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Preface

This volume contains a series of individual research papers in the area of
applied probability and management science. Contributions are made to in-
ventory theory, queueing and dam theory, replacement and maintenance prob-
lems, reliability structures, and capital policy. Some of the papers are parts
of Ph.D. dissertations submitted to Stanford University. Several papers repre-
sent natural continuations of the studies presented in an earlier volume in this
series, “Studies in the Mathematical Theory of Inventory and Production.”

We wish to express our gratitude to the Office of Naval Research and the
National Science Foundation for the support of much of this work.

THE EDITORS
Stanford, California
December 1961
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1

Optimal Capital Adjustment

KENNETH J. ARROW, Stanford University

1. Paths of Capital Accumulation in a Stationary Environment

The possession by a firm of a stock K of capital goods yields a flow of
operating profits #(K). Against this must be offset the costs of the invest-
ment needed to accumulate the capital, and the rate of interest @ which the
capital used by the firm could be earning elsewhere. The gross investment
I includes both the amount necessary to replace capital goods that have
worn out (depreciation) and the net additions to capital stock (net invest-
ment). Net investment is K’, where primes denote differentiation with re-
spect to time. We assume that the depreciation of capital goods is propor-
tional to the stock at any given time, which is equivalent to saying that
any given collection of capital goods depreciates at an exponential rate.
Thus, depreciation is equal to 6K, where é is a positive constant. Gross
investment, as the sum of depreciation and net investment, is given by

@ I=K'+90K.

We assume that both the profits of ‘the firm from any given stock of
capital and the rate of interest, i.e., the function #(X) and the number «,
are expected by the firm to remain constant over time. The firm is also
supposed to have on hand at time zero a stock of capital goods K,. Suppose
that the firm chooses a capital policy K(#) which prescribes the stock of
capital goods at every point in the future. The policy must satisfy the
initial condition

2 K0) = K, .

Further, assume that the cost of investment is simply proportional to the

Work done with the help of the Office of Naval Research (Task 047). I am greatly
indebted to my colleague Marc Nerlove for bringing this problem to my attention [6].
He was primarily interested in the determination of optimal advertising policy under
dynamic conditions, but pointed out the identity of the problem with the problem of
optimal capital policy.
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magnitude, i.e., that the price of investment goods does not vary with the
rate of investment. The price of investment goods is assumed also to be
constant in time. Without loss of generality, we may assume, then, that
the rate of expenditure on capital goods is I(¢), which is determined from
the policy K(f) by (1). The net surplus of receipts over expenditures at any
time ¢ is #[K(¢)] — I({). The present value of the policy K(¢) is

@) V(K@) = S:me“’"{n[K(t)] _ I}t .

Here V is a functional depending on the whole policy K(¢); the braces are
used to remind us of this fact. A firm will, of course, seek to maximize
V by a suitable choice of K(¢).

It is important to observe that we cannot restrict ourselves to differentiable
or even continuous solutions for K(f). Consider, for example, the simplest
case, where K(#) can be chosen without any restriction. Since in this case
the initial holding does not constitute an effective constraint, the optimal
choice of K(#) at any time ¢ is made under the same conditions; therefore
it is a constant. In general, of course, this constant need not equal K,, and
there will be a discontinuity at #=0. This means an instantaneous purchase
of capital goods (or a sale, if K, is greater than the optimal stationary solu-
tion), which implies an infinite rate of investment (or disinvestment) at
t =0. For such paths, the integral in (3) must be interpreted with some
care. In particular, () becomes infinite at discontinuities, and the integral
can be evaluated as the limit of integrals in which I[(#) has increasingly
large values.

The structure of the solution will depend on the nature of .the function
n(K) and the restrictions on the rate of gross investment. Under perfectly
competitive conditions, the latter should be unrestricted, but in practice we
know that the sale of capital goods cannot be made under the same con-
ditions as their purchase. Usually, the second-hand price is much below
the price of an equivalent magnitude of new capital goods. For simplicity,
we shall make the extreme assumption that the sale of capital goods is im-
possible, so that gross investment must be nonnegative:

4) ItHy=0.

