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FOREWORD

This volume contains the contributions of the participants to the second meeting
on Stochastic Analysis and Related Topics, held in Silivri from July 18 to July 30,
1988, at the Nazim Terzioglu Graduate Research Center of University of Istanbul.

The first week of the meeting was devoted to the following lectures :

- Short Time Asymptotic Problems in Wiener Functional Integration Theory.

Applications to Heat Kernels and Index Theorems, by S. Watanabe (Kyoto,
Japan).

- Applications of Anticipating Stochastic Calculus to Stochastic Difterential
Equations, by E. Pardoux (Marseille, France).

- Wave Propagation in Random Media, by G. Papanicoiaou (Courant
Institute, New York, USA).

The lecture notes are presented at the beginning of the volume. We regret the
absence of the lecture notes by G. Papanicolaou, who was too overloaded at the
time. The presentation of the papers contributed to the volume ranges from the
construction of new distribution spaces on the Wiener space to large deviations
and random fields.

We would herewith like to thank the Scientific Direction of the ENST for its
support in the preparation of the meeting and the present volume.

During the year of this meeting we lost our dear friend and colleague Michel
METIVIER ; we are dedicating this volume to his memory.

H. KOREZLIOGLU A.S. USTUNEL
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SHORT TIME ASYMPTOTIC PROBLEMS IN WIENER FUNCTIONAL INTEGRATION
THEORY. APPLICATIONS TO HEAT KERNELS AND INDEX THEOREMS.

Shinzo Watanabe

Department of mathematics, Kyoto University

INTRODUCTION.

Since the Wiener measure space was introduced by N. Wiener in
1923, a rigorous theory of path space integrals has been developed
with many interesting applications to mathematics and mathematical
physics. Especially, the Feynman-Kac formula was established by M.
Kac and It was applied to several problems in the spectral theory
of Schrodinger operators and potential theory. I[f we want to extend
Kac's theory to curved Riemannian spaces, we need to make use of an
important stochastic calculus on the Wiener space, that is, Ito's
stochastic calculus. Indeed, such important notions as Brownian
motions and stochastic moving frames on Riemannian manifolds can be
constructed by solving Ito's stochastic differential equations.

The main purpose of my lecture is to discuss this probabilistic
approach by the Wiener functional integration to obtain short time
asymptotics of traces (supertraces) of heat kernels. It is well-
known that many important problems in analysis, geometry and
mathematical physics, such as asymptotics of eigenvalues of the
Laplacian, Index theorems, fixed point formulas, Morse inequalities

for Morse functions, Poincare-Hopf index theorem for vector fields

and so on are essentially related to this problem of estimating
traces of heat kernels. The method of Wiener functional integration

consists of first representing the heat kernels by integrals of



certain Wiener functionals and then study the asymptotics of
functionals by probabilistic technigques. There is however a
crucial difficulty in this approach. Heat kernels, i.e. fundamental
solutions of heat equations, can not be represented by an ordinary
expectation of Wiener functionals but by a conditional expectation,
which, in a standard theory of probability., i3 defined in almosi
everywhere sense. Thus an disintegration theory, i.e. a refinement
of conditional expectations, is needed in this approach. One
approach given so far is to use pinned diffusion, or tied-down
diffusion processes. But the very definition of tied-down diffusion
involves fundamental solution of heat equation in essential way so
a kind of tautology occurs and some analytical knowledge of heat
kernels is inevitable in this approach. Here we appeal to the
Malliavin calculug for this disintegration problem. Namely.vwe
introduce a family of Sobolev spacec of Wiener functionals by
refining the usual family of Lp—spaces. Among these Wiener
functinals are generalized Wiener functionals, an analogue of
Schwartz distributions over the Wiener space. Similarly as in the
Schwartz distribution theory, we can generalize the notion of
expectations to these generalized Wiener functional. Using these
notions , the disintegration problem for Wiener functional
integration can be well discussed. Very roughly, our approach
systematically used in this lecture may be described as follows.

We represent the quantity p(g) (typically a heat kernel or the
trace of a heat kernel) for which we would estimate the asymptotic
with respect to the parameter € as Pp(E)=E(®d(€)) by a generalized

Wiener functional expectation of a generalized Wiener functional

e . We decompose ®(g) as ®(g) = 01(8) + 02(5) in such a way
that for 02(8). we can estimate its Sobolev norm and thereby show
that it is negligible, secondly & (g) is a generalized Wiener

1

functional having a rather simple structure so that we can manage to



compute the generalized expectation E(®1(S)> explicitly.

