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Preface

The aim of static analysis is to develop principles, techniques and tools for
validating properties of programs, for designing semantics-based transformations
of programs and for obtaining high-performance implementations of high-level
programming languages. Over the years the series of static analysis symposia
has served as the primary venue for presentation and discussion of theoretical,
practical and innovative advances in the area.

This volume contains the papers accepted for presentation at the 14th Inter-
national Static Analysis Symposium (SAS 2007). The meeting was held August,
22-24, 2007, at the Technical University of Denmark (DTU) in Kongens Lyn-
gby, Denmark. In response to the call for papers, 85 submissions were received.
Each submission was reviewed by at least 3 experts and, based on these reports,
26 papers were selected after a week of intense electronic discussion using the
EasyChair conference system. In addition to these 26 papers, this volume also
contains contributions by the two invited speakers: Frank Tip (IBM T. J. Watson
Research Center, USA) and Alan Mycroft (Cambridge University, UK).

On the behalf of the Program Committee, the Program Chairs would like
to thank all the authors who submitted their work to the conference and also
all the external referees who have been indispensable for the selection process.
Special thanks go to Terkel Tolstrup and Jorg Bauer, who helped in handing the
submitted papers and in organizing the structure of this volume. We would also
like to thank the members of the Organizing Committee at DTU for their great
work. Finally we want to thank the PhD school ITMAN at DTU for financial
support.

SAS 2007 was held concurrently with LOPSTR 2007, the International Sym-
posium on Logic-Based Program Synthesis and Transformation.

June 2007 Hanne Riis Nielson
Gilberto Filé
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Refactoring Using Type Constraints*

Frank Tip

IBM T. J. Watson Research Center, P.O. Box 704, Yorktown Heights, NY 10598, USA
ftipQ@us.ibm.com

Abstract. Type constraints express subtype-relationships between the
types of program expressions that are required for type-correctness, and
were originally proposed as a convenient framework for solving type
checking and type inference problems. In this paper, we show how type
constraints can be used as the basis for practical refactoring tools. In our
approach, a set of type constraints is derived from a type-correct pro-
gram P. The main insight behind our work is the fact that P constitutes
just one solution to this constraint system, and that alternative solutions
may exist that correspond to refactored versions of P. We show how a
number of refactorings for manipulating types and class hierarchies can
be expressed naturally using type constraints. Several refactorings in the
standard distribution of Eclipse are based on our results.

1 Introduction

Refactoring is the process of applying behavior-preserving transformations
(called “refactorings”) to a program’s source code with the objective of improving
that program’s design. Common reasons for refactoring include the elimination
of undesirable program characteristics such as duplicated code, making existing
program components reusable in new contexts, and breaking up monolithic sys-
tems into components. Pioneered in the early 1990s by Opdyke et al. [15,16] and
by Griswold et al. [9,10], the field of refactoring received a major boost with the
emergence of code-centric design methodologies such as extreme programming [2]
that advocate continuous improvement of code quality. Fowler [7] and Kerievsky
[12] authored popular books that classify many widely used refactorings, and
Mens and Tourwé [14] presented a survey of the field.

Refactoring is usually presented as an interactive process where the program-
mer takes the initiative by indicating a point in the program where a specific
transformation should be applied. Then, the programmer must verify if a number
of specified preconditions hold, and, assuming this is the case, apply a number
of prescribed editing steps. However, checking the preconditions may involve
nontrivial analysis, and the number of editing steps may be significant. There-
fore, automated tool support for refactoring is highly desirable, and has be-
come a standard feature of modern development environments such as Eclipse
(www.eclipse.org) and IntelliJ IDEA (www.jetbrains.com/idea).

* This work has been supported in part by the Defense Advanced Research Projects
Agency (DARPA) under contract No. NBCH30390004.

H. Riis Nielson and G. Filé (Eds.): SAS 2007, LNCS 4634, pp. 1-17, 2007.
© Springer-Verlag Berlin Heidelberg 2007



2 F. Tip

The main observation of this paper is that, for an important category of refac-
torings related to the manipulation of class hierarchies and types, the checking
of preconditions and computation of required source code modifications can be
expressed as a system of type constraints. Type constraints [17] are a formalism
for expressing subtype-relationships between the types of program elements that
must be satisfied in order for a program construct to be type-correct, and were
originally proposed as a means for expressing type checking and type inference
problems. In our work, a system of type constraints is derived from a program to
reason about the correctness of refactorings. Specifically, we derive a set of type
constraints from a program P and observe that, while the types and class hier-
archy of P constitute one solution to the constraint system, alternative solutions
may exist that correspond to refactored versions of P.

We show how several refactorings for manipulating class hierarchies and types
can be expressed in terms of type constraints. This includes refactorings that:
(i) introduce interfaces and supertypes, move members up and down in the class
hierarchy, and change the declared type of variables, (ii) introduce generics,
and (iii) replace deprecated classes with ones that are functionally equivalent.
Several refactorings! in the Eclipse 3.2 distribution are based on the research
presented in this paper. Our previous papers [22,3,8,1,13], presented these refac-
torings in detail, along with experimental evaluations. This paper presents an
informal overview of the work and uses a running example to show how different
refactorings require slight variations on the basic type constraints model.