This assumption will also be valid for a monopolist using specialized
capital goods, since then there are no alternative buyers, or for national
planning in a closed economy, where n(K) would represent national income
attributable to a given stock of capital.’

For the main results, this is the only restriction that will be considered.
But it may also be reasonable to assume that there is an upper bound on
the rate of gross investment. This condition is particularly appropriate to
the case of a monopolist or of a nation, for then the rate of gross invest-
ment is restricted by the capacity of the capital-goods industry. A more
general assumption is that the cost of investment is a nonlinear function
of the rate. An upper bound on the rate of investment can be replaced by



OPTIMAL CAPITAL ADJUSTMENT 3

an increase in cost approaéhing infinity, a lower bound by the assumption
that cost ceases to decrease or decreases very slowly as gross investment
drops below zero. (For negative values of gross investment, “cost” means
the negative of the sale price of capital goods). The most general case is
not discussed here; the solution when there is an upper bound on gross in-
vestment is sketched in section 5.

The assumptions on #(K) will be stated directly in terms of conditions
on a closely related function, the net profits:

®) P(K)=n(K)— (a + 0)K.

The relevance of this function will become clear in the following section,
but its economic meaning is clear and corresponds to ordinary accounting
practice; from the operating profits must be subtracted the interest on the
capital and the depreciation of the capital goods to arrive at a true figure
for profits. In this paper, only very minimal regularity conditions are im-
posed on P(K). Specifically, we make two assumptions:

(6) P(K) is decreasing for sufficiently large K,
and
8 P(K) has a finite number of local maxima .

For simplicity of exposition, we add one more:
(8) If K, and K, are both local maxima of P(K), then P(K,) +# P(K,) .

The removal of (8) would lead only to inessential complications.

In many economic situations, it is reasonable to suppose that z(K), and
therefore P(K), is concave (diminishing returns to scale); in that case, P(K)
would have only one local maximum, which would be the global maximum.
Even with an initial phase of increasing returns to scale, the function P(K)
might have a unique maximum. In this case, as we shall see in the next
section, the solution has an extremely simple, almost trivial, form.

However, if the production process has several aspects that show economies
of scale in different ways, we might have a wavelike form for P(K). The
economies of scale might be exhausted in one area of the firm’s activities
before they have begun to become significant in another. In the case of a
monopolist, there may be two profit maxima: one, caused by the inelasticity
of demand, at a level of output and capital so low that there are no
significant economies of scale; a second and higher one at a level where
economies of scale become sufficient to compensate for a lower demand
price.

The situation studied here is similar to that discussed in chapter 7 of [2],
but the assumptions differ considerably. There, demand was given but
varied in time, and depreciation was assumed to be zero. The methods
used here are closely related to those of chapters 4-7 of [2].

There is another, rather different, economic interpretation of the model
studied here. Suppose that the effect of advertising on shifts in demand is
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cumulative. We may say that the demand curve and therefore the profits
at any time depend on a stock of accumulated good will, G. In the absence
of advertising, the good will tends to disappear gradually, but it can be in-
creased by advertising, a(#). A simple hypothesis of this type would be

9) G =a—6G;

that is, good will is added to at a rate proportional to the amount of ad-
vertising, and decays exponentially. Profits at any time are a function
n(G), so that the net surplus of receipts over expenditures at any time
is n(G) — a, and the present value associated with a planned advertising
policy is

S+ e {x[G()] — at)) dt .

0

Since advertising is necessarily nonnegative, the problem of optimal ad-
vertising policy is abstractly identical with that of optimal capital policy.

2. Preliminary Observations

The problem is that of maximizing V{K(?)}, defined in (3), subject to the
constraints (1), (2), and (4), where the function =(K) satisfies conditions
(5)-(8). Since K, is a datum, the problem is equivalent to maximizing the
surplus W{K(t)}, where

(10) W{K(®)} = V{K(®)} — K .