Finally, we explain the content of this lecture. In §1, we
review the fundamental concepts and results in the Malliavin
calculus; the Sobolev spaces of Wiener functionals and differential
calculus defined on them, pull-back cof Schwartz distributions by
finite dimensional non-degenerate Wiener maps, dependence on
parameters, especially, the asymptotic expansion of Wiener
functionals and so on. In §2. we discuss the application of the
Malliavin calculus to lto functionals, an important case of Wiener
functionals defined by solutions of stochastic differential equations.
To illustrate our method, we reproduce in §3 some results of McKean-
Singer [30] for heat kernels on a compact Riemannian manifold with
and without boundary. In §4, we give a proof of index theorems by

our probabilistic method.

§1. A survey of the Malliavin calculus

1.1 Sobolev spaces of Wiener functionals and generalized Wiener

functionals.

Let (WS,P) be the r-dimensional Wiener space:
r r
Wo = € weC(ro,11-R H; weo)=0 )
endowed with the supremum norm and P is the standard Wiener measure
on wg. Wg is denoted simply by W in the sequel. We restrict
ourselves to the Wiener space with the time interval (0,11 just

because of simplicity and that it is sufficient in the problems
discussed here.

By a Wiener functional, we mean a P-measurable function on W,
more precisely, an equivalence class of P-measurable functions
coinciding with each other P-almost surely. Let Lp,l$p<°. be the

usual Lp—space of real-valued Wiener functionals with the Lp—norm



nn_. If we set
p

(1.1) L L

= N,
- I<p<¢= “p’

then L__  1is a Frechet space and it is an algebra, i.e. if f, g €

L__, then f-g € L_ . Its dual is clearly’ L More

1+ = lYp<w Lp'
generally, if E is a real separable Hilbert space, we denote by
Lp(E) the real Lp-space of E-valued Wiener functionals and by

I ﬂp gr or simply by | ﬂp when there is no confusion, the norm of

L (E). Thus L _(R)= L . L (E) and L. (E) are defined
p P p s 1+

similarly.
Let H be the Cameron-Martin Hjlbert subspace of W formed of
all w € W which are absolutely continuous in t€[0,1)] with square

integrable derivatives and endowed with the norm

2 _ P1,dw 2
(1.2) wly, = fo'dt!(‘) dt

We identify the dual H' of H with H by the Riesz theorem and
then W'g H'= H S v where S denotes the continuous inclusion.

For h € H, define [hl(w)€ L2 by the usual Wiener integral

1 r 1 o
(1.3) [hl(w) = %%(s)-dw(s) =3 %% (s)dw%(s)
0 a=1"0
Then ([hl(w); h€H) (c L2) is a mean zero Gaussian system with the

covariance E([h]l(w):-[h']l(w)) = <h,h"> A Wiener functional

W
F(w) is called a polynomial functiopal if there exist a real

polynomial p(t ..,t ) and h .,h_ € H such that

1" n 1° n

F(w) = p([hll(v).....[hn](w)).

The totality of polynomial functionals is denoted by P. Clearly
P c L@_ and this inclusion is dense. More generally, given a
separable Hilbert space E, an E-valued polynomial functional F(w)
is any E-valued Wiener functional expressible in the form of a
finite sum F(w)= X F,(w)e,, F €P, e €E. The totality of E-

valued polynomial functionals is denoted by P(E). Then



P(E)cL__(E) and the inclusion is dense. Now L2(E) is a
Hilbert space and is decomposed into a direct sum of mutually

orthogonal subspaces of Wiener's homogeneous chaos:

(1.4) L. (E) =C.(E)® C. (E) ® ... & C_(E) &
2 0 1 n

The projection of LZ(E) onto Cn(E) is denoted by Jn. 1f
FEP(E) then JnFEP(E) and F = 3 J,F is actually a finite sum.
Therefore, operators L and (l—L)S. s€R, from P(E) into itself

can be defined by

_ _ o1y S o s
LF = 2n< nJ F and (I-L)°F Zn(l*n) I F
For 1<p(= and s € R, define a norm | Hp g (denoted also by
I “p,s;E to make the value space clear) by

s/9
(1.5) HEN = H(I-L)b/‘FH o is the L -norm of L _(E))
pP,s p P P p

’