2 Type Constraints

Type constraints are a formalism for expressing subtype relationships between
the types of declarations and expressions, and were originally proposed as a
means for stating type-checking and type inference problems [17]. In the basic
model, a type constraint has of one of the following forms:

a=a type a must be the same as type a’
a<a’ type a must be a proper subtype of type a’
a<a’ type a must be the same as, or a subtype of type a’
a<a; or - or a<ay a<a; must hold for at least one 7, (1 < i < k)
Here, «, o, ... are constraint variables that represent the types associated

with program constructs. In this paper, M denotes a method (with associated
signature and type information), F' denotes a field, C' denotes a class, I denotes
an interface, T denotes a class or an interface, and E denotes an expression.
Constraint variables are of one of the following forms:

T a type constant [F] the declared type of field F
[E] the type of an expression E Decl(M) the type in which method M is declared
[M] the declared return type of method M Decl(F) the type in which field F is declared

! This includes the EXTRACT INTERFACE, GENERALIZE DECLARED TYPE, and INFER
GENERIC TYPE ARGUMENTS refactorings presented in this paper, among others.
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program construct [ implied type constraint(s) ]
assignment E; = E» [E2]<[E\] (1)
method call E.m(E;,---,E,) [Ecm(EL, -, En)]=[M] (2
to a virtual method M [Ei]<[Param(M, 1)) (3)
where RootDefs(M) = { My, -, My } [E]<Decl(M,) or --- or [E]<Decl(My) (4)
access E.f to field F [E[‘fgjg;c[ll(?}’) Eg;
return E in method M [E1<[M] (7)
M7 overrides M, [Param(M’, i)]=[Param(M, i)] (8)
M £ M M) <[M] (9)
F" hides F Decl(F")<Decl(F) (10)
constructor call new C(Ey,---, E,,) [new C(E:,---,E,)]=C (11)
to constructor M [E;]<[Param(M, )] (12)
direct call [E-m(EL, -, En)]=[M] (13)
E.m(E:1,---,E;) [Ei]<[Param(M, i)] (14)
to method M [E]<Decl(M) (15)
implicit declaration of this in method M [this]=Decl(M) (16)

Fig.1l. Type constraints for a set of core Java language features

Type constraints are generated from a program’s abstract syntax tree in a
syntax-directed manner, and encode relationships between the types of decla-
rations and expressions that must be satisfied in order to preserve type correct-
ness or program behavior. Figure 1 shows rules that generate constraints from
a representative set of program constructs.

For example, rule (1) states that, for an assignment E; = Es, a constraint
[E2]<[E7] is generated. Intuitively, this captures the requirement that the type of
the right-hand side F> be a subtype of the type of the left-hand side E; because
otherwise the assignment would not be type correct. In the rules discussed below,
Param(M, i) denotes the i-th formal parameter of method M. For a call E.m(- - )
to a virtual method M, we have that: the type of the call-expression is the
same as M’s return type (rule (2)?), the type of each actual parameter must
be the same as, or a subtype of the corresponding formal parameter (rule (3)),
and a method with the same signature as M must be declared in [E] or one
of its supertypes (rule (4)). Rule (4) determines a set of methods M, ---, M
overridden by M using Definition 1 below, and requires [E] to be a subtype of
one or more® of Decl(M),---, Decl(My). In this definition, a virtual method M
in type C overrides a virtual method M’ in type B if M and M’ have identical
signatures and C' is equal to B or C' is a subtype of B.

Definition 1 (RootDefs). Let M be a method. Define:
RootDefs(M) = { M'| M overrides M', and there ezxists no
M" (M" # M') such that M overrides M" }

2 Rules (2), (5), (13), (11), and (16) define the type of certain kinds of expressions.
While not very interesting by themselves, these rules are essential for defining the
relationships between the types of expressions and declaration elements.

3 In cases where a referenced method does not occur in a supertype of [E], the
RootDefs-set defined in Definition 1 will be empty, and an or-constraint with zero
branches will be generated. Such constraints are never satisfied and do not occur in
our setting because we assume the original program to be type-correct.



4 F. Tip

Changing a parameter’s type need not affect type-correctness, but may affect
virtual dispatch (and program) behavior. Hence, we require that types of corre-
sponding parameters of overriding methods be identical (rule (8)). As of Java 5.0,
return types in overriding methods may be covariant (rule (9)). Rule (16) de-
fines the type of a this expression to be the class that declares the associated
method. The constraint rules for several features (e.g., casts) have been omitted
due to space limitations and can be found in our earlier papers.

3 Refactorings for Generalization

Figure 2 shows a Java program that was designed to illustrate the issues posed by
several different refactorings. The program declares a class Stack representing a
stack, with methods push (), pop(), and isEmpty () with the expected behaviors,
methods moveFrom() and moveTo() for moving an element from one stack to
another, and a static method print () for printing a stack’s contents. Also shown
is a class Client that creates a stack, pushes the integer 1 onto it, then creates
another stack onto which it pushes the values 2.2 and 3.3. The elements of the
second stack are then moved to the first, the contents of one of the stacks is
printed, and the elements of the first stack are transferred into a Vector whose
contents are displayed in a tree. Executing the program creates a graphical
representation of a tree containing, from top to bottom, nodes 2.2, 3.3, and 1.