This latter form will turn out to be more convenient.
If we substitute from (1) in (3) and then in (10), we have

W(K(®) = S

0

"ol K(t)] — 8K} dt — Ko — S“"e*“tK’(t) dt .
0
The last term will be evaluated by integration by parts:

Sme*‘"K’(t) dt = [ KOl + ag+°°e-“‘K<t) dt
0

0
= lim [e” "' K(#)] — K(0) + ag+me'“"K(t) dt .
t—too 0
It should be remarked that this integration remains valid even when K(¢)
has discontinuities; each jump in K(f) contributes a term
e ™[K(t + 0) — K(t — 0)]

to the left-hand integral, but these terms also occur in the right-hand ex-
pression. We also assume, for the moment, that the limit in the first term
on the right-hand side exists. Then, recalling (2) and (5), we have

a1 W{K(t)} = S:”e-“‘P[K(o] dt — lim [ K(®)] .

Now we observe that under the assumptions made, for any unbounded
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policy K(f) we can find another such policy that is bounded and has a higher
value for W{K(t)}. For, frorzl (6), we can choose K so that K = K, and
P(K) is decreasing for K = K. Then define

K(t) = min [K, K(2)] .

It is easy to ~verify that conditions (2) and (4) are satisfied by K(f). By con-
struction P[K(#)] = P[K(?)] ~for all ¢, with the strict inequality holding for
some interval; and, since K(#) is bounded,

lim e ™ K(#) = 0 < lim e ™ K(¢) ,
t—+o0 t—rtoo

so that W{K()} > W{K(®)}. If
tliin e K(®)]

does not exist, W{K(?)} is, strictly speaking, not defined. But it can be said
that the present value associated with K(#) does not in any case exceed

S+°°e—“fP[K(t)] dt — Jim inf [ K],
0 t—+oo

and by the same argument we can do better with a bounded policy. Hence
we can assume that

(12) K(t) is bounded ,

and we can write
13) wikwy = | " PIKWdt
0

It is obvious from (13) that in choosing an optimal policy the aim is to
make P[K(t)] as large as possible at each time £, the only constraints being
those implied by (1), (2), and (4). In the absence of (4), (1) would not be
an effective constraint; and since the value of the integral in (13) is clearly
unaltered by changing the value of K(#) at one point, { = 0, the constraint
(2) is irrelevant. Hence the optimal policy is simply to make P[K(Z)] as
large as possible. Now, in view of (6), P(K) has a global maximum K,
and in view of (8), it is unique. Then the optimal policy is the stationary
policy defined by

(14) Kt =K (t>0) .

The surplus associated with this policy is

(15) WK} = P(I?)S+we“" gy =L
0 a

and this same expression is valid for any stationary policy.

This policy does satisfy all constraints for #> 0, since K' =0 and
I=8K>0. The only place it might fail to satisfy them is at t=0. If
K,> K, then K(t) has a downward jump at ¢ =0, which implies that
K'(0) = —oo, and therefore
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K0) = K'(0) + 6K(0) = — oo,

contradicting (4). On the other hand, if K, < K, we have either K'(0) = +
or K'(0) =0, and the constraints are not violated. We can thus state, in
general, that

(16) if K is the global maximum of P(K), and if K, < K, then the optimal
policy is K(t) = K for ¢t > 0.

Some observations implicit in the preceding discussion will be made ex-
plicit. Because of (1) and (4), K(f) can have no downward jumps, though
it can jump upward. It will be convenient to assume that K(¢) is continuous
on the left; this assumption involves no loss of generality. The right-hand
limit will be denoted, as usual, by K(f + 0). In this case, the effect of (2)
is summed up in the condition

an KO0+ 0) = K, .
We eliminate [ from (1) and (4) to obtain the constraint
(18) K' +0K=0.