These norms have the following basic properties

(i)(monotonicity)

HFHp’S < HFHP,,S. for any FeP(E) if p<p' and s<s'

(ii)(compatibility) I1f (F.}) ¢ P(E) satisfies TF -F_I - 0
n n m p,s
as n,m » ® and IF I | > 0 as n -+ @ then [IF |l -+ 0 as
np,s np,s

n - =,
(1ii)(duality) For G € P(E) and 1<p<=, s€R,

“G"p,s = sup( IW <G(w),F(w)>E P(dw) ; F € P(E), "an,—s < 1)

-1, -1
where p + q = 1.
Let DZ(E) be the completion of P(E) with respect to | Hp s

Then the above properties of the norm imply the following:

0 =
(1.6) D (E) = L (E)

s’ S ¢
. ' <p"' <s '
(1.7) Dp (E) § DP(E) if p<p and s<s



(1.8) D;(E) =D %E), p +aqa =1.

Thus an element in D:(E) for s20, being an element in Lp(E), is
a Wiener functional in the usual sense, but some elements in D;(E)
for s<0 are no longer so but a kind of Schwartz distribution on the
Wiener space. We call such elements as generalized Wieper

i Mepem D (E) and D™(E) =

Us)O Ul(p(@ D;S(E). Again we denute them simply by D” and D
when E = R.

functionals. Wwe set D”(E)

—®

Let El and E2 be real separable Hilbert spaces. For any
p,a € (1,») and k = 0,1,2,... such that p '+ q ! = r lc,
there exists a positive constant Cp 3. K such that
(1.9) lIF@GIIr'k;EleE2 < Cp.q,k "F"p.k;EluG"q.k;Ez

k K
for every F € Dp(El) , G € Dq(EZ}
From this it follows that D is an algebra i.e. if F, G € D7
then F-G € D”.  More generally, if F € D” and G € DT (E),
then F:G € D"(E). Thus DT(E) is a DT-module. Also, if

FeD” and ¢ € D "(E), then F:® € D "(E) is defined by

(1.10)  <F-®, G> = <b, F-G> for every G € DT(E),
where < , > is the canonical bilinear form on D ~(E) x DY (E)
Thus D (E) is also a D%-module. The continuity of this

multiplication is more precisely stated in the following inequality

which immediately follows from (1.9): For every p,q € (l,®) such
that p'l+ = vl and k = 0,1,2,..., there exists a positive
constant C° such that
p,2,k
L1 IF- < C' =
(1.1 Q“r.-k;E C p,q,k"F"p,kumnq,~k;E

for every F € D: and ©® € D;k(E).

If 1 is the Wiener functional taking the constant value 1, then



clearly 1 € D%. For ¢ € D™, the natural coupling <®,1> is

denoted by E(®) and called the generalized expectation of &.

1f & € Ll* c D-a. E(®) coincides with the ordinary expectation
fw¢(w)P(w). Note that for every F € D and ¢ € D™, the
generalized expectation E(F-®) coincides with the natural coupling

<F,®>. It is clear from the definition that

(1.12)  |E@) | < const.iol if o€ D;k. I<p<, k = 1,2,...

, -k
For F € P(E), its Frechet derivative DF(w) € P(H®E) is

defined by

(1.13)  DF(w) (h) 51!1521;54!1

= llme¢0

(Note that H®E 1is the Hilbert space formed of all linear opertors
H -+ E of the Hilbert-Schmidt type endowed with the Hilbert-Schmidt
norm) . If G € P(H®E) is such that it is expressed in the form of

a finite sum

(1.14) G(w)= 2 j(w)'hieej. G..€e P, h.€ H, ejeE

i.jGi
where hi e ej € H® E is defined by

(hle ej)(h) = (h.hi>
we define [G]l € P(E) by

H € ¢

(1.15) [Gl(w) = Ei'jGij(w)'[hi](w)~ej

In the expression (1.14), we may assume without loss of generality
that (hi) c H are orthnormal and then trace DG € P(E) is given

by

(1.16) trace DG(w) = 2. DG, .(w)(h. )-e,
i, j i i J

We define, for G € P(H®E) expressible in the form (1.14),

D*G € P(E) by

(1.17) D*G(w) = -trace DG(w) + [G](w)



By an integration by parts in a finite dimensional Gaussian measure

integration, we can prove that

P(dw)

(1.18) <DF(w), G(w)> P(dw) = I <F(w), D*G(w))
W H8E E

W

for F € P(E) and G € P(H®E) of the form (1.14).

