Hanne Riis Nielson
Gilberto Filé (Eds.)

LNCS 4634

Static Analysis

14th International Symposium, SAS 2007
Kongens Lyngby, Denmark, August 2007
Proceedings

@ Springer

Hanne Riis Nielson Gilberto Filé (Eds.)

Static Analysis

14th International Symposium, SAS 2007
Kongens Lyngby, Denmark, August 22-24, 2007
Proceedings

@ Springer

Volume Editors

Hanne Riis Nielson

Technical University of Denmark, Informatics and Mathematical Modelling
Richard Petersens Plads, 2800 Kongens Lyngby, Denmark

E-mail: riis@imm.dtu.dk

Gilberto Filé

University of Padova, Department of Pure and Applied Mathematics
via Trieste 63, 35121 Padova, Italy
E-mail: gilberto@math.unipd.it

Library of Congress Control Number: 2007932181

CR Subject Classification (1998): D.3.2-3, E.3.1-2,1.2.2, F4.2, D.1
LNCS Sublibrary: SL 2 — Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-74060-0 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-74060-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12103201 06/3180 543210

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

4634

Lecture Notes in Computer Science

For information about Vols. 1-4542

please contact your bookseller or Springer

Vol. 4671: V. Malyshkin (Ed.), Parallel Computing Tech-
nologies. X1V, 635 pages. 2007.

Vol. 4660: S. Dzeroski, J. Todorovski (Eds.), Computa-
tional Discovery of Scientific Knowledge. X, 327 pages.
2007. (Sublibrary LNAI).

Vol. 4651: F. Azevedo, P. Barahona, F. Fages, F. Rossi
(Eds.), Recent Advances in Constraints. VIII, 185 pages.
2007. (Sublibrary LNAI).

Vol. 4647: R. Martin, M. Sabin, J. Winkler (Eds.), Math-
ematics of Surfaces XII. IX, 509 pages. 2007.

Vol. 4643: M.-E. Sagot, M.E.M.T. Walter (Eds.), Ad-
vances in Bioinformatics and Computational Biology.
IX. 177 pages. 2007. (Sublibrary LNBI).

Vol. 4634: H.R. Nielson, G. Filé (Eds.), Static Analysis.
XI, 469 pages. 2007.

Vol. 4632: R. Alhajj, H. Gao, X. Li, J. Li, O.R. Zaiane
(Eds.), Advanced Data Mining and Applications. XV,
634 pages. 2007. (Sublibrary LNAI).

Vol. 4628: L.N. de Castro, FJ. Von Zuben, H. Knidel
(Eds.), Artificial Inmune Systems. XII, 438 pages. 2007.
Vol. 4624: T. Mossakoski, U. Mantanari, M. Haveraaen
(Eds.), Algebra and Coalgebra in Computer Science. XI,
463 pages. 2007.

Vol. 4619: F. Dehne, J.-R. Sack, N. Zeh (Eds.), Algo-
rithms and Data Structures. X VI, 662 pages. 2007.

Vol. 4618: S.G. Akl, C.S. Calude, M.J. Dinneen, G.
Rozenberg, H.T. Wareham (Eds.), Unconventional Com-
putation. X, 243 pages. 2007.

Vol. 4617: V. Torra, Y. Narukawa, Y. Yoshida (Eds.),
Modeling Decisions for Artificial Intelligence. XTI, 502
pages. 2007. (Sublibrary LNAI).

Vol. 4616: A. Dress, Y. Xu, B. Zhu (Eds.), Combinatorial
Optimization and Applications. XI, 390 pages. 2007.
Vol. 4615: R. de Lemos, C. Gacek, A. Romanovsky
(Eds.). Architecting Dependable Systems IV. XIV, 435
pages. 2007.

Vol. 4613: F.P. Preparata, Q. Fang (Eds.), Frontiers in
Algorithmics. XI, 348 pages. 2007.

Vol. 4612: 1. Miguel, W. Ruml (Eds.), Abstraction, Re-
formulation, and Approximation. XI, 418 pages. 2007.
(Sublibrary LNAI).

Vol. 4611: J. Indulska, J. Ma, L.T. Yang, T. Ungerer,

J. Cao (Eds.), Ubiquitous Intelligence and Computing.
XXIII, 1257 pages. 2007.

Vol. 4610: B. Xiao, L.T. Yang, J. Ma, C. Muller-
Schloer, Y. Hua (Eds.), Autonomic and Trusted Com-
puting. XVIII, 571 pages. 2007.

Vol. 4609: E. Emnst (Ed.), ECOOP 2007 — Object-
Oriented Programming. XIII, 625 pages. 2007.

Vol. 4608: H.W. Schmidt, I. Crnkovic, G.T. Heineman,
J.A. Stafford (Eds.), Component-Based Software Engi-
neering. XII, 283 pages. 2007.

