l_ecture Notes In

Mathematics

Edited by A. Dold and B. Eckmann

811

Dag Normann

Recursion on the
Countable Functionals

&

Springer-Verlag
Berlin Heidelberg New York

/ A ey T sl Ry SO e S e R R e :
b [k AE % A 2 et L H R f i

A s g ey ¥ T o0 3 - [BEas
i \ DR LA Y o i v]

H
r.“‘.‘:‘,}*
=
*Ey

N

Lecture Notes in
Mathematics

Edited by A. Dold and B. Eckmann

811

Dag Normann

Recursion on the
Countable Functionals

R R TR AN

S ool A

Springer-Verlag
Berlin Heidelberg New York 1980 g

Author

Dag Normann

Institute of Mathematics, The University of Oslo
Box 1053 Blindern Oslo 3

Norway

AMS Subject Classifications (1980): 03D 65

ISBN 3-540-10019-9 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-10019-9 Springer-Verlag New York Heidelberg Berlin

Library of Congress Cataloging in Publication Data. Normann, Dag, 1947- Recursion on the
countable functionals. (Lecture notes in mathematics; 811) Bibliography: p. Includes index.
1. Recursion theory. 2. Computable functions. |. Title. Il. Series: Lecture notes in
mathematics (Berlin); 811.

QA3.L28 no. 811. [QA96] 510s [611.3] 80-19391

This work is subject to copyright. All rights are reserved, whether the whole or
part of the material is concerned, specifically those of translation, reprinting,
re-use of illustrations, broadcasting, reproduction by photocopying machine or
similar means, and storage in data banks. Under § 54 of the German Copyright
Law where copies are made for other than private use, a fee is payable to the
publisher, the amount of the fee to be determined by agreement with the publisher.

© by Springer-Verlag Berlin Heidelberg 1980
Printed in Germany

Printing and binding: Beltz Offsetdruck, Hemsbach/Bergstr.
2141/3140-543210

Introduction

Generalized recursion theory is an area of mathematical logic
which has been rapidly growing over the last twenty years, and it is
now recognized as a dicipline of its own.

One reason for generalizing recursion theory is to find analogues
to the natural numb€rs and the recursion theory on them, partly in
order to use the intuition about computations on other domains and
partly in order to generalize classical results. The consequence is
that one quite often looks at theorems requiring a difficult combina-
torial proof in a more general situation. Many of the proofs in gene-
ralized recursion theory are therefore true generalizations of classi-
cal proofs concerning recursion or metarecursion on the natural numbers,
and much of their value is that they give a better understanding of the
classical proofs.

Another reason for generalizing recursion theory is to look at
other domains and 'true' algorithms on such domains. Then the motiva-
tion is not just to generalize but to find domains on which the notionsv
of algorithm and computation make sense and to find what the algorithms
and computations really are.

One attempt to extend recursion theory was done by Kleene during
the fifties. He defined algorithms operating on functionals of arbi-
trary finite types and it is widely recognized that he gave an import-
aﬁt analysis of the notion of a computation in a more general setting;
Much of the work that has been done on Kleene's computation theory for
higher types has been concerned with computations relative to certain
functionals. The theory for recursion in the so-called normal function-
als in particular has been a successful subbranch of the general theory.
This theory is a generalization of the theory for hyperdrithmetic sets
and the research follows the patterns of generalized recursion theory
described above. In particular computations will be infinite in a very .
strong sense.

Kleene isolated a subclass of his functionals of higher types, the
countable functionals. It is a natural subclass if one wants to pre-
serve some of the finiteness of ordinary recursion theory; a computation
in a finite sequence of countable functionals may have an infinite com-
putation tree but the value is decidable from a finite amount of infor-
mation about the functionals involved. Kleene showed that they are

closed under recursion.

nctionals were equivalent. This makes the countable or continuous
functionals an interesting domain for recursion theory; computations

. are still finite in character (it has been shown that they cannot be
extended preserving this property) and the hierarchy itself is as con-
structive as the real line. &
Accepting this and accepting that recursion theory is worthwhile
studying for its own sake one is motivated for the material in this
"book. This book is written out of an interest in the recunsion theory
of the countable functionals and related structures and it will mainly

be concerned with recursion-theoretic problems.