3.1 EXTRACT INTERFACE

One possible criticism about the code in Figure 2 is the fact that class Client
explicitly refers to class Stack. Such explicit dependences on concrete data struc-
tures are generally frowned upon because they make code less flexible. The Ex-
TRACT INTERFACE refactoring aims to address this issue by introducing an in-
terface that declares a subset of the methods in a class, and updating references
in client code to refer to the interface instead of the class wherever possible.
Let us assume that the programmer has decided that it would be desirable to
create an interface IStack that declares all of Stack’s instance methods, and
to update references to Stack to refer to IStack instead, as shown in Figure 3
(code fragments changed by the application of EXTRACT INTERFACE are under-
lined). Observe that s1, s3, and s4 are the only variables for which the type has
been changed to IStack. Changing the type of s2 or s5 to IStack would result
in type errors. In particular, changing s5’s type to IStack results in an error
because field v2, which is not declared in IStack, is accessed from s5 on line 45.

Using type constraints, it is straightforward to compute the declarations that
can be updated to refer to IStack instead of Stack. Figure 4(a) shows some of
the type constraints generated for declarations and expressions of type Stack in
the program of Figure 2, according to the the rules of Figure 1. It is important
to note that the constraints were generated after adding interface IStack to the
class hierarchy. Now, from the constraints of Figure 4(a), it is easy to see that
Stack<[s2]<[s5]<Stack and hence that the types of s2 and s5 have to remain
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[1] class Client {

[2] public static void main(String[] args){
[3] Stack sl = new Stack();

[4] s1.push(new Integer(1));

(5] Stack s2 = new Stack();

6l s2.push(new Float(2.2));

[71 s2.push(new Float(3.3));

(8] s1.moveFrom(s2);

[9] s2.moveTo(s1);

[10] Stack.print(s2);

[11] Vector vl = new Vector(); /* Al x/
[12] while (!s1.isEmpty()){

[13] Number n = (Number)si.pop();
[14] vi.add(n);

[15]

[16] JFrame frame = new JFrame();

[17] frame.setTitle("Example");

[18] frame.setSize (300, 100);

[19] JTree tree = new JTree(vl);

[20] frame.add(tree, BorderLayout.CENTER);
[21] frame.setVisible(true);

[22] }

[23] }

Fig. 2. An example program. The allocation sites for the two Vector objects created
by this program have been labeled Al and A2 to ease the discussion of the REPLACE

CLASS refactoring in Section 5.

class Client {

public static void main(String[] args){
IStack s1 = new Stack();
s1.push(new Integer(1));
Stack s2 = new Stack();
s2.push(new Float(2.2));
s2.push(new Float(3.3));
s1.moveFrom(s2);
s2.moveTo(s1);
Stack.print(s2);
Vector vl = new Vector();
while (!s1.isEmpty()){
Number n = (Number)si.pop();
vi.add(n);
}
JFrame frame = new JFrame();
frame.setTitle("Example");
frame.setSize (300, 100);

frame.add(tree, BorderLayout.CENTER);
frame.setVisible(true);

¥

new JTree(vl);

interface IStack {

public
public
public
public
public

Object pop();

void moveFrom(IStack s3);
void moveTo(IStack s4);
boolean isEmpty();

void push(Object o); }

}

[24] class Stack {

[25] private Vector v2;

[26] public Stack(){

[27] v2 = new Vector(); /* A2 */

[28]

[29] public void push(Object o){

[30] v2.addElement (o) ;

(311 }

[32] public Object pop(){

[33] return v2.remove(v2.size()-1);
[34]

[35] public void moveFrom(Stack s3){
[36] this.push(s3.pop());

(371

[38] public void moveTo(Stack s4){

[39] s4.push(this.pop());

[40]

[41] public boolean isEmpty(){

[42] return v2.isEmpty();

[43]

[44] public static void print(Stack s5){
[45] Enumeration e = s5.v2.elements();
[46] while (e.hasMoreElements())

[47] System.out.println(e.nextElement());
[48]

[a91 }

class Stack implements IStack {

private Vector v2;
public Stack(){
v2 = new Vector();

public void push(Object o){
v2.addElement (o) ;

public Object pop(){
return v2.remove(v2.size()-1);
}
public void moveFrom(IStack s3){
this.push(s3.pop());

public void moveTo(IStack s4){
s4.push(this.pop());

public boolean isEmpty() {
return v2.isEmpty();

public static void print(Stack s5){
Enumeration e = s5.v2.elements();
while (e.hasMoreElements())
System.out.println(e.nextElement());

Fig. 3. The example program of Figure 2 after applying EXTRACT INTERFACE to class
Stack (code fragments affected by this step are underlined), and applying GENERALIZE
DECLARED TYPE to variable tree (the affected code fragment is shown boxed)