Vol. 4607: L. Baresi, P. Fraternali, G.-J. Houben (Eds.),
Web Engineering. XVI, 576 pages. 2007.

Vol. 4606: A. Pras, M. van Sinderen (Eds.), Dependable
and Adaptable Networks and Services. XIV, 149 pages.
2007.

Vol. 4605: D. Papadias, D. Zhang, G. Kollios (Eds.),
Advances in Spatial and Temporal Databases. X, 479
pages. 2007.

Vol. 4604: U. Priss, S. Polovina, R. Hill (Eds.), Con-
ceptual Structures: Knowledge Architectures for Smart
Applications. XII, 514 pages. 2007. (Sublibrary LNAI).
Vol. 4603: F. Pfenning (Ed.), Automated Deduction —
CADE-21. XII, 522 pages. 2007. (Sublibrary LNAI).
Vol. 4602: S. Barker, G.-J. Ahn (Eds.), Data and Appli-
cations Security XXI. X, 291 pages. 2007.

Vol. 4600: H. Comon-Lundh, C. Kirchner, H. Kirch-
ner (Eds.), Rewriting, Computation and Proof. XVI, 273
pages. 2007.

Vol.4599: S. Vassiliadis, M. Berekovic, T.D. Himildinen
(Eds.), Embedded Computer Systems: Architectures,
Modeling, and Simulation. XVIII, 466 pages. 2007.
Vol. 4598: G. Lin (Ed.), Computing and Combinatorics.
XII, 570 pages. 2007.

Vol. 4597: P. Perner (Ed.), Advances in Data Mining. XI,
353 pages. 2007. (Sublibrary LNAI).

Vol. 4596: L. Arge, C. Cachin, T. Jurdziriski, A. Tarlecki
(Eds.), Automata, Languages and Programming. XVII,
953 pages. 2007.

Vol. 4595: D. Bosnacki, S. Edelkamp (Eds.), Model
Checking Software. X, 285 pages. 2007.

Vol. 4594: R. Bellazzi, A. Abu-Hanna, J. Hunter (Eds.),
Artificial Intelligence in Medicine. XVI, 509 pages.
2007. (Sublibrary LNAI).

Vol.4592: Z. Kedad, N. Lammari, E. Métais, F. Meziane,
Y. Rezgui (Eds.), Natural Language Processing and In-
formation Systems. XIV, 442 pages. 2007.

Vol. 4591: J. Davies, J. Gibbons (Eds.). Integrated For-
mal Methods. IX, 660 pages. 2007.

Vol. 4590: W. Damm, H. Hermanns (Eds.), Computer
Aided Verification. XV, 562 pages. 2007.

Vol. 4589: J. Miinch, P. Abrahamsson (Eds.), Product-
Focused Software Process Improvement. XII, 414 pages.
2007.

Vol. 4588: T. Harju, J. Karhumiki, A. Lepisto (Eds.),
Developments in Language Theory. X1, 423 pages. 2007.

Vol. 4587: R. Cooper, J. Kennedy (Eds.), Data Manage-
ment. XIII, 259 pages. 2007.

Vol. 4586: J. Pieprzyk, H. Ghodosi, E. Dawson (Eds.),
Information Security and Privacy. XIV, 476 pages. 2007.
Vol. 4585: M. Kryszkiewicz, J.F. Peters. H. Rybinski,
A. Skowron (Eds.), Rough.Sets and Intelligent Systems
Paradigms. XIX, 836 pages. 2007. (Sublibrary LNAI).
Vol. 4584: N. Karssemeijer, B. Lelieveldt (Eds.), Infor-
mation Processing in Medical Imaging. XX, 777 pages.
2007.

Vol. 4583: S.R. Della Rocca (Ed.), Typed Lambda Cal-
culi and Applications. X, 397 pages. 2007.

Vol.4582:J. Lopez, P. Samarati, J.L. Ferrer (Eds.), Public
Key Infrastructure. XI, 375 pages. 2007.

Vol. 4581: A. Petrenko, M. Veanes, J. Tretmans, W.
Grieskamp (Eds.), Testing of Software and Communi-
cating Systems. XII, 379 pages. 2007.

Vol. 4580: B. Ma, K. Zhang (Eds.), Combinatorial Pat-
tern Matching. XII, 366 pages. 2007.

Vol. 4579: B. M. Hammerli, R. Sommer (Eds.). Detec-
tion of Intrusions and Malware, and Vulnerability As-
sessment. X, 251 pages. 2007.

Vol. 4578: F. Masulli, S. Mitra, G. Pasi (Eds.). Appli-
cations of Fuzzy Sets Theory. XVIII, 693 pages. 2007.
(Sublibrary LNAI).

