circle, we
have that lina(B) = & while lin(4) = lina(4) = A U B.In general, one sus-
pects (correctly) that when X is a finite dimensional Euclidean space, and
4 — X is convex then lin(4) is the topological closure of 4. But we have
to go a bit further to be able to prove this.

The “lin” operation can be used to characterize finite dimensional spaces.
We give one such result next and another in the exercises. Let us say that
a subset of A4 of X is ubiquitous if lin(4) = X.

Theorem. The linear space X is infinite dimensional if and only if X
contains a proper convex ubiquitous subset.

Proof. Assume first that X is finite dimensional, and let A be a convex
ubiquitous set in X. Now clearly 4 cannot belong to any proper affine
subspace of X. Hence aff(4) = X and thus, by 2C, cor(4) is non-empty.
Without loss of generality, we can suppose that 6 e cor(4). Now, given
any x € X, there is some y € X such that [y, 2x) = 4, and there is a posi-
tive number t such that t(2x — y)€ A. It is easy to see that the half-line
{Ax + (1 = HY2x — y):A = 0} will intersect the segment [ », 2x); but this
of course means that x is a convex combination of two points in A, hence
x € A also.
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Conversely, assume that X is infinite dimensional. We can select a well-
ordered basis for X (since any set can be well-ordered, according to Zermelo’s
theorem). Now we define 4 to be the set of all vectors in X whose last co-
ordinate (wrt this basis) is positive. 4 is evidently a proper convex subset
of X, and we claim that it is ubiquitous. Indeed, given any x € X, we can
choose a basis vector y “beyond” any of the finitely many basis vectors
used to represent x. But then, if 1 > 0, we have x + ty € A; in particular,
x € lina(A4). : [

E. We give one further result involving the notions of core and “lina”
which will be needed shortly to establish the basic separation theorem of 4B.
It is convenient to first isolate a special case as a lemma.

Lemma. Let A be a convex subset of the linear space X, and let p e
cor(A). For any x € A, we have [p, x) = cor(A), and hence g

=

cor(4) = U{[p, x):x e 4}.

Proof. Chooseany ye [p, x),say y = tx + (1 — t)p, where 0 < t < 1.
Then given any ze X, there is some 4 > 0 so that p + Aze A. Hence
Yy+(0 —-09iz=(1—)(p + A2) + txe 4, proving that y € cor(4). Finally,
given any g € cor(A), g # p, there exists some & > 0 such that x = g +
(g — p) € A. It follows that g = (5p + x)/(1 + ) e[p, x). 0

Theorem. Let A be a convex subset of the linear Space X, and p e cor(A4).
Then for any x e lina(4) we have [p, x) = cor(A).

Proof. We can assume that p = 0. Since x e lina(A4), there is some
z € A such that [z, x) = A, and since e cor(A4), there is somie 6 > 0 such
that —odz e A. Arguing as in 2D, given any point tx, 0 < t < 1, the line
{Atx + (1 — A)(=82):4 > 0} will intersect the segment [z, x) if & is taken
sufficiently small. Consequently, the segment [0, x) lies in A. But now the
preceding lemma allows us to conclude that in fact [0, x) lies in cor(A). 0

§3. Convex Functions

In this section we introduce the notion of convex function and its most
important special case, the “sublinear” function. With such functions we can
associate in a natural fashion certain convex sets. The geometric analysis of
such sets developed in subsequent sections makes possible many non-trivial

conclusions about the given functions.

A. Intuitively, a real-valued function defined on an interval is convex
if its graph-never “dents inward” or, more precisely, if the chord joining any
two points on the graph always lies on or above the graph. In general, we
say that if 4 is a convex set in a linear space X then a real-valued function f
defined on A4 is convex on A if the subset of X x R! defined as {(x,t):xe A,
f(x) < t} is convex. This set is called the epigraph of f, written epi( f).