Also, for F € P(E), DF € P(H®E) is always expressible in the

form (1.14) and it holds that
(1.19)  LF(w) = -D*(DF)(w)

It is an important result of Meyer that the operator
D : P(E) » P(HSE)
is uniquely extended to a linear operator
D : D T(E) » D T (HOE)

which is continuous in the sense that its restriction DS;l(E) -
D:(H@E) is continuous for every p € (l,») and s € R.
Consequently by taking the dual, the operator D* defined by
(1.17) on G of the form (1.14) is uniquely extended to a linear

operator D_Q(HeE) + D™®(E) which is continuous in the sense

that its restriction Dsgl(HGE) - D:(E) is continuous for every
p € (1,») and s € R. Actually D* is the dual of D. By
the definition of the Sobolev spaces, it is clear that L is

uniquely extended to a linear operator D ~(E) » D "(E) such that
its restriction DSSZ(E) -+ D:(E) is continuous for every p €

(1,=) and s € R. Furthermore, (1.19) holds. Also (1.18) can
be extended obviously in the context of Sobolev spaces. Finally

we remark another important result of Meyer that the norm HFﬂp K:E

for 1<p<= and k = 0,1,2,..., is equivalent to the norm

k i i 5
zi=0nDanp;H8H8...eH8E : For details of the above facts and
the chain rules of D, D" and L, cf. (313,(37],([40).



1.2 Pull-back of Schwartz distributions and disintegration of
Wiener functional integration
Let F : W = Rd be a d-dimensional Wiener functional. It is

said to be smooth jn the sense of Malliavin if F € Dw(Rd), i.e.

F= (' ....F) with F! € D°. 1In this case
i - i J @ Lo
(1.20) o “(w) = <DF (w),DF (w))HeD, i,ji=1,....,d
The Wiener functional o = OF = (aij) with values in nonnegative

definite symmetric dxd-matrices is called the Malliavin covariance

of F. F is said to be nondegenerate in the sense of Malliavin if
-1 B
(1.21) [det o(w)] €L _ = nl(p(mLp
In this case vy = (v'd)= 07! satisfies v e D”.

Suppose that we are given F € Dm(Rd) satisfying the
nondegeneracy condition (1.21). We show that every Schwartz
distribution T(x) on Rd can be lifted or pulled-back to a

generalized Wiener functional T<F (denoted also by T(F)) itn D

under the Wiener map F : W = Rd. For this we introduce the

following family of real Banach spaces of functions and generalized
functions on RY. Let V(Rd) be the real Schwartz space of

rapidly decreasing c”-functions on Rd and set

tol,, = taaslxl®-m% 1. e e v®H, k= o0,51,22,. 0,
. d i,2
where | IIco is the supremum norm and A = zi=1<a/ax ). Let
72k be the completion of 9(Rd) by the norm | "2x' Then we
have
¢RYy ¢ cJ,. cJ3 c7 c c ¢ RY
S - 5§7,5§7,57.,5 -5
and 70 = C(Rd):= the Banach space of all real continuous functions
on Rd tending to 0 at infinity endowed with the supremum norm.
@ _ d © . _ , d
Furthermore Me=17 2k = ¢((R™) and U, T .. =Y (R™).
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THEOREM 1.1 (r151,0401) Let F € D°(RY) be given and satisfy the

non-degeneracy condition (1.21). Then for every p € (1,®) and
k = 0,1,2,..., there exists a positive constant C = Cp.k,F
such that
d
(1.22) ﬂw°FHp'_2ks (o H¢H_2k for all ¢ € $(R™)

(Note that ¢-F € D”.)
Hence the map ¢ € 9(Rd) - @°F € D can be extended uniquely to a

linear map

Tey¢ RY 5> TFeDd”

such that its restriction T €7 , = T°F € D'ﬁk is continuous for
every p € (1,») and Kk = 0,1,2,... In particular, T-°F € D"
@ .-k d
= U '
k=1 n1<p(m Dp for every T € ¢'(R").

T-F, denoted also by T(F), is called the composition of a
Schwartz distribution T € ¢'(RY) and F, or the pull-back of T
under the Wiener map W - Rd. Note that D°° is much smaller

- . ® K ) )
than D and for any G in D%:= A Ul(p(@ Dp , which is much
larger than D°, G-T+.F € D™ is well-defined and hence the

generalized expectation E[G-T+F] is well defined.