Vol. 4577: N. Sebe, Y. Liu, Y.-t. Zhuang (Eds.), Multi-
media Content Analysis and Mining. XIII, 513 pages.
2007.

Vol. 4576: D. Leivant, R. de Queiroz (Eds.), Logic,
Language, Information and Computation. X, 363 pages.
2007.

Vol. 4575: T. Takagi, T. Okamoto, E. Okamoto, T.
Okamoto (Eds.), Pairing-Based Cryptography — Pairing
2007. XI, 408 pages. 2007.

Vol. 4574: J. Derrick, J. Vain (Eds.), Formal Techniques
for Networked and Distributed Systems — FORTE 2007.
X1, 375 pages. 2007.

Vol. 4573: M. Kauers, M. Kerber, R. Miner, W. Wind-
steiger (Eds.), Towards Mechanized Mathematical As-
sistants. X111, 407 pages. 2007. (Sublibrary LNAI).

Vol. 4572: F. Stajano, C. Meadows, S. Capkun, T. Moore
(Eds.), Security and Privacy in Ad-hoc and Sensor Net-
works. X, 247 pages. 2007.

Vol. 4571: P. Perner (Ed.), Machine Learning and Data

Mining in Pattern Recognition. XIV, 913 pages. 2007.
(Sublibrary LNAI).

Vol. 4570: H.G. Okuno, M. Ali (Eds.), New Trends in
Applied Artificial Intelligence. XXI, 1194 pages. 2007.
(Sublibrary LNAI).

Vol. 4569: A. Butz, B. Fisher, A. Kriiger, P. Olivier. S.
Owada (Eds.), Smart Graphics. IX, 237 pages. 2007.
Vol. 4568: T. Ishida, S. R. Fussell, P. T. J. M. Vossen
(Eds.), Intercultural Collaboration. XIII, 395 pages.
2007.

Vol. 4566: M.J. Dainoff (Ed.), Ergonomics and Health

Aspects of Work with Computers. XVIII, 390 pages.
2007.

Vol. 4565: D.D. Schmorrow, L.M. Reeves (Eds.), Foun-
dations of Augmented Cognition. XIX, 450 pages. 2007.
(Sublibrary LNAI).

Vol. 4564: D. Schuler (Ed.), Online Communities and
Social Computing. XVII, 520 pages. 2007.

Vol. 4563: R. Shumaker (Ed.), Virtual Reality. XXII, 762
pages. 2007.

Vol. 4562: D. Harris (Ed.), Engineering Psychology and
Cognitive Ergonomics. XXIII, 879 pages. 2007. (Subli-
brary LNAI).

Vol. 4561: V.G. Duffy (Ed.), Digital Human Modeling.
XXIII, 1068 pages. 2007.

Vol. 4560: N. Aykin (Ed.), Usability and International-
ization, Part II. XVIII, 576 pages. 2007.

Vol. 4559: N. Aykin (Ed.), Usability and International-
ization, Part I. XVIII, 661 pages. 2007.

Vol. 4558: M.J. Smith, G. Salvendy (Eds.). Human Inter-
face and the Management of Information, Part I1. XXIII.
1162 pages. 2007.

Vol. 4557: M.J. Smith, G. Salvendy (Eds.), Human Inter-

face and the Management of Information, Part I. XXII,
1030 pages. 2007.

Vol. 4556: C. Stephanidis (Ed.), Universal Access in
Human-Computer Interaction, Part III. XXII, 1020
pages. 2007.

Vol. 4555: C. Stephanidis (Ed.), Universal Access in
Human-Computer Interaction, Part I1. XXII, 1066 pages.
2007.

Vol. 4554: C. Stephanidis (Ed.), Universal Acess in Hu-

man Computer Interaction, Part 1. XXII, 1054 pages.
2007.

Vol. 4553: J.A. Jacko (Ed.), Human-Computer Interac-
tion, Part IV. XXIV, 1225 pages. 2007.

Vol. 4552: J.A. Jacko (Ed.), Human-Computer Interac-
tion, Part II1. XXI, 1038 pages. 2007.

Vol. 4551: J.A. Jacko (Ed.), Human-Computer Interac-
tion, Part 1. XXIII, 1253 pages. 2007.

Vol. 4550: J.A. Jacko (Ed.), Human-Computer Interac-
tion, Part I. XXIII, 1240 pages. 2007.

Vol. 4549: J. Aspnes, C. Scheideler, A. Arora, S. Madden
(Eds.), Distributed Computing in Sensor Systems. XIII,
417 pages. 2007.

Vol. 4548: N. Olivetti (Ed.), Automated Reasoning with
Analytic Tableaux and Related Methods. X, 245 pages.
2007. (Sublibrary LNAI).