After two introductory chapters we give in chapter 3 a structural
analysis of the countable functionals, partly because this material has
ot been published elsewhere, partly because there is a structural un-
derstanding underlying most of the proofs to come later on. The rest
of the book will contain various proofs of theorems concerning the re-
éursion theory and the sample of proofs and results should be sufficient
o introduce the reader to the main methods and problems in the area up
i “to present research level. The book does not claim to contain all in-
resting results on the subject, just to enable the reader to under-
stand other research papers.
AJf The book is essentially self-contained. The reader is supposed
}%ito know ordinary recursion theory up to a good understanding of the
'“basic notions and a knowledge of the basic terminology.
We will use a result of r.e. degree-theory but not the proof. In
» one of the proofs we will use a priority-argument and for the under-
standing of that proof it will be an advantage to have seen a priority-
argument before. In Chapters 5 -7 we need some elementary facts ‘con-
cérning the projective hierarchy but there is no advanced descriptive
~ set theory involved.
» My first contact with the continuous functionals took place in
Oxford in Spring 1975. During my stay there I met Robin Gandy, Jan
Bergstra, Martin Hyland and Stan Wainer and in the years to follow
. they inserted an interest for the subject in me. In particular dis-
_'?‘Qussions with Wainer and Bergstra concerning precise open problems
. made me work in the field.

The idea of writing a book on the subject grew out of a seminar
I gave in Oslo in the autumn-term 1977. John V. Tucker suggested it

o et 2

F=

S
.

to me and Jens Erik Fenstad encouraged both of us. Tucker also g
some valuable suggestions on the content of the book. VInspired by th
visit of Stan Wainer to Oslo in the spring-term '78 the material sta

to take shape and the actual work with the manuscript took place autu
'78 and early spring '79. The final version gives the status by East
'79, no later results gave been incorporated. i

During my toiling with the manuscript my wife Svanhild has read
the various drafts and given valuable suggestions both concerning the
English and the way of presenting the material. Her assistance has
been most helpful. Stan Wainer was kind enough to read the final ve
sion of the manuscript and his comments induced some important changes
I am sorry that I put this burden on these two but the book certainlyf
improved from it.

John Hartley later read parts of the manuscript and discovered
several minor errors in the text.

Finally I will express my gratitude towards R. Mgller who performe
the skilled typing mostly while I was not around to decipher the hand-
written manuscript.

Oslo, January 1980

Dag Normann »

T
»r
1

iy by ik CONTENTS

1. THE MAXIMAL TYPE STRUCTURE 1 g
1.1 Functionals of higher types 1 A
1.2 Kleene's computations 6 s
“ 1.3 A survey of recursion in normal functionals 19 :
2. THE COUNTABLE FUNCTIONALS 23
i 2.1 Type-structures 23 [
2.2 The countable functionals 30
2.3 Countable recursion and the associatés 40
3. Ct(n) AS A TOPOLOGICAL SPACE 49
3.1 The topology 49
Convergent sequences 55
3.3 Compact sets in Ct(k) 65 o
3.4 Filter-spaces and the countable functionals 74
4. COMPUTABILITY VS RECURSION 80
4,1 Degrees of functionals 80
4.2 Irreducible functionals of type 2 83 ; ;
4.3 The fan-functional 99 Al
4.4 The T-funetional 110
5. THE COMPUTABLE STRUCTURE ON Ct(k) 116 I
5.1 A dense set 116 3
5.2 The trace of a functional 124 ;
5.3 The complexity of Ct(k) 129 :
5.4 On the definability of computations , 1.3 <.
5.5 Regularity of countable recursion 141]
A
7 6. SECTIONS ; 145 1
1-sections in a general type-structure 145 u;
The 1-section of a type-=2 functional €15 2 A
6.3 The 1-section of a higher type functional 162 .
6.4 Another type-structure 168
7. SOME FURTHER RESULTS AND TOPICS 173 o
7.1 Irreducible and nonobtainable functionals 173 i

