


Smooth Dynamical
Systems

M. C. IRWIN

The Univérsity of Liverpool
Department of Pure Mathematics

1980

ACADEMIC PRESS

. A Subsidiary of Harcourt Brace Jovanovich, Publishers
London New York Toronto Sydney San Francisco



* COPYRIGHT © 1980, BY ACADEMIC PRESS, INC.
ALL RIGHTS RESERVED.
NO PART OF THIS PUBLICATION MAY BE REPRODUCED OR
TRANSMITTED IN ANY FORM OR BY ANY MEANS, ELECTRONIC
OR MECHANICAL, INCLUDING PHOTOGCOPY, RECORDING, OR ANY
INFORMATION STORAGE AND RETRIEVAL SYSTEM, WITHOUT
PERMISSION IN WRITING FROM THE PUBLISHER.

ACADEMIC PRESS, INC. (LONDON) LTD.
24/28 Oval Road, London NW1 7DX

United States Edition published by

ACADEMIC PRESS, INC.
111 Fifth Avesue, New York, New York 10003

British Library Cataloguing in Publication Data

Irwin, M C .
Smooth dynamical systems. — (Pure
and applied mathematics).

1. Differential equations
1. Title 1II. Series
515'.35 QA371 80-40031

ISBN 0-12-374450-4

PRINTED BY J. W, ARROWSMﬁ'H LTD., BRISTOL, ENGLAND



Preface

In 1966 I began teaching a third year undergraduate course in the
geometric theory of differential equations. This had previously been given
by my friend and colleague Stewart Robertson (now of Southampton
University). We both felt that no modern text book really covered the
course, and we decided to collaborate in writing one. We had in mind

_ something very simple, with plenty of pictures and examples.and with clean
proofs of some nice geometric results like the Poincaré-Bendixson theorem,
the Poincaré-Hopf theorem and Liapunov’s direct method. Unfortunately,
over the years, this book stubbornly refused to materialize in a publishable
form. I am afraid that I was mainly responsible for this. I became increas-
ingly interested in detailed proofs and in presenting a coherent development
of the basic theory, and, as a result, we lost momentum. Eventually two
really excellent introductions (Arnold [1] and Hirsch and Smale [1])
appeared, and it is to these that one would now turn for an undergraduate
course book. The point of this piece of history is to emphasize the very
considerable contribution that Professor Robertson has made to the present
book, for this has developed out of our original project. I am very happy to
have the opportunity of thanking him both for this and also for his help and
encouragement in my early years at Liverpool.

The book that has finally appeared is, I suppose, mainly for postgraduates,
although, naturally, I should like to foist parts of it upon undergraduates as
well. I hope that it will be useful in filling the gap that still exists between the

L3 . 3
above-mentioned text books and the research literature. In the first six
chapters, I have given a rather doctrinaire introduction to the subject,
influenced by the quest for generic behaviour that has dominated research in
recent years. I have tried to give rigorous proofs and to sort out answers to
questions that crop up naturally in the course of the development. On the
other hand, in Chapter 7, which deals with some aspects of the rich flowering
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X PREFACE

of the subject that has taken place in the last twenty-odd years, I have gone
in for informal sketches of the proofs of selected theorems. Of course, the
choice of results surveyed is very much a function of my own interests and,
particularly, competence. This explains, for example, my failure to say
anything much about ergodic theory or Hamiltonian systems.

I have tried to make the book reasonably self-contained. I have presup-
posed a grounding in several-variable differential calculus-and a certain
amount of elementary point set topology. Very occasionally results from

.algebraic topology are quoted, but they are of the sort that one happily takes
on trust. Otherwise, the basic material (or, at least, enough of it to get by
with) is contained in various slag heaps, labelled Appendix, that appear at
the end of chapters and at the end of the book. For example, there is a long
appendix on the theory of smooth manifolds, since one of the aims of the
book is to help students to make the transition to the global theory on
manifolds. The appendix establishes the point of view taken in the book and
assembles all the relevant apparatus. Its later pages dre.an attempt to
alleviate the condition of the student who shares my congenital inability to
grasp the concept of affine connection. To make room for such luxuries, I
have, with regret, omitted some attractive topics from the book. In parti-
cular, the large body of theory special to two dimensions is. already well
treated in text books, and I did not feel that I could contribute anything new.
Similarly, there is not much emphasis on modelling applications of the

‘theory, except in the introduction. I feel more guilty about ducking trans-
versality theory, and this is, in part, due to a lack of steam. However, after a
gestation period that would turn an Alpine black salamander green with
envy, it must now be time to stand and deliver.