Vol.4547: C. Carlet, B. Sunar (Eds.), Arithmetic of Finite
Fields. XI. 355 pages. 2007.

Vol. 4546: J. Kleijn, A. Yakovlev (Eds.), Petri Nets and
Other Models of Concurrency — ICATPN 2007. X1, 515
pages. 2007.

Vol. 4545: H. Anai. K. Horimoto, T. Kutsia (Eds.), Alge-
braic Biology. XIII, 379 pages. 2007.

Vol. 4544: S. Cohen-Boulakia, V. Tannen (Eds.), Data
Integration in the Life Sciences. XI, 282 pages. 2007.
(Sublibrary LNBI).

Vol. 4543: A.K. Bandara, M. Burgess (Eds.). Inter-
Domain Management. XII, 237 pages. 2007.

Preface

The aim of static analysis is to develop principles, techniques and tools for
validating properties of programs, for designing semantics-based transformations
of programs and for obtaining high-performance implementations of high-level
programming languages. Over the years the series of static analysis symposia
has served as the primary venue for presentation and discussion of theoretical,
practical and innovative advances in the area.

This volume contains the papers accepted for presentation at the 14th Inter-
national Static Analysis Symposium (SAS 2007). The meeting was held August,
22-24, 2007, at the Technical University of Denmark (DTU) in Kongens Lyn-
gby, Denmark. In response to the call for papers, 85 submissions were received.
Each submission was reviewed by at least 3 experts and, based on these reports,
26 papers were selected after a week of intense electronic discussion using the
EasyChair conference system. In addition to these 26 papers, this volume also
contains contributions by the two invited speakers: Frank Tip (IBM T. J. Watson
Research Center, USA) and Alan Mycroft (Cambridge University, UK).

On the behalf of the Program Committee, the Program Chairs would like
to thank all the authors who submitted their work to the conference and also
all the external referees who have been indispensable for the selection process.
Special thanks go to Terkel Tolstrup and Jorg Bauer, who helped in handing the
submitted papers and in organizing the structure of this volume. We would also
like to thank the members of the Organizing Committee at DTU for their great
work. Finally we want to thank the PhD school ITMAN at DTU for financial
support.

SAS 2007 was held concurrently with LOPSTR 2007, the International Sym-
posium on Logic-Based Program Synthesis and Transformation.

June 2007 Hanne Riis Nielson
Gilberto Filé

Organization

Program Chairs

Gilberto Filé University of Padova, Italy
Hanne Riis Nielson Technical University of Denmark, Denmark

Program Committee

Agostino Cortesi University Ca’Foscari of Venice, Italy
Patrick Cousot Ecole Normale Supérieure, France
Manuel Fahndrich Microsoft Research, USA

Roberto Giacobazzi University of Verona, Italy

Chris Hankin Imperial College, UK

Manuel Hermenegildo Technical University of Madrid, Spain
Jens Knoop Technical University of Vienna, Austria
Naoki Kobayashi Tohoku University, Japan

Julia Lawall Copenhagen University, Denmark
Andreas Podelski University of Freiburg, Germany

Jakob Rehof University of Dortmund, Germany
Radu Rugina Cornell University, USA

Mooly Sagiv Tel-Aviv University, Israel

David Schmidt Kansas State University, USA

Helmut Seidl Technical University of Munich, Germany
Harald Sgndergaard University of Melbourne, Australia
Kwangkeun Yi Seoul National University, Korea

Steering Committee

Patrick Cousot Ecole Normale Supérieure, France
Gilberto Filé University of Padova, Italy
David Schmidt Kansas State University, USA

Organizing Committee

Christian W. Probst
Sebastian Nanz
Flemming Nielson
Henrik Pilegaard
Terkel K. Tolstrup
Eva Bing

Elsebeth Strem

VIII Organization

Referees

Luca de Alfaro
Rajeev Alur
Jesper Andersen
James Avery
Domagoj Babic
Roberto Bagnara
Josh Berdine
Julien Bertrane
Sapan Bhatia
Bruno Blanchet
Chiara Braghin
Bruno De Bus
Cristiano Calgano
Manuel Carro
Amadeo Casas
Bor-Yuh Evan Chang
Byron Cook

Silvia Crafa
Hyunjun Eo

M. Anton Ertl
Manuel Fahndrich
Xinyu Feng
Jerome Feret
Pietro Ferrara
Andrea Flexeder
Lars-Ake Fredlund
Samir Gemaim
Thomas Gawlitza
Andy Gordon
Alexey Gotsman
Andreas Griesmayer
Sumit Gulwani
Masami Hagiya
Hwansoo Han
Trevor Hansen
Rene Rydhof Hansen
Haifeng He

Patricia Hill
Yungbum Jung
Deepak Kapur
Deokhwan Kim
Andreas Krall
Shuvendu Lahiri
Akash Lal