7.2 Concluding remarks £ 184« &

¢ e K e 44
o ; p ek adl i 2 %

3

~ BIBLIOGRAPHY : 186
ALPRARPETIC LIST OF CONCEPTS 189

LIST OF SYMBOLS 191

1. THE MAXIMAL TYPE STRUCTURE

1.1 Functionals of higher types

Ordlnary recursion theory deals with computable operations on the
natural numbers, or in some expositions (e. g. Shoenfield [43]), with
computable operatlons on finite entities. But even then, when we want
to compute on finite sequences, words or whatever we are interested 1n,
we normally code our objects as natural numbers and translate the com-
putation to a computation on natural numbers.

Not every interesting operator in mathematics deals with finite
arguments and gives finite answers. A typical example is the partial
operator

I(f,ab) = fx)dx

Lo

where a,b are reals and f:IR » IR is a function. Two of the argu-
ments, a,b , are infinite sequences of finite entities (finite parts
of the decimal expansion), while the first argument, f, is itself a
function operating on infinite arguments and giving infinite answers.
Does it make sense to ask whether the Rieman integral operator is com-
putable or not?

Without doubt the numerical analysist will say that for decent £
there are good algorithms that may be used by computers computing the
integral up to any predecided accuracy, so there must be some notion
of computability floating around.

The task of a mathematician is to take some phenomenon, analyze
it, build a beautiful model for it and prove a lot of mathematically
interesting properties of that model.

We will choose the Rieman integral and related operations.

When a computer computes an integral it is actually given a natur-
al number n and is asked to give the n first decimals in the answer.
So we deal in fact with the operator

b
I(f,a,b,n) = [f(x)dx given with n decimals.
a

. . . \;
But now we have achieved something, the answers given by the oper-
. . . 3 . . . (:
ator are finite entities and may, as 1n ordinary recursion theory, be
coded as natural numbers.

A real number a can be viewed as a function mapping a

tural number n onto the first n decimals of a , and the function
~can also be viewed as operating on a real a and a natural number

,» giving the n first decimals of f(a) .

Thus all the operators we consider can be regarded as operators
with finite or infinite arguments, and giving natural numbers as values.

; The discussion above should explain why we are interested in oper-
tors giving natural numbers as values and taking finite sequences of
natural numbers and operators as arguments. This leads to the follow-
ing definition of type-symbol o and the type itself, Tp(o), denoted

0 1is a type-symbol denoting w = the set of natural numbers.

e L

then o = (ol,...,on) is a type-symbol denoting

.50, are type-symbols denoting Tp(cl),...,Tp(on) resp.,
Tp(o) = The set of total functions w:Tp(ol)x---pr(on) > W

lemark 1.2 ;
In the literature one will often find the following alternative
efinition:
0 is a type-symbol denoting w
If ¢ and =+t are type-symbols denoting Tp(o) , Tp(t) resp.,

then (o+t) 1is a type-symbol denoting the set of total functions
e Tp (o) = Tpla) s

If w:Tp(cl)x---XTp(cn) > w

tpeplace it by

w':Tp(ol) > (Tp(oz)x’--XTp(on) > w)

defined by

w'(wl) = A(wz,...,wn)w(wl,...,wn)

here ®, varies over Tp(cl) , and for each @ A(¢&,.“,¢HNK¢1,.“,wh)
denotes the operator which to arguments (wz,...,wn) in
p(oz)x---XTp(cn) gives the value w(wl,wz,...,wn).

