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This book presents results arising from several areas of the
theory of functions and mathematical physics.

The first of these sources, the theory of generalized analytic
(pseudo-analytic) functions of L. Bers [a,b] and I.N. Vekua [a,b] has
been constructed within the framework of a general interest in dif-
ferent generalizations of analyticity. It was established that such
fundamental properties of analytic functions as the argument princi-
ple, the Liouville theorem and so on are inherent in solutions of all
linear elliptic systems of first order with two unknown functions on
the plane. By quasiconformal mappings these systems can be reduced to

the complex Carleman-Bers-Vekua equation
3u + au + bu = 0 (1)

Later the theory of matrix equations (1) was built (W. Wendland [a]).
These equations are extremely important for applications (see §12).

At the same time on Riemann surfaces the Riemann boundary problem
¥ -
F (p) = G(p) F (p) (2)

was studied (A. Grothendieck [a], W. Koppelman [b,c], Yu.L. Rodin
[a,c,p]l, H. Ro6hrl [a,b] and other authors). Main facts of the alge-
braic function theory were related with the theory of singular in-
tegral operators and the classification problem of vector bundles
over Riemann surfaces. Afterwards this theory found fundamental
physical applications (the Riemann problem method of V.E. Zakharov -
A.B. Shabat) in the inverse scattering problem, the integrable sys-
tems theory and the solitons theory. At last, recently generalized
analytic functions were used in these areas too (see M.J. Ablowitz,
D. Bar Yaacov, A.S. Fokas [a], A.S. Fokas, M.J. Ablowitz [a,b], I.M.
Krichever, S.P. Novikov [a], A.V. Mikhailov [a,bl, V.E. Zakharov, S.V.
Manakov [a], V.E. Zakharov, A.V. Mikhailov [a]).

These circumstance stimulated the study of generalized analytic
functions on Riemann surfaces. The work was begun by L. Bers [c]
and was continued by W. Koppelman [c] and the author [d-j,1]. 1In
our book this area is presented systematically for the first time.

Chapter 1 is devoted to the Riemann-Roch theorem and, na-
turally, is enclosed into the general theory of the index of elliptic
operators with corresponding simplifications. In Chapter 2 multi-
valued solutions of equation (1) are studied. It demands to look for

some representations of them. 1In particular, the methods allow to



\"
obtain a direct proof of the Riemann-Roch theorem. In Chapter 5 they
are used to study singular cases and surfaces of infinite genus. 1In
Chapter 3 we expound the Riemann boundary problem and its connections
with the Riemann-Roch and the Abel theorems, the Jacobi inversion
problem and the classification problem for bundles. The main and most
difficult problem of generalized analytic function theory is solved in
Chapter 4. It is known that the Abel problem of the existence of an
analytic function with prescribed zeros and poles on a compact Riemann
surface cannot be solved by pure algebraic methods and demands to use
a transcendental operation - applying the logarithm. In our case it
leads to a nonlinear integral equation. This equation has been a suc-
cess to investigate the problem completely.

At last, in §12 we describe very briefly some approaches to
physical applications. This is a subject of the expository paper of
the author which was published in the journal "Physica D" recently.

The book is addressed to mathematicians and physicists, special-
ists in the theory of functions, differential equations and mathema-
tical physics (field theory, solitions theory and so on). A prelimi-
nary knowledge of the theory of Riemann surfaces and algebraic topo-
logy is not necessary for reading the book.

The author is sincerely thankful to his tutor professor L.I.
Volkoviskii. He was the initiator for the study of the Riemann prob-
lem and generalized analytic functions on Riemann surfaces in the USSR
and directed the author's work during many years. The author is glad
to express his gratitude to Prof. V.E. Zakharov and Prof. A.V.
Mikhailov for numerous fruitful discussions on physical applications
of Riemann surfaces. The author is also grateful to Prof. Dr. W.L.
Wendland whose moral support was decisive and to Prof. Dr. H. Begehr

who edited the manuscript and inserted a number of improvements.
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CHAPTER 1

THE DOLBEAULT AND RIEMANN-ROCH THEOREMS

§ 1. Generalized analytic functions in the disk

A. The operator T

1. Consider the Cauchy-Riemann equations

(2 _2
90X ay
[fﬁ)=0- (1.1)
3
3y ox

Letting u = ¢ + iy and introducing the operators of complex differen-

tiation
5:%:%(%+1%),H:%:%(%—1%), (1.2)
z = X + iy

we rewrite equation (1.1) in the form
du =0 . (1.3)

The corresponding inhomogeneous equation has the form
fu = f . (1.4)

Let G be a bounded domain of the complex z-plane with a sufficiently
smooth boundary 3G , G be its closure and f be a function con-

tinuous in G . Then the general solution of (1.4) has the form

f(t)do
u(z) = F(z) - % {{ ——gjg‘g ’ (1.5)
G
dot = d&dn , t = & + in

Here F(z) 1s an arbitrary analytic function in G

We use the Green formulae in the form



JJ é% doz = é% J gdz ,
¢ 2% 3G
‘| o
” %3 do, = = 31 J[ gdz . (1.6)
G G

Then, for any function of the class C1 in the closed domain G the

well-known formula

do L
u(z) = - + [J 28 €, 1 J wizdge (1.7)
T ) sf t-z  2mi -z
G aG
is valid. Equation (1.7) involves (1.5).
2. Below, (1.4) will be considered for more weak assumptions. In

order to make sure all these formulae are valid for wider function

classes, we describe properties of the operator

f(t)dct

= s (1.8)

TF(z) =—%J

—
> e

This operator belongs to the class of operators of the potential type
(A. Calderon, A. Zygmund [a]). We list the properties of the operator
T following I.N. Vekua [a].