Michel Leconte
Oukseh Lee
Heejong Lee

Tal Lev-Ami
Francesco Logozzo
Flaminia Luccio
Matteo Maffei
Rupak Majumdar
Roman Manevich
Mark Marron
Matthieu Martel
Florian Martin
Isabella Mastroeni
Laurent Mauborgne
Richard Mayr
Mario Mendez-Lojo
Alessio Merlo
Yasuhiko Minamide
Antoine Mine
David Monniaux
Sebastian Nanz
Jorge Navas
Nicholas Nethercote
Flemming Nielson
Hakjoo Oh

Daejun Park
Sungwoo Park
Michael Petter
Alessandra Di Pierro
Mila Dalla Preda

Franz Puntigam
Shaz Qadeer
Noam Rinetzky
Xavier Rival
Enric
Rodriguez-Carbonell
Francesca Rossi
Andrey Rybalchenko
Oliver Riithing
Cesar Sanchez
Peter Schachte
Markus Schordan
Stefan Schwoon
Roberto Segala
Sunae Seo
Elodie-Jane Sims
Zoltan Somogyi
Fausto Spoto
Manu Sridharan
Bjarne Steensgaard
Darko Stefanovic
Peter Stuckey
Kohei Suenaga
Yoshinori Tanabe
Francesco Tapparo
Makoto Tatsuta
Tachio Terauchi
Terkel Tolstrup
Tullio Vardanega
Kumar Neeraj Verma
Uwe Waldmann
Thomas Wies
Herbert Wiklicky
Eran Yahav
Greta Yorsh
Enea Zaffanella
Francesco Ranzato

Table of Contents

Invited Papers

Refactoring Using Type Constraints 1
Frank Tip

Programming Language Design and Analysis Motivated by Hardware
Evolution 18
Alan Mycroft

Contributed Papers

A Compilation Model for Aspect-Oriented Polymorphically Typed

Functional Languages i 34
Kung Chen, Shu-Chun Weng, Meng Wang, Siau-Cheng Khoo, and
Chung-Hsin Chen

Lattice Automata: A Representation for Languages on Infinite
Alphabets, and Some Applications to Verification 52
Tristan Le Gall and Bertrand Jeannet

Compositional Verification and 3-Valued Abstractions Join Forces. 69
Sharon Shoham and Orna Grumberg

Formalised Inductive Reasoning in the Logic of Bunched Implications. . . 87
James Brotherston

Optimal Abstraction on Real-Valued Programs 104
David Monniauz

Taming the Wrapping of Integer Arithmetic
Azel Simon and Andy King

Under-Approximations of Computations in Real Numbers Based on
Generalized Affine Arithmetic 137
Eric Goubault and Sylvie Putot

A Framework for End-to-End Verification and Evaluation of Register
AllOCatorS . . oot 153
V. Krishna Nandivada, Fernando Magno Quintao Pereira, and
Jens Palsberg

A New Algorithm for Identifying Loops in Decompilation
Tao Wei, Jian Mao, Wei Zou, and Yu Chen

X Table of Contents

Accelerated Data-Flow Analysis 184
Jérome Leroux and Grégoire Sutre

Abstract Error Projection 200
Akash Lal, Nicholas Kidd, Thomas Reps, and Tayssir Touwili

Precise Thread-Modular Verification................................ 218
Alezander Malkis, Andreas Podelski, and Andrey Rybalchenko
Modular Safety Checking for Fine-Grained Concurrency 233

Cristiano Calcagno, Matthew Parkinson, and Viktor Vafeiadis

Static Analysis of Dynamic Communication Systems by Partner
ADbStraction 249

Jorg Bauer and Reinhard Wilhelm

Exploiting Pointer and Location Equivalence to Optimize Pointer
ADATYSIS 5555 555 555505 55558 5586 85415 S ema nmemms sosimonme nmoims omeimmems 265
Ben Hardekopf and Calvin Lin

Hierarchical Pointer Analysis for Distributed Programs 281
Amir Kamil and Katherine Yelick
Semantics-Based Transformation of Arithmetic Expressions 298

Matthieu Martel

A Fast Implementation of the Octagon Abstract Domain on Graphics
Hardware 315

Francesco Banterle and Roberto Giacobazzi

Fixpoint-Guided Abstraction Refinements........................... 333
Patrick Cousot, Pierre Ganty, and Jean-Frangois Raskin

Guided Static Analysisc.oiniit i 349
Denis Gopan and Thomas Reps

Program Analysis Using Symbolic Ranges 366
Sriram Sankaranarayanan, Franjo Ivancié, and Aarti Gupta

Shape Analysis with Structural Invariant Checkers 384
Bor-Yuh Evan Chang, Xavier Rival, and George C. Necula