If ¢:Tp(o) » Tp(t) where t1#0, then t is of the form Ty Ty,

and we replace ¢ by

0B (o) XTp(Tl) = gt)

defined by

cb'(w,cpl) = @(w)(cpl) "

Remark 1.3

The use of A as above is of great notational importance. TIf
f(xl,...,xn,yl,...,ym) is a function, we will often be interested in
the operator that to the arguments Vysee oY gives the function

g(xl,...,xn) = f(xl,...,xn,yl,...,ym).

We will denote this function g by

A(xl,...,xn)f(xl,...,xn,yl,...,ym).

We will not really be concerned with any of these two notions of
functionals of higher types, the purification process will go on a bit
further. Therefore we will not give detailed descriptions of the trans-
formations indicated above. If one wants to give a precise definition,
the following concept, telling "how far up" a type is, is of value.

Definition 1.4

To any type-symbol, ¢ , we associate a natural number, the level of
¢ or the type denoted by o by

I

The level of the type-symbol 0 is 0

ii Let Opseeesdy be type-symbols with levels kl’

level of (cl,...,cn) is then 1 +max{kl,...,kn}.

...,krl resp. The

In order to test the understanding of this definition, we suggest

the following exercise:

Prove: Let o, be two type-symbols. Then o and =+t are of the same
level if and only if Tp(¢) and Tp(t) have the same cardinality.

We are now going to define the objects that we really will be work-
ing with, the functjonals of pure types. The pure types will be hand-
picked representatives for each level of types, and we will denote them

by natural numbers.

Definition 1.5

ol Let. ‘Tp(p) s v

o Tp(k)w

The aim of the last part of this section is to show that, inside

g il Let Tp(k+1)
The set of total functions P:Tp(k) » w .

<Tp(n)>n€w we have enough structure to simulate the broader types from
- definition 1.1. Since we have not yet developed a computation theory,
- we cannot prove that our codings are computable, but they are clearly
'effective' in some sense.
It is well known from ordinary recursion theory that there is a
recursive pairing function <,> :wxw » w with recursive projection
functions (); and (), such that

(<n,m>)1= n and (<n,m>)2 =m.

These definitions are directly lifted to Tp(n+1) by

Definition 1.6

Sa Let bysvy be elements in Tp(n+1) .
Let <¢,,¥,> be the element in Tp(n+1) defined by

<¢'1 9¢'2 >(@) = <W1(€P),'Jl2(¢)> "

b) Let ¢ € Tp(n+1) . Define (w)i (i=152) by

W)@ = (o)), .

It follows that (<w1,‘p2>)1 = ¢, and (<¢1,¢2>)2 = Y, Given the
pairing functions we can map any fixed number of elements LR
~ into one single element by

<\l)1 gere = ,wn+1 >n+1 = <<\b1 5 9‘yn>na“‘n+1 >

EEitwhere <,>, = <4>.,

2
So any finite cartesian product of a fixed type may be identified

& with the type itself.

: In order to jump from one type to another, we need the push up and

push down operators given in the following definition.

Definition 1.7

+

i If n € Tp(Q) , then n" € Tp(1) is defined by

nt(m) = n

ii If f € Tp(1), then f € Tp(0) is defined by

—_

£ = £(0)

I<

it

If

yILE

15

A5 3

@ e Tpln) " and n >0 , then ot € Tp(n+1) 1is defined by

0" () = 0y

Y € Tp(n+1) and n>0, then ¢ € Tp(n) is defined by
v (@) = ylo")

n<m , then szTp(n) + Tp(m) is defined by

4o 04

P:(w) =P where the number of +'s is m-n

n>m, then P::Tp(n) + Tp(m) 1is defined by

P:(W) = i where the number of -'s is n-m

m

n=m, then Pn is the identity on Tp(n) .

Remark 1.8

of ¢

(D+

is called the push-up of ¢ and ¢ is called the push-down
When we push down we will loose some information, while we keep

all information by pushing up. We will later prove that %? is comput-

able.

Now we will show that given the growth of cardinality with the

type, the P:'s are as faithful as possible.