To clarify the subsequent discussion, let us consider briefly the optimal
policy with K, > K when P(K) has only one local maximum, necessarily
K. In that case, for K> K, P(K) increases as K decreases. Hence
optimal policy requires K(f) to decrease as rapidly as possible until it
reaches the value K. The only restriction on its downward movement is
(18), so that for an interval beginning at { =0 we have K’ + éK =0, and
therefore

K(t) = K .
At some time r we shall find that K(r) = K. At this point, the firm is

in the same position, looking forward in time, as if K, = K; hence the
optimal solution is to continue with the solution K(#) = K. We state

Treorem 1. If P(K) has one and only one local maximum K, then the
optimal capital policy for given initial K, is
@@ if Ko <K,
K=K t>0);

1 This result is somewhat paradoxical for both the capital policy and advertising
policy problems, but more so for the latter. It says that if the initial stock of capital
or good will is below the global maximum, the firm should invest or advertise at an
infinitely rapid rate. While purchasing capital goods in a large block is not inconceiv-
able, a huge, very brief advertising campaign to build up good will to the optimal
level scarcely makes sense. The paradox arises from the unreal assumption that the
stock of good will can be increased at a rate proportional to the rate of advertising.
In fact, there would be diminishing returns as the increased expenditures force the
advertising effort into increasingly unrewarding channels. Similarly, an infinitely
rapid rate of investment might not be possible at constant prices, though this is
not inconceivable if the firm is a relatively small part of the market for the capital
goods. ’
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(b) if Ko> K,
Koe—dt 0 <t< loge KO/K'
= =r- '8 3
K@) = _
X > IOge KO/K
———6 .

The argument leading to Theorem 1 need not be perfectly rigorous, since
this theorem will later appear as a special case of Theorem 2. In the argu-
ment, we noted that choosing a policy to run from any time ¢ on is the
same as choosing a policy beginning at # =0, where K(¢) is taken as the
initial capital holding. This well-known recurrence principle for optimal
sequential decision-making has been used by Wald [7, p. 105], Massé [5],
and Arrow, Harris, and Marschak [1], and has been given general formula-
tion by Bellman [3, p. 83] and Karlin [4]. In this case, we start from (13),
which by an obvious change of variable can be written

(19) W{K()) = Sre‘“‘P[K(t)] dt + e"‘"§+we‘“‘P[K(t + o) dt

0

_ Sre“”P[K(t)] dt + e W(K(t + )}

0

for any 7. Suppose that K(t + r) is not an optimal policy with a beginning

value K(r). Define
=t
Kl(t)={lf(t) 0s=i=r,
Kt +r1) t>7,

where K(#) is an optimal policy with initial capital K(r). Then, by the def-
inition of an optimal policy,

W{K(@®)} > W{K(t + 1)},

and therefore
W{K.(t)} = g’e"“P[K(t)] dt + e W(K())

> WK},
so that W{K(f)} cannot be optimal.

(20) If K(t) is an optimal policy with initial capital K,, then for all = >0
the policy K(t + r) is optimal with initial capital K{(z).

By the same argument, we can show that

@1 if K.(t) is an optimal policy and K,(f) is optimal with initial capital
K (), the policy
— Ki(t <t=
K.t ={_1() 0= T
K,(t — 1) t >

is also optimal.
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From (21), we can deduce the following consequence:

Lemma 1. If K(t) is an optimal policy and K(r) = K, for some © >0, then
the periodic policy

K*(t) = K(t — jr) [jr=t<(+1)y]

is optimal. In particular, if K(t) =K, for 0 <t <<, where ©> 0, then the
stationary policy K*(t) = K, is optimal.

Proor. Since at r the initial capital is the same as at t =0, it would be
optimal to continue with the policy begun at = 0. Formally, let
Ki(t) 0st=r,
K (it —r1) t>rt.
Then K(f) is also optimal by (21), and Kz(2fr) = K(r) = K,. Since K(?)
satisfies (17) and (18), clearly the same is true of Ky(f). We may continue
this process by defining recursively
Kn(t) 0 é t < nt ¥
K,(t — nt) t=mnr.