Footprint Analysis: A Shape Analysis That Discovers Preconditions 402
Cristiano Calcagno, Dino Distefano, Peter W. O’Hearn, and
Hongseok Yang

Arithmetic Strengthening for Shape Analysis 419
Stephen Magill, Josh Berdine, Edmund Clarke, and Byron Cook

Astrée: From Research to Industry 437

David Delmas and Jean Souyris

Table of Contents XI

Magic-Sets Transformation for the Analysis of Java Bytecode.......... 452
FEtienne Payet and Fausto Spoto

Refactoring Using Type Constraints*

Frank Tip

IBM T. J. Watson Research Center, P.O. Box 704, Yorktown Heights, NY 10598, USA
ftipQ@us.ibm.com

Abstract. Type constraints express subtype-relationships between the
types of program expressions that are required for type-correctness, and
were originally proposed as a convenient framework for solving type
checking and type inference problems. In this paper, we show how type
constraints can be used as the basis for practical refactoring tools. In our
approach, a set of type constraints is derived from a type-correct pro-
gram P. The main insight behind our work is the fact that P constitutes
just one solution to this constraint system, and that alternative solutions
may exist that correspond to refactored versions of P. We show how a
number of refactorings for manipulating types and class hierarchies can
be expressed naturally using type constraints. Several refactorings in the
standard distribution of Eclipse are based on our results.

1 Introduction

Refactoring is the process of applying behavior-preserving transformations
(called “refactorings”) to a program’s source code with the objective of improving
that program’s design. Common reasons for refactoring include the elimination
of undesirable program characteristics such as duplicated code, making existing
program components reusable in new contexts, and breaking up monolithic sys-
tems into components. Pioneered in the early 1990s by Opdyke et al. [15,16] and
by Griswold et al. [9,10], the field of refactoring received a major boost with the
emergence of code-centric design methodologies such as extreme programming [2]
that advocate continuous improvement of code quality. Fowler [7] and Kerievsky
[12] authored popular books that classify many widely used refactorings, and
Mens and Tourwé [14] presented a survey of the field.

Refactoring is usually presented as an interactive process where the program-
mer takes the initiative by indicating a point in the program where a specific
transformation should be applied. Then, the programmer must verify if a number
of specified preconditions hold, and, assuming this is the case, apply a number
of prescribed editing steps. However, checking the preconditions may involve
nontrivial analysis, and the number of editing steps may be significant. There-
fore, automated tool support for refactoring is highly desirable, and has be-
come a standard feature of modern development environments such as Eclipse
(www.eclipse.org) and IntelliJ IDEA (www.jetbrains.com/idea).

* This work has been supported in part by the Defense Advanced Research Projects
Agency (DARPA) under contract No. NBCH30390004.

H. Riis Nielson and G. Filé (Eds.): SAS 2007, LNCS 4634, pp. 1-17, 2007.
© Springer-Verlag Berlin Heidelberg 2007

2 F. Tip

The main observation of this paper is that, for an important category of refac-
torings related to the manipulation of class hierarchies and types, the checking
of preconditions and computation of required source code modifications can be
expressed as a system of type constraints. Type constraints [17] are a formalism
for expressing subtype-relationships between the types of program elements that
must be satisfied in order for a program construct to be type-correct, and were
originally proposed as a means for expressing type checking and type inference
problems. In our work, a system of type constraints is derived from a program to
reason about the correctness of refactorings. Specifically, we derive a set of type
constraints from a program P and observe that, while the types and class hier-
archy of P constitute one solution to the constraint system, alternative solutions
may exist that correspond to refactored versions of P.

We show how several refactorings for manipulating class hierarchies and types
can be expressed in terms of type constraints. This includes refactorings that:
(i) introduce interfaces and supertypes, move members up and down in the class
hierarchy, and change the declared type of variables, (ii) introduce generics,
and (iii) replace deprecated classes with ones that are functionally equivalent.
Several refactorings! in the Eclipse 3.2 distribution are based on the research
presented in this paper. Our previous papers [22,3,8,1,13], presented these refac-
torings in detail, along with experimental evaluations. This paper presents an
informal overview of the work and uses a running example to show how different
refactorings require slight variations on the basic type constraints model.

2 Type Constraints

Type constraints are a formalism for expressing subtype relationships between
the types of declarations and expressions, and were originally proposed as a
means for stating type-checking and type inference problems [17]. In the basic
model, a type constraint has of one of the following forms:

a=a type a must be the same as type a’
a<a’ type a must be a proper subtype of type a’
a<a’ type a must be the same as, or a subtype of type a’
a<a; or - or a<ay a<a; must hold for at least one 7, (1 < i < k)
Here, «, o, ... are constraint variables that represent the types associated

with program constructs. In this paper, M denotes a method (with associated
signature and type information), F' denotes a field, C' denotes a class, I denotes
an interface, T denotes a class or an interface, and E denotes an expression.
Constraint variables are of one of the following forms:

T a type constant [F] the declared type of field F
[E] the type of an expression E Decl(M) the type in which method M is declared
[M] the declared return type of method M Decl(F) the type in which field F is declared

! This includes the EXTRACT INTERFACE, GENERALIZE DECLARED TYPE, and INFER
GENERIC TYPE ARGUMENTS refactorings presented in this paper, among others.