When working my way into the subject, I found that the books by
Coddington and Levinson [1}, Hurewicz [1], Lefschetz [1], Nemitskij and
Stepanov [1] and, at a later stage, Abraham [1] and Abraham and Robbin
[1] were especially helpful. I should like to express my gratitude to my
colleague at Liverpool, Bill Newns, who at an early stage read several of the
chapters with great care and insight. I am also indebted to Plinio Moreira,
who found many errors in a more recent version of the text, and to Andy du
Plessis for helpful comments on several points. Finally, a special thank-you
to Jean Owen, who typed the whole manuscript beautifuily and is still as
friendly as ever. ’
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Introduction

In the late nineteenth century, Henri Poincaré created a new branch of
mathematics by publishing his famous memoir (Poincaré [1]) on the quali-
" tative theory of ordinary differential equations. Since then, differential
topology, one of the principal modern developments of the differential
- calculus, has provided the proper setting for this theory. The subject has a
strong appeal, for it is one of the main areas of cross-fertilization between
pure mathematics and the applied sciences. Ordinary differential equations
crop up in many different scientific contexts, and the qualitative theory often
gives a major insight into the physical realities of the situation. In the
opposite direction, substantial portions of many branches of pure mathew:
matics can be traced back, directly or indirectly, to this source. )

Suppose that we are studying a process that evolves with time, and that w&
wish to model it mathematically. The possible states of the system in which-
the process is taking place may often be represented by points of a differen-
tiable manifold, which is known as the state space of the model. For example,
if the system is a single particle constrained to move in a straight line, then we
may take Euclidean space R’ as the state space. The point (x, y)€ R?
represents the ‘state of the particle situated x units along the straight line
from a given point in a given direction moving with a speed of y units in that
direction. The state space of a model may be finite dimensional, as in the
. above case, or it may be infinite dimensional. For example, in fluid dynamics
we have the velocity of the fluid at infinitely many different points to take
into account and so the state space is infinite dimensional. It may happen
that all past and future states of the system during the process are completely
determined by its state at any one particular instant. In this case we say that
s$hg process is deterministic. The processes modelled in classical Newtonian
mechanics are deterministic; those modelled in quantum mechanics are not.

In the deterministic context, it is often the caze that the processes that can
take place in the system are all governed by a smooth vector field on the
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2 INTRODUCTION

state space. In classical mechanics, for example, the vector field involved is
just another way of describing the equations of motion that govern all
possible motions of the system. We can be more explicit as to what we mean
by a vector field governing a process. As the process develops with time, the
point representing the state of the system moves along a curve in the state
space. The velocity of this moving point at any position x on the curve is a
tangent vector to the state space based at x. The process is governed by the
vector field if this tangent vector is the value of the vector field at x, for all x
on the curve.

In the qualitative (or geometric) theory, we study smooth vector fields on
differentiable manifolds, focusing our attention on the collection of
parametrized curves on the manifold that have the tangency property
described above. Our hope is that any outstanding geometrical feature of the
curve system will correspond to a significant physical phenomenon when the
vector field is part of a good mathematical model for a physical situation.
This seems reasonable enough, and it is borne out in practice. We complete
this motivational introduction by examining some familiar examples in
elementary mechanics from this viewpoint. The remainder of the book is
more concerned with the mathematical theory of the subject than with its
modelling applications.

I. THE SIMPLE PENDULUM

Consider a particle P of mass m units fixed to one end of a rod of length /
units and of negligible mass, the other end Q of the rod being fixed. The rod
is free to rotate about Q without friction or air resistance in a given vertical
plane through Q. The problem is to study the motion of P under gravity. The
mechanical system that we have described is known as the simple pendulum
and is already a mathematical idealization of a real life pendulum. For
simplicity we may as well take m = = 1, since we can always modify our
units to produce this end. The first stage of our modelling procedure is
completed by the assumption that gravity exerts a constant force on Pof g
units/sec? vertically downwards.

We now wish to find a state space for the simple pendulum This is usually
done by regarding the rotation of PQ about Q as being positive in one
direction and negative in the other, and measuring

(i) the angular displacement 6 radians of PQ from the downwards

vertical through Q, and

(ii) the angular veloc1ty o radians/sec of PQ (see Figure 0.1).

We can then take R? as the state space, with coordinates (6, w).



I THE SIMPLE PENDULUM 3

FIGUREO.1 ¢

The equation of motion for the pendulum is
(0.2) 0" =—gsin 6,

where 0" = d*6/dt*. Using the definition of w, we can replace this by the pair

of first order equations
' 9 =w,

0.3) w'=~gsin6.
A solution of (0.3) is a curve (called an integral curve) in the (8, w) plane
parametrized by ¢ If the parametrized coordinates of the curve are
(6(t), w(t)) then the tangent vector to the curve at time ¢ is
(w(?), —g sin 8(¢)), based at the point (6(¢), w(¢)). We get various integral
curves corresponding to various initial values of 6 and w at time =0, and
these curves form the so-called phase portrait of the model. It can be shown
that the phase portrait looks like Figure 0.4. One can easily distinguish five