Lemma 1.9

2

b

1

n<m<k or k<m<n then Pk=PkoPm.
n m

If n<m and ¢ € Tp(n) , then P;(P:(w)) = @

Proof:

a is immediate from the definition.
prove that for all ¢ we have that (¢

o

duction on the type of .

If ¢ € Tp(0) , then ¢ is a natural number n , ¢+ is the con-

gitant |funetion £(m) =n and £ = £(0). & 6, so

Now let ¢ € Tp(n+1)

(0" = 0.

tionals of lower types. Then

(@) ()

(@*)(y*) by definition of (o)

To prove b, it is sufficient to
= @ . We prove this by in-

and assume that the claim holds for all func*ﬁ

©((3*)7) by definition of o'

"

©(y) by the induction hypothesis applied to (.

We challenge the reader to use the push-up maps and codings of se-
quences to give effective embeddings of each Tp(o) from Definition 1.1
into Tp(k) , where k 1is the level of o .

From now on we will only work with functionals of pure types, so
we do not require technical familiarity with arbitrary types. To us they

only serve as an intermediate stage in constructing the pure types and

- showing that they cover in a coded way the phenomena we want to discuss

in this book.

1.2 Kleene's Computations

By the introduction of oracles, ordinary recursion theory is easily
relativized to functions f:w > w , so the notion of a recursive or com-
putable functional of type 2 is meaningfull.

Kleene [22] lifted the notion of computability to functionals of
arbitrary types. Later in this section we will give the precise defin-
ition of Kleene-computations via the schemes S1 -S9. But we will first
discuss some of the problems involved.

We are going to define a class of valid computations which takes
sequences of functionals as arguments and gives natural numbers as val-
ues.

Clearly the successor-operator, the constant functions and the iden-
tity operator on the natural numbers are computable (S1-S3). Also, the
composition of two valid computations must be a valid computation (S4),
and the use of primitive recursion to define new computations must be
permitted (S5). ,

i w(wl,...,mn) is a computable function and o 1is a permutation
e s e n} o then

w'(wl,...,wn) = w(wc(l),...,wo(n))

must be regarded as computable (S6).

If f is of type 1 and x€w , then f(x) is clearly uniformly
computable in f,x (S7).

Combining this with composition we see that if we have computed x
by some algorithm, we compute £(x) by using an oracle for f combined
with the algorithm for x. Then we may use f(x) further in some larger

computation. Thus, regarding point-evaluation f(x) on numbers as com-

putable permits us to use functions in intermediate computations.

The most natural way to generalize S7 to higher types might seem
to let the evaluation-operator Ew(y,p) = ¢(¢9) be computable. If we
would permit computations to take functionals as values we could use
functional-application in intermediate computations. But life will be
much easier if we can keep the natural numbers as the only possible val-
ues of our computations, and the need to evaluate ¢ on an intermedia-
tely computed functional ¢ 1is our only reason for introducing function-
als as values. Thus we introduce a new scheme which to a functional
and an algorithmic description of a functional ¢ gives us y(9) when-
ever this has meaning (S8).

Our algorithms will be indexed by numbers, and like most recursion
theorists we believe that going from an index for an algorithm directly
to the algorithm itself is effective (S9).

The exact notion of a Kleene-computation is defined by an inductive
definition with nine clauses called schemes (S1-S9). To each scheme we
associate a natural number, an index, which will give perfect coding of
the actual algorithm. The index will be a coded sequence <i,...,o>
where 1 1is the number of the clause used, ... will contain special
information (e.g. in the case of composition the indices for the two al-
gorithms composed) and o will be a coded sequence <k1,...,kn> saying

that arguments accepted by this algorithm should be of types k. ,...,k

1 n

in that order.

The expression {e}(}) means the algorithm with index e applied
on 3 » and if the algorithm works, {e}($) will also denote the value
of the computation. This ambiguity is not greater than the one used in

]
calculus, where £ a both means the sequence of finite partial sums
n=1
and the limit whenever the limit exists.
We will now give the definition we are going to work with. It is
not symbol by symbol as in Kleene [22], but we clearly define the same

notion of computability.