Refactoring Using Type Constraints 3

program construct [implied type constraint(s)]
assignment E; = E» [E2]<[E\] (1)
method call E.m(E;,---,E,) [Ecm(EL, -, En)]=[M] (2
to a virtual method M [Ei]<[Param(M, 1)) (3)
where RootDefs(M) = { My, -, My } [E]<Decl(M,) or --- or [E]<Decl(My) (4)
access E.f to field F [E[‘fgjg;c[ll(?}’) Eg;
return E in method M [E1<[M] (7)
M7 overrides M, [Param(M’, i)]=[Param(M, i)] (8)
M £ M M) <[M] (9)
F" hides F Decl(F")<Decl(F) (10)
constructor call new C(Ey,---, E,,) [new C(E:,---,E,)]=C (11)
to constructor M [E;]<[Param(M,)] (12)
direct call [E-m(EL, -, En)]=[M] (13)
E.m(E:1,---,E;) [Ei]<[Param(M, i)] (14)
to method M [E]<Decl(M) (15)
implicit declaration of this in method M [this]=Decl(M) (16)

Fig.1l. Type constraints for a set of core Java language features

Type constraints are generated from a program’s abstract syntax tree in a
syntax-directed manner, and encode relationships between the types of decla-
rations and expressions that must be satisfied in order to preserve type correct-
ness or program behavior. Figure 1 shows rules that generate constraints from
a representative set of program constructs.

For example, rule (1) states that, for an assignment E; = Es, a constraint
[E2]<[E7] is generated. Intuitively, this captures the requirement that the type of
the right-hand side F> be a subtype of the type of the left-hand side E; because
otherwise the assignment would not be type correct. In the rules discussed below,
Param(M, i) denotes the i-th formal parameter of method M. For a call E.m(- -)
to a virtual method M, we have that: the type of the call-expression is the
same as M’s return type (rule (2)?), the type of each actual parameter must
be the same as, or a subtype of the corresponding formal parameter (rule (3)),
and a method with the same signature as M must be declared in [E] or one
of its supertypes (rule (4)). Rule (4) determines a set of methods M, ---, M
overridden by M using Definition 1 below, and requires [E] to be a subtype of
one or more® of Decl(M),---, Decl(My). In this definition, a virtual method M
in type C overrides a virtual method M’ in type B if M and M’ have identical
signatures and C' is equal to B or C' is a subtype of B.

Definition 1 (RootDefs). Let M be a method. Define:
RootDefs(M) = { M'| M overrides M', and there ezxists no
M" (M" # M') such that M overrides M" }

2 Rules (2), (5), (13), (11), and (16) define the type of certain kinds of expressions.
While not very interesting by themselves, these rules are essential for defining the
relationships between the types of expressions and declaration elements.

3 In cases where a referenced method does not occur in a supertype of [E], the
RootDefs-set defined in Definition 1 will be empty, and an or-constraint with zero
branches will be generated. Such constraints are never satisfied and do not occur in
our setting because we assume the original program to be type-correct.

4 F. Tip

Changing a parameter’s type need not affect type-correctness, but may affect
virtual dispatch (and program) behavior. Hence, we require that types of corre-
sponding parameters of overriding methods be identical (rule (8)). As of Java 5.0,
return types in overriding methods may be covariant (rule (9)). Rule (16) de-
fines the type of a this expression to be the class that declares the associated
method. The constraint rules for several features (e.g., casts) have been omitted
due to space limitations and can be found in our earlier papers.

3 Refactorings for Generalization

Figure 2 shows a Java program that was designed to illustrate the issues posed by
several different refactorings. The program declares a class Stack representing a
stack, with methods push (), pop(), and isEmpty () with the expected behaviors,
methods moveFrom() and moveTo() for moving an element from one stack to
another, and a static method print () for printing a stack’s contents. Also shown
is a class Client that creates a stack, pushes the integer 1 onto it, then creates
another stack onto which it pushes the values 2.2 and 3.3. The elements of the
second stack are then moved to the first, the contents of one of the stacks is
printed, and the elements of the first stack are transferred into a Vector whose
contents are displayed in a tree. Executing the program creates a graphical
representation of a tree containing, from top to bottom, nodes 2.2, 3.3, and 1.