4 w
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4 INTRODUCTION

types of integral curves by their dissimilar appearances. They can be
interpreted as follows:
(a) the pendulum hangs vertically downwards and is permanently at rest,
(b) the pendulum swings between two positions of instantaneous rest
equally inclined to the vertical,
(c) the pendulum continually rotates in the same direction and is never at
rest,
(d) the pendulum stands vertically upwards and is permanently at rest,
(e) the limiting case between (b) and (c), when the pendulum takes an
infinitely long time to swing from one upright position to another.
The phase portrait in Figure 0.4 has certain unsatisfactory features.
Firstly, the pendulum has only two equilibrium positions, one stable
(downwards) and one unstable (upwards). However, to each of these there
correspond infinitely many point curves in the phase portrait. Secondly,
solutions of type (c) are periodic motions of the pendulum but appear as
nonperiodic curves in the phase portrait. The fact of the matter is that unless
we have some very compelling reason to do otherwise we ought to regard
0 =6, and 8 = 0,+2m as giving the same position of the pendulum, since
there is no way of instantaneously distinguishing between them. That is to
say, the configuration space, which is the differentiable manifold represent-
ing the spatial positions of the elements of the mechanical system, is really a
circle rather than a straight line. To obtain a state space that faithfully
describes the system, we replace the first factor R of R = R x R by the circle
$', which is the real numbers reduced modulo 2. Keeping 8 and w as our
parameters, we obtain the phase portrait on the cylinder S*x R shown in
Figure 0.5.

90

FIGURE 0.5



II A DISSIPATIVE SYSTEM 5

Consider now the kinetic energy T and the potential energy V of the
pendulum, given by T'(6, w) = 1w? and V(6, w)=g(1 —cos §). Writing E =
T+ V for the fotal energy of the pendulum, we find that equations (0.3)
imply that E' = 0. That is to say E is constant on any integral curve. In view
of this fact, the mechanical system is said to be conservative or Hamiltonian.
In fact, in this example, the phase portrait is most easily constructed by
determining the level curves (contours) of E. A pleasant way of picturing the
role of E (due to E. C. Zeeman) is to represent the state space cylinder
S'x R as a bent tube in Euclidean 3-space and to interpret E as height. This
is illustrated in Figure 0.6. The two arms of the tube contain solutions

R
------- J oo
3
B EEEEE—
929
%0

FIGURE 0.6

corresponding to rotations of the pendulum in opposite directions with the
same energy E, with E >2g, the potential energy of the unstable equili-
brium.

The stability properties of individual solutions are apparent from the
above picture. In particular, any integral curve through a point that is close
to the stable equilibrium position A remains close to A at all times. On the
other hand, there are points arbitrarily close to the unstable, equilibrium
position B such that integral curves through them depart from a given small
neighbourhood of B. Note that the energy function E attains its absolute
minimum at A and is stationary at B. In fact it has a saddle point at B.

II. A DISSIPATIVE SYSTEM

The conservation of the energy E in the above exampie was due to the.
absence of air resistance and of friction at the pivot Q. We now take these
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forces into account, assuming for simplicity that they are directly propor-
tional to the angular velocity. Thus we replace equation (0.2) by

0.7 . @"'=—gsinf—al'.

for some positive constant a, and (0.3) becomes
' =w,

0.8)

w'=—gsin 6 —aw.

We now find that E’ = —aw? is negative whenever  # 0. Thus the energy is
dissipated along any integral curve, and the system is therefore said to be
dissipative. If, as before, we represent E as a height function, the inequality
E’<0 implies that the integral curves cross the (horizontal) contours of E
downwards, as shown in Figure 0.9,

FIGURE 0.9

The reader may care to sketch dissipative versions of Figures 0.4 and 0.5.
Notice that the stable equilibrium is now asymptotically stable, in that nearby
solutions tend towards A as time goes by. We still have the unstable
equilibrium B and four strange solutions that either tend towards or away
from B. In practice we would not expect to be able to realize any of these
solutions, since we could not hope to satisfy the precise initial conditions
needed, rather than some nearby ones which do not have the required effect.
(One can, in fact, sometimes stand a pendulum on its end, but our modelisa
poor one in this respect, since it does not take ‘“limiting friction” into
account.)

A comparison of the systems of equations (0.3) and (0.8) gives some hint
of what is involved in the important notion of structural stability. Roughly
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speaking, a system is structurally stable if the phase portrait remains
qualitatively the same when the system is modified by any sufficiently small
perturbation of the right-hand sides. By qualitatively (or topologically) the
same, we mean that some homeomorphism of the state space maps integral
curves of the one onto integral curves of the other. The existence of systems
(0.8) shows that the system (0.3) is not structural stable, since the constant a
can be as small as we like. To distinguish between the systems (0.3) and (0.8),
we observe that most solutions.of the former are periodic, whereas the only
periodic solutions of the latter are the equilibria. (Obviously this last
properly holds in general for any dissipative system, since E decreases along
integral curves.) The systems (0.8) are themselves structurally stable, but we
do not attempt to prove this fact.