Ko=Ko,  Ko=]

K0 =

By induction we easily establish that K.(#) is optimal, and K,.(nr) = K.
For any fixed ¢, the value of K,(f) is the same for all n sufficiently large,
so that we may define the limit of this sequence of policies as

K*@#) = lim K1),

which obviously has the definition specified in the lemma. The policy
K*(¢) satisfies (17) and (18), and coincides with K,(f) for ¢ < nr. Hence

| W{K*(O)} — W{K.(O} ] =

S“’e-“‘{P[K*(t)] — P[K.(8)]} dt

< e“"“swe*” | PLK*(t + no)] — PLK(t + no)] | dt .

Since P(K) is a bounded function, the integral on the right is uniformly
bounded, and therefore the right-hand side approaches zero as # approaches
infinity. However, since K,(¢) is optimal for all n, it follows that W{K.(#)}
is the same for all n. Therefore

W{K*(#)} = W{K.®)} ,
and W{K*(#)} is optimal.

3. Characterization of the Solution

We prove a series of lemmas which, taken together, characterize the
optimal policy. The first case we investigate is the nature of the solution
when the constraint (18) is not effective but there is no discontinuity.

_LEMMA 2. (@ If an op_tz'mal policy K(t) is differentiable at t=t, and
K'(to) + 6K(t,) > 0, then K(t,) is a local maximum or a local minimum of
P(K), and there is an interval containing t, for which K() is a constant.
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(b) If K(t) is optimal, then K'(t) <0 over every interval of differentiability.
(c) If the stationary policy K(t) = K, is optimal, then K, is a local maximum
or a local minimum of P(K).

Actually, as we shall see (Lemma 4), K(¢,) will have to be a local maxi-
mum under the conditions of (a); similarly, K, in (c) will have to be a local
maximum. '

Proor. (a) Suppose K(t,) is neither a local maximum nor a local minimum.
From the finiteness of the number of local maxima (and therefore of local
minima), either P(K) is increasing in an interval containing K(Z,) or it is
decreasing in such an interval. We show by exhibiting another policy
K(t) with a higher surplus that the first case leads to a contradiction; the
argument for the second case is completely parallel.

Choose ¢, greater than #, but sufficiently close to #, so that

min K(t) and exp [8(¢, — to)]K(¢)

tostst

belong to the K-interval in which P(K) is increasing. Define

K(¢) 0<t=<ty t>t,

exp [8(t, — DIK(L)  t<t <t .

First, we show that K(¢t) > K(¢) for t, < t < t,. In what follows, #, <t < ¢,
except where otherwise noted. From the hypothesis, by choosing #, suf-
ficiently close to #{, we can ensure that K_’(t) + 0K() > 0. On the other
hand, K'(#) + 6K(¢) =0. Let k() = K({) — K(t). Then E'(t) + 6k(#) < 0, or
{d[®*k(1)]}/dt < 0, so that

K(t) =

SR(t) > k() =0,
since K(t,) = K(t,). Therefore, k(t) > 0, or K(¢) > K(¢). Now,
exp [0(t, — t)]K(¢,) > K(t) > K(t) = min K(1),

toststy
so that for each ¢, the policies K(¢) and K(¢) both lie in an interval where
P(K) is increasing, and

P[K()] > P[K(@®)] G<t<t).,

Since P[K(t)] = P[K(t)] for all other #, we have W{K(t)} > W{K(#)}, which
is, as noted, a contradiction. B

To complete the proof of (a), suppose that K'(f,) + 6K(t,) > 0 at some f,.
Then K'(t) 4+ 8K(f) >0 in some interval containing #,. At each point of
this interval, K(¢) is a local extremum, as just shown. Since there are only
a finite number of such local extrema and since K(#) is differentiable in
this interval, it must be constant there.

(b) For any ¢ for which K(¢) is differentiable, either K'(¢) + 6K(¢) > 0 or
K'(¢) + 6K(t) = 0, from (18). In the first case we have K'(t) = 0, from (a);
in the second, K'() = —8K(t) < 0. B B

() If K(t) is constant, then K'(f)=0 and K'(¢) + 0K(t,) = 6K, > 0, so
that (a) applies.