3.1 EXTRACT INTERFACE

One possible criticism about the code in Figure 2 is the fact that class Client
explicitly refers to class Stack. Such explicit dependences on concrete data struc-
tures are generally frowned upon because they make code less flexible. The Ex-
TRACT INTERFACE refactoring aims to address this issue by introducing an in-
terface that declares a subset of the methods in a class, and updating references
in client code to refer to the interface instead of the class wherever possible.
Let us assume that the programmer has decided that it would be desirable to
create an interface IStack that declares all of Stack’s instance methods, and
to update references to Stack to refer to IStack instead, as shown in Figure 3
(code fragments changed by the application of EXTRACT INTERFACE are under-
lined). Observe that s1, s3, and s4 are the only variables for which the type has
been changed to IStack. Changing the type of s2 or s5 to IStack would result
in type errors. In particular, changing s5’s type to IStack results in an error
because field v2, which is not declared in IStack, is accessed from s5 on line 45.

Using type constraints, it is straightforward to compute the declarations that
can be updated to refer to IStack instead of Stack. Figure 4(a) shows some of
the type constraints generated for declarations and expressions of type Stack in
the program of Figure 2, according to the the rules of Figure 1. It is important
to note that the constraints were generated after adding interface IStack to the
class hierarchy. Now, from the constraints of Figure 4(a), it is easy to see that
Stack<[s2]<[s5]<Stack and hence that the types of s2 and s5 have to remain

Refactoring Using Type Constraints

[1] class Client {

[2] public static void main(String[] args){
[3] Stack sl = new Stack();

[4] s1.push(new Integer(1));

(5] Stack s2 = new Stack();

6l s2.push(new Float(2.2));

[71 s2.push(new Float(3.3));

(8] s1.moveFrom(s2);

[9] s2.moveTo(s1);

[10] Stack.print(s2);

[11] Vector vl = new Vector(); /* Al x/
[12] while (!s1.isEmpty()){

[13] Number n = (Number)si.pop();
[14] vi.add(n);

[15]

[16] JFrame frame = new JFrame();

[17] frame.setTitle("Example");

[18] frame.setSize (300, 100);

[19] JTree tree = new JTree(vl);

[20] frame.add(tree, BorderLayout.CENTER);
[21] frame.setVisible(true);

[22] }

[23] }

Fig. 2. An example program. The allocation sites for the two Vector objects created
by this program have been labeled Al and A2 to ease the discussion of the REPLACE

CLASS refactoring in Section 5.

class Client {

public static void main(String[] args){
IStack s1 = new Stack();
s1.push(new Integer(1));
Stack s2 = new Stack();
s2.push(new Float(2.2));
s2.push(new Float(3.3));
s1.moveFrom(s2);
s2.moveTo(s1);
Stack.print(s2);
Vector vl = new Vector();
while (!s1.isEmpty()){
Number n = (Number)si.pop();
vi.add(n);
}
JFrame frame = new JFrame();
frame.setTitle("Example");
frame.setSize (300, 100);

frame.add(tree, BorderLayout.CENTER);
frame.setVisible(true);

¥

new JTree(vl);

interface IStack {

public
public
public
public
public

Object pop();

void moveFrom(IStack s3);
void moveTo(IStack s4);
boolean isEmpty();

void push(Object o); }

}

[24] class Stack {

[25] private Vector v2;

[26] public Stack(){

[27] v2 = new Vector(); /* A2 */

[28]

[29] public void push(Object o){

[30] v2.addElement (o) ;

(311 }

[32] public Object pop(){

[33] return v2.remove(v2.size()-1);
[34]

[35] public void moveFrom(Stack s3){
[36] this.push(s3.pop());

(371

[38] public void moveTo(Stack s4){

[39] s4.push(this.pop());

[40]

[41] public boolean isEmpty(){

[42] return v2.isEmpty();

[43]

[44] public static void print(Stack s5){
[45] Enumeration e = s5.v2.elements();
[46] while (e.hasMoreElements())

[47] System.out.println(e.nextElement());
[48]

[a91 }

class Stack implements IStack {

private Vector v2;
public Stack(){
v2 = new Vector();

public void push(Object o){
v2.addElement (o) ;

public Object pop(){
return v2.remove(v2.size()-1);
}
public void moveFrom(IStack s3){
this.push(s3.pop());

public void moveTo(IStack s4){
s4.push(this.pop());

public boolean isEmpty() {
return v2.isEmpty();

public static void print(Stack s5){
Enumeration e = s5.v2.elements();
while (e.hasMoreElements())
System.out.println(e.nextElement());

Fig. 3. The example program of Figure 2 after applying EXTRACT INTERFACE to class
Stack (code fragments affected by this step are underlined), and applying GENERALIZE
DECLARED TYPE to variable tree (the affected code fragment is shown boxed)