Using this notion of the pull-back, the disintegration problem

can be discussed as follows. Suppose that F: W - Rd satisfy the
same assumptions as in Th.1.1. Noting that Sx, the Dirac 6-func-
tion at xERd, is in ,-Zm for mzmo. where my = [d/21+] , we see

from Th.1.1 that, for k = 0,1,2,...
x € RY 5 5 (F) e D 2Mp 2K
X P
Is continuously differentiable 2k-times. Hence, for every G €
DZm +2k

Ul(p(m P 0 '

x € RS o ELG-8 (F)]
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is C?X and therefore it is C~ if G € D™, In particular,

(x) = E[8_(F)1 is a C”-function on RY.  But this (x)

Pe Pp
is the density , with respect to the Lebesgue measure on Rd, of

the law of the d-dimensional Wiener functional F, as is seen from
f q pF(x)w(x)dx = I q w(x)E[Bx(F)]dx = E[I d<p(x)6X<F)dx]
R R R
= E[o(F)1.

In this way we have deduced that the law of F has a Cm—density
if F € Dm(Rd) satisfies the nondegeneracy condition (1.21).
Furthermore, it is easy to see that E[G-éx(F)] is a version of

E[G|F=x]pF(x). Thus, on a set where is positive, the

Pg

conditional expectation of G € D= given F has a smooth version.

1.3 Asymptotic evaluation of (generalized) Wiener functional
expectations.

Let (P(E,wW)) be a family of generalized Wiener functionals
d(e,w) € D T(E) depending on a parameter € € (0,11. We can
speak of its asymptotics as €!0 in terms of Sobolev spaces, e.g.,

we say that

®e,w) = 0eX)  or = 0™ as €10 in D2 (E)
accordingly as
. K .
lim sup H@(S,w)"p /e < = or =0 as E L+ 0O

g Lo »SE

where Kk is some real constant and, here we adopt the convention

that  loce,w == if ®(e,w) ¢ D°(E). Based on this
p,s;E P

notion, it is natural to define that ®(g,w) = O(sk) in D”(E)

as €l0 if ®(g,w) = oe®) in DZ(E) as €l0 for every s>0

and pE(]l,=). Also we say that &(g,w) = O(Ek) in DT(E) as

€l0 if for every s>0 ‘there exists p€(l,») such that

d(e,w) = O(Sk) in Dz(E) as gl Similarly we say that
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d(E,w) = O(Ek) in D% if s>0 exists such that ®(g,w) =

ow®) in D;S(E) for all 1<p<=.

Finally we say that ®(g,w) = O(sk) in

D"(E) as 0 if 0,w = 0®") in D E) as ei0 for

some s>0 and pe€E(l,=). It is easy to see from (1.9) and (1.11)
kK @

that if F(g,w)= O(E™) in D” and G(e,w)= 0(e™ in D (E)
(D”(E)) as !0, then F(g,w) -G(g,w)= O(8k+m) in DT(E) (resp.
D”(E)) as €10. Also if F(g,w)= O™ in D and G(g,w)=
0oe™ in D”(E) as €40 then F(g,w)-G(e,wr= 0™ in D(E)
as €lo0. Furthermore if F(g,w)= O(ek) in D° and o(g,w) =
0(e™ in D ™"(E) ¢ D(E)) as €10 then F(g,w)d(c,wr= ogr™™

in D®(E) (resp.D""(E)) as €40 and if F(g,w)= 0eXy in D

and ®(e,w)= O(E™ in D "(E) as €!0 then F(g,w)  -®(g,w) =

0e®™ in D "(E) as E40. It is easy to see that if

de,w) = 0(eX) in D T(E) as glo

then its generalized expectation satisfies
k

E(®(gE,w)) = O(g") as E€lo0

in the ordinary numerical sense.

We say
F(E,wi~ £ + Ef =+ €2f, + ... in D”(E) as gi0
0 1 2
if fO' fl. f2‘...€ D (E) and for every n,

F(E,w) - [f +Ef +...%e"f 1 = oe™ly in D"(E) as gl0.

Similarly we can define

FE,w)~ £, + gf + ... in D(E) as glo0

and

B(E, W)~ 8 ¢ EF, + ... in D7(E) or in D T(E)

as € 4 0.