As we have seen in section 2, a key role in the solution is played by policies
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that have a discontinuity at the origin and are constant thereafter. The
jump is motivated by the desire to achieve a higher value of P(K); there-
fore the constant value should be as high a maximum as possible. We give
the following formal definition:

(22) A policy K(t) is termed the jump policy relative to K, (with initial
capital K,) if K(t) = K > K, for ¢t >0, where K uniquely maximizes
P(K) subject to K = K.

The jump policy is uniquely defined if there exists a K > K, that unique-
ly maximizes P(K) subject to K = K,; otherwise it is not defined. The
local maxima of P(K) subject to K = K, are those local maxima of P(K)
that are greater than K, plus possibly K; itself; in view of (8), the global
maximum K will fail of uniqueness only if P(K,) equals the value of P(K)
at the highest local maximum above K, and we wish to exclude this case.
The condition K > K, ensures that (17) is satisfied; the strict inequality
ensures that there will actually be a jump. Finally, since K =0 for all
t >0 on a jump policy, (18) is satisfied.

The reason for distinguishing between K, and K, will become clearer
below (see the proof of Lemma 6). We shall be interested in the case
K, < K,, and it is easily seen, in view of (17), that a jump policy which
is optimal for K, = K, remains optimal as K, increases but remains below
K.

Lemma 3. Let K.() be the jump policy relative to K, and K(t) be any other
policy satisfying (17) and (18) for which K(t) = K, for all t>0. Then
W{K.#)} > W{K(®)}.

Proor. By construction,
(23) P(K) = P[K()] t>0).

Since K(¢) is not the jump policy, K(t,) # K for some #, > 0. If K(t) < K,
it is impossible that K() = K in every left-hand interval of £, for other-
wise K'(t,) would equal —oo, contradicting (18). Hence there is an interval
on which K(¢) < K. Similarly, if K(t,) > K, there is an interval on which
K() > K, and in either case there is an interval on which K(¢#) # K. Since
K() = K, it follows from (22) that the strict inequality holds in (23) on
some interval. From the definition (13) of W, the lemma follows.
We can now sharpen Lemma 2.

LemMa 4. @) If K, is a stationary optimal policy, then K, is a local maxi-
mum of P(K),f’(K) < P(K,) for K > Ko, and there is no jump policy relative
to K,. (b) If K(t) is optimal and is differentiable at t = t, and if

K'(t;) + 6K(ts) >0,
then K(t,) is a stationary optimal policy.

Proor. (a) If there exists a jump policy relative to K,, then by Lemma
3 it must be better than the stationary policy. . If, then, the stationary policy
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is optimal, there can exist no jump policy. If P(K) > P(K,) for some
K > K, and if K maximizes P(K) for K = K,, then K > K, and K must be
unique, as already observed; therefore, there would be a jump policy.
Hence P(K) < P(K,) for K = K,; that is, K, is a right-hand maximum of
P(K). If K, were a local minimum, then P(K) would have to be constant
in a right-hand neighborhood of K,, so there would be a continuum of local
maxima, contrary to (7). From Lemma 2(c), K, then has to be a local
maximum of P(K). Suppose that P(K,) = P(K,) for some K, > K,. Then
P(K,) = P(K) for all K= K,, so that K, would be a local maximum of
P(K). But then there would be two local maxima of P(K) with the same
value, contradicting (8); hence P(K,) > P(K) for all K > K,.

(b) If K(t) is optlmal then by (20) the policy K(t + ¢,) is optimal for initial
capital K(Z,). But K(t) is constant in any interval containing #, by Lemma
2(a), and therefore K(t + #,) is constant in a right-hand interval of 0. By
Lemma 1, the stationary policy K(z,) is also optimal.

We now confirm the usefulness of our definition (22) of a jump policy by
observing that if a policy with a jump at £ =0 is optimal, it must be a
jump policy.

Lemma 5. If K(t) is optimal and has a jump at t =0, then it is the jump
policy relative to K.

Proor. The argument will be that if K(¢) is an optimal policy but not
a jump policy, it is possible to construct an optimal policy that never falls
below K, and that is not a jump policy. But this will contradict Lemma 3.