Definition 1.10

81. If e = <1,0>, x€w and o¢ is the sequence (number) of the
types of (x,wl,...,wk) , then

{e}(x,wl,...,wk) = x+1
§2. If e =<2,9,0>, Qq€w and o is the sequence of the types of
(wf...,wk) ,» then

{e}(wl,...,wk) = q

/

Lo If e = <3,u$ » X€w and o is the sequence of the types of
(x,wl,...,wk) , then

{e}(x,wl,...,wk) = x
BURLTE ez <u,e1,e2,o> and o 1is the sequence of the types of
(wl,...,wk) s, then
{e}(wl,...,wk) o~ {el}({ez}(wl,...,wk),wl,...,wk)

where a=~Db means 'both a and b are defined and are equal,
or they are both undefined'.

B If e = <5,e,;,e,,0> and o 1is the sequence of the types of
(x;wl,...,wk) s then

i {e}(x,wl,...,wk) a'{el}(wl,...,wk) if x=0
ol {e}(x,wl,...,wk) = {ez}({e}(x—1,wl,...,wk),wl,...,wk) 1f ‘%50
g IfF e = <6,e1,¥,c> , T codes a permutation 1t of k elements

and o is the sequence of the types of (wl,...,wk) , then

{e}(wl,...,wk) o {el}(wt(l),...,wT(k))

87, If e = <7,0>, x€w, fE€TP(1) and o is the sequence of the
types of (x,f,wl,...,wk) , then

{e}(x,f,wl,...,wk) = Filx) !
B e & <8,el,a> and o 1is the sequence of the types of
(wl,...,wk) s then

{el(e, 5. .,0) = wl(xw{el}(w,wl,...,wk))
where the A-notation is interpreted as in remark 1.3.

If e = £9,t,a> , €, €w, t<k and o is the sequence of the
types of (el,wl,...,wk) , then

{e}(el,ml,...,wk) o~ {el}(¢1,...,¢t)

mark 1.11
In S4% it is understood that {e}(wl,...,wk) is defined only if
}(wl,...,mk) is defined with some value s and {el}(s,wl,...,wk)
is defined.
The same remark is valid for S5 and S6.
In 88 it is understood that the variable ¢ varies over functionals

of two types less than the type of ¢, . The computation is defined if
all computations {e }(¥,9,,...,9) are defined for ¢ of the approp=&
riate type, i.e. if kw{el}(w,wl,...,wk) is a total functional of type
one less than the type of o,.

The definition of the relation {e}(ml,...,wk)'u n may be regarded
as an inductive definition T , as we will describe below. In discussin
computations we will without mentioning it assume that the arguments are
in the appropriate form for the index, and normally we discuss just a few
cases covering the methods and ideas involved.

Although T is defined by 9 clauses corresponding to S1 -S89, we

only give a sample of them here:

Definition 1.12
Define the operator TI(S) generating the computation-tuples of

Kleene-recursion by

1 <e,x,w1,...,wk,x+1> € T(S) when e = <1,0>

2., 3. and 7. are analogous.

iz

L <€,sW se Py X > and <€ sXsP 550,y > are both in S ., theris

<€50 5050y > € r(S) , where e = <4,e1,e2,c>
5., 6. and 9. are analogous.
8. If e = <8,e1,c> and for some functional ¢ ,
V¢<el,w,wvl,- ~-3‘9k95(‘1’)> €8S,
then <e,w1,...,wk,wl(§)> €-T(S) .

A sequence is in Tr(S) if it is in S or if it is in Tr(S) by one of

the nine conditions above.

Remark 1.13

Let
r°=¢g
rf = uvraM
Y<B
and
P PEram g

a € Ordinals
We then see that (e}(wl,...,wk) ~ n if and only if <es@ 5. .50 0>
EF .
Definitions 1.11 and 1.13 are various ways of formulating the same

notion of computations, and the only thing we need from the definition