III. THE SPHERICAL PENDULUM

In the case of the simple pendulum, it is desirable, but not essential, to use
a state space other than Euclidean space. With more complicated mechani-
cal systems, the need for non-Euclidean state spaces is more urgent; it is
often impossible to study them globally using only Euclidean state spaces.
We need other spaces on which systems of differential equations can be
globally defined, and this is one reason for studying the theory of differenti-
able manifolds.

" Consider, for example, the spherical pendulum, which we get from the
simple pendulum by removing the restriction that PQ moves in a given plane
through Q. Thus P is constrained to he on asphere of radlus 1 which we may
as well take to be the unit sphere §%={(x, y, z): x>+ y*+2z%=1} in Eucli-
dean 3-space. We use Euler angles 6 and ¢ to parametrize S2, as in Figure
0.10. A

The motion of P is then governed by the second order equations

6" =sin 6 cos 8(¢")*+ g sin 6,
¢"=~-2(cot )6'¢’,
which we replace by the equivalent system of four first order equations
(0.12) 0'=A,
@' =u,
A'=u?sin @ cos 6+ g sin 6,

(0.11)

u'=—2Au cot 4.
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&

FIGURE 0.10

However, since the parametrization of $° by ¢ and ¢ is not even locally
one-to-one at the two poles (0, 0, £1), it is wrong to expect that the four
numbers (6, ¢, A, u) can be used without restriction to parametrize the state
space of the system as R*. They can be employed with restrictions (for
example 0< 8 <, 0<¢ <27) but they do not then give the whole state
space. In fact, the state of the system is determined by the position of P on
the sphere, together with its velocity, which is specified by a point in the
2-dimensional plane tangent to S at P. The state space is not homeomor-
phic to R*, nor even to the product §* x R? of the sphere with a plane, but is
the tangent bundle T'S? of S. This is the set of all planes tangent to > and it is
an example of a non-trivial vector bundle. Locally, TS” is topologically
indistinguishable from R*, and we can use the four variables 8, ¢, A and i as
local coordinates in TS?, provided that (6, ¢) does not represent the north or
south pole of s, _

The system is conservative, so again E' = 0 along integral curves, where
the energy E is now a real function on TS which, in terms of the above local
coordinates, has the form

E(6, ¢, A, ) =A%+ n?sin? 6) + g(1 +cos 6).

Thus every solution is contained in a contour of E. The contour E =0 is
again a single point at which E attains its absolute minimum, corresponding
to the pendulum hanging vertically downwards in a position of stable
equilibrium. The contour E = 2g again contains the other equilibrium point,
where the pendulum stands vertically upright in unstable equilibrium. At
this point E is stationary but not minimal. The reader who is acquainted with
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Morse theory (see Hirsch [1] and Milnor [3]) will know that for 0<c¢ <2g
the contour E~'(c) is homeomorphic to S°, the unit sphere in R*. In any
case, it is not hard to see this by vnsuahzmg how the contour is situated in
TS2. For ¢ >2g, E~(c) intersects each tangent plane to S in a circle, and
thus can be deformed to the unit circle bundle in T'S*. This can be identified
with the topological group SO (3) of orthogonal 33 matrices, for Qhe
position vector of) a point of $> and a unit tangent vector at this. point
determine a right-handed orthonormal basis of R>. Moreover, rather less
obviously (see, for example, Proposition 7. 12 7 of Husemoller [1]), §O(3)is
homeomorphic to real projective space RP’. '
The spherical pendulum is, as a mechanical system, symmetrical about the -
vertical axis / through the point of suspension Q. By this we mean that any
possible motion of the pendulum gives another possible motion if we rotate
the whole motion about / through some angle &, and that, similarly, we get
another possible motion if we reflect it in any plane containing I This
symmetry shows itself in the equations (0.12), for they are unaltered if we
replace ¢ by ¢ + k or if we replace ¢ and u by —¢ and —u. We say that the
orthogonal group O(2) acts on the system as a group of symmetries about
the axis /. Symmetry of this sort is quite common in mechanical systems, and
it can reveal important features of the phase portrait. In this case, for any ¢
with 0<¢ <2g, the 3-sphere E~(c) is partitioned into a family of tori,
together with two exceptional circles. The picture that we have in mind is
Figure 0.13 rotated about the vertical straight line m. This decomposes R®
into a family of tori, together with a circlé (through p and q) and the line m.
Compactifying with a “point at 00" (see the appendix to Chapter 2) turns R*
into a topological 3-sphere and the line m into another (topological) circle.

FIGURE (.13