If K(t)= K, for all ¢, let K*(t) = K(t). Otherwise, K(t) < K, for some #,.
Let

= inf {¢: K(t) < K.} .

Since K(¢) has a jump at ¢ = 0, there is a right-hand interval of 0 in which
K(t) =z Ky;

(24) >0, K@tz K, 0=<t=1).

Since K(#) can have no downward jumps, we must have K(z)= K,. By
Lemma 1, the periodic policy

K*(t) = K(t — jo) [jr<t<(j+ r]

is also optimal, while from (24) we have K*(#) = K, for all ¢ Also,
K*(jr) = K(0) = K, for all j, where K*(t)= K(t) > K, for ¢ sufficiently small
(since there is a jump at £ = 0). Hence K*(¢) is not constant for ¢ > 0, and
therefore K*(¢) is not a jump policy.

We have shown that if there is an optimal policy with a jump at £ =0
that is not a jump policy, there is an optimal policy K*(#) with a jump at
t = 0 which is not a jump policy but for which K*(¢) = K, for all ¢£. If we
can show that there exists a jump policy, the conclusion will follow from
Lemma 3.

If P(K)> P(K,) for some K > K,, then the global maximum K of P(K)
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subject to K = K, cannot equal K, and must be unique, as seen earlier, and
the jump policy exists. Suppose P(K) < P(K,) for all K = K.. Then

(25) P(K,) = P[K*(D)] for all ¢;

since K*(#) is optimal, so is the stationary policy K,. By Lemma 4(a),
P(K,) > P(K) for all K> K,. Since K*(t) > K, for t sufficiently small, the
strict inequality holds in (25) for some f-interval, which contradicts the
optimality of K *(#). Hence a jump policy must exist and be optimal.

Lemma 6. If K(t) is optimal and has a jump anywhere, it must be the
jump policy relative to K.

Proor. Let ¢, be the greatest lower bound of the jumps. Then for any
jump #,, the policy K(t + t,) is optimal for initial capital K{(t,) by (20), and
has a jump at ¢ =0, so that by Lemma 5 it must be a jump policy and
therefore constant for ¢ > #,. Since #, can be chosen arbitrarily close to Z,
it follows that K(#) must be constant for ¢ > ¢, and the only jump occurs
at £, We wish to show that #, =0, in which case the result follows from
Lemma 5.

Suppose #, > 0. Then K(t) is differentiable for 0 < ¢ < £, and by Lemma

2(b) is monotone-decreasing there. If Kt =K> K(t,) for t>t, we can
choose 1, < £, so that K(t,) < K(t;) < K. Define

K(t,) t=0,
K t>0.

Since K(t + t,) is optimal for K(t,) and has a jump at { =0, by Lemma 5
it must be a jump policy relative to K(t,); and by definition (22), K > K(t,)
maximizes P(K) uniquely, subject to K = K(t,). Since K(t;) < K, it follows
from (22) that K(¢) is the jump policy relative to K(¢,) with initial capital
K(t,). But K(t + t,) satisfies (17) and (18) and the condition K(¢ + t.) = K(to),
since K(t + t,) is monotone-decreasing for 0 ¢ = # — t and is equal to
K > K(t,) for t > t, — t,. By Lemma 3,

W{K®)} > W{K(t + t.)} ,

which is impossible, since K(t + t,) is optimal for initial capital K(t:) by (20).
The assumption %, > 0 has led to a contradiction.

K(t) =

4. Detailed Structure of the Optimal Policy

With preceding lemmas, we can now describe the structure of the optimal
policy for any initial capital K,. First consider an optimal policy that has
no jumps. From (18) we have K' + 6K = 0 everywhere, while from Lemma
2(b) we have K’ < 0 everywhere. If the strict inequality holds in (18), by
Lemma 2(a) there is an interval of constancy, by Lemma 4(b) the constant
value of K(#) must be a local maximum of P(K), and there are only a finite
number of such local maxima. Between the intervals of constancy we have
intervals for which the equality holds in (18); these are the zero-investment



