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The Fieldof Geography

Piogress in modern geography has brought rapid changes in course work. At the
same time the considerable increase in students at colleges and universities has
brought a heavy and sometimes intolerable demand on library resources. The need
for cheap textbooks introducing techniques, concepts and principles in the many
divisions of the subject is growing and is likely to continue to do so. Much post-
school teaching is hierarchical, treating the subject at progressively more
specialized levels. This series provides textbooks to serve the hierarchy and to
provide therefore for a variety of needs. In consequence some of the books may
appear to overlap, treating in part of similar principles or problems, but at
different levels of generalization. However, it is not our intention to produce a
series of exclusive works, the collection of which will provide the reader with a
‘complete geography’, but rather to serve the needs of today’s geography
students who mostly require some common general basis together with a
selection of specialized-studies.

Between the ‘old’ and the ‘new’ geographies there is no clear division. There is
instead a wide spectrum of ideas and opinions concerning the development of
teaching in geography. We hope to show something of that spectrum in the series,
but necessarily its existence must create differences of treatment as between
authors. There is no general series view or theme. Each book is the product of its
author’s opinions and must stand on its own merits.

University of London, W. B. Morgan
King’s College J. C. Pugh
August 1971



Categorization of test procedures

MEASUREMENT
PROPOSITION
NOMINAL DISCRETE QUANTITY
-Class or category Position in sequence,
ranked
Probability distributions Cox and Stuart (3.3.1)
Binomial (1.9, 2.2.1) Kolmogorov (3.5.1)
Multinomial (2.2.2)
Hypergeometric (2.2.3,
2.3.1)
RANDOMNESS Poisson (2.2.4)
Number of runs (2) (3.1.1)
Number of runs (1) (3.1.2)
Number of runs, linked
pairs (3.1.3)
Wald-Wolfowitz (3.4.1)
Fisher’s exact (2.3.1) Chi-square (rX 2) subsets
Chi-square (2.3.2, 2.5, 2.6, (2.5)
3.5.2) Chi-square (rX 2) regression
Cramer’s coefficient (2.4) (2.5)
Tschuprow’s coefficient Chi-square (rXcX/) (2.6)
INDEPENDENCE (2.4) Log-linear models (2.6)
DEPENDENCE Pearson’s contingency .
ASSOCIATION coefficient (2.4)

Kendall’s phi coefficient
(2.4)

Cross-product ratio (2.4)

Chi-square (rX¢) (2.5)

Chi-square (rXcXI) (2.6) _

Log-linear models (2.6)

EQUALITY OF
' LOCATION

IDENTITY OF
DISTRIBUTION

GOODNESS-OF-
FIT

Sign test (1.9)

Wald-Wolfowitz (3.4.1)

Westenbérg-Mood median
test (3.4.2)

Chi-square (goodness-of-
fit) (3.5.2)

McNemar's test (Ex. 3.7)

" Wilcoxon rank-sum (2.7.1)

Mann-Whitney, U (2.7.2)

Kruskal-Wallis (2.7.3)

Friedman (2.7.4)

Matched-pairs sign test
(3.4.2)

Wilcoxon signed-rank
(3.4.3)

Point symbol maps are discussed in section 2. Line symbol maps and angular
- measurements are discussed in section 3. Numbers in brackets indicate the

article in which the test statistic is discussed in detail.



SCALE

CONTINUOUS QUANTITY

Distribution-free or
not-normal

Von Mises (angular)
Normal

Runs up and down,
Edgington (3.2.1)

Periodicity in runs,
Noether (3.2.2)

Kolmogorov (3.5.1)

Cox and Stuart (3.3.1)

Spearman’s rho (3.3.2)

Daniel’s test for trend
(3.3.2)

Kendall’s tau (3.3.2)

Kendall’s concordance, W
3.32)

t for b coefficient
t for Pearson’s r
cocefficient

Smirnov test (3.4.4)

Kolmogorov test (3.5.1)

Lilliefors test (3.5.1)

Kuiper’s test (angular data)
(3.6.1) .

Mardia’s uniform scores
test (angular data) (3.6.2)

t in 1 and 2 sample cases
F in mult-sample cases

Goodness-of-fit not
needed by assumption

Watson and Williams,
Rayleigh for angles
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