First some Banach spaces are introduced which will be used below.

Let a function f(z) satisfy the HOlder condition
|6z} = £lzy)) € B |z1—z2|°‘, 0 <oac<1, (1.9)
in the closed domain G . Denote
|f(z1)—f(22)|
H(f) = inf H = sup _—s
z,,2.€G lz, -2z, 1%
1792 1 2

Introduce the Banach space Ca(é) of functions satisfying the HOlder

condition with exponent o in G with the norm

[} € Hc @) max [£(z)| + H(f) = Il £ 1l + H(f) . (1.10)

a Z€EG c(G)

Let f € Lp(é) , 0 < a< 1 , be some constant and



B(f) = sup Il £(z+az) - £(z) |l =
|Az | Lp(G)

r

Introduce the Banach space Lp a(é) of functions satisfying the ine-

quality
Il £(z+Az) - £(z) an(é) < B(f) lazl® (1.11)
with the norm
I £ ”Lu(é) = |l £ “L (&) + B(f) (1.12)
P

The set of functions continuous in G together with their partial
derivatives up to the order m inclusive forms the Banach space

Cm(é) with the norm

m k k

NEllg & = 1§ max |— 27—
Cm(G) k=0 £=0 z€G azk 3z

(1.13)

If all partial derivatives satisfy the HOlder condition, we obtain the

space cm,a(G) with the norm

m k k k
‘ AT 2%
e g = L 1 {il—=Z = (=)}t aae

Cm,al® k20 20 U 32577 3z (@) 3% 43t
Theorem 1.1. Let £ € Lo(a) , P> 2 , and

f(t)dot

glz) = 15(2) = - L[] -+
G

Then the following estimations are valid:

lg(z) | < M I E Il @)

P
(1.15)

lg(z,) - glz,)| < M, Il £ HLO(a)I21—22
Hence the linear operator

g G G - B2 >
T: L,(G) » C,(G) , « 5+ P> 2,

is compact and



Il TE ”C = < M|l £ ”L (1.16)

(G) ~

N L (@

Theorem 1.2. If f € Lp(a) ;, 1 < p < 2, then the function
g(z) = T f£(z) belongs to the space LY u(é) , where y 1is an arbi-
r

trary number satisfying the inequality

1<y < f%% . (1.17)

Moreover, the following estimations are valid,

IWTE N, =, <M WEN, = »
LY(G) Py Lp(G)
(fJ lg(z+az) - g(z) 1Y ao )/ <M _ nwEN. = lazl® (1.18)
J 3 ) z TPy L_(G) ! ’
A p
-1 _ 2-p
“=y T 0

This result entails the complete continuity of the operator T map-

ping

T: Lp(é) > L (G , 1<p<2,a-=

2
Q

& [
o=
ST

In the following we understand derivatives in the generalized sense.
The linear set of functions belonging to Cm(é) and having compact
support in G 1is denoted by Cg(G) s

Definition. Let f,g € L,(G) and satisfy the relation

1

[[ 922 a0, + [[ £0a0, -0 (1.19)

G oz G
[JI g %g do, + JJ £odo, =0, (1.19")

G G
respectively)for an arbitrary function ¢ € C?(G) . Then the function

f is said to be the generalized derivative of g with respect to z

(with respect to =z , respectively)

m
I
&

(£ = 29

[oB]
NI



The class of functions possessing generalized derivatives with respect
to z is denoted by DE(G) (DZ(G) , respectively).

The class of functions possessing generalized derivatives belonging
to L is denoted by D1’p(G) .  The Banach space of functions pos-

sessing generalized derivatives of order < m with the norm

£+k<m 8(+kf

”f”D = Z HTQ:—}ZHL (é) (1.20)
z p

m,p'®  e,k=0 oz

is d ted b D G) .
is denote y m,p( )

In the case the derivatives are integrable in the closed domain G

we write D (G) .
m,p

Theorem 1.3. If f = 3 g € L1(é) , then
VA

1 f(t)dot
g(z) = ¢(2) - = JJ %=z (1.21)
G
where ¢ 1is a holomorphic function in G . Conversely, if ¢(z) 1is
a holomorphic function in G and f € L1(é) , then the function
g(z) = ¢(z) + T £(z) € D_(G) and o9Jg = f . If u(z) € C(G) and

Z
d_u € Lp(G) ;, P > 2 , then equation (1.7) is valid.
z

Theorem 1.4. Let f(z) € Cm 0L(C_;) , 0 <a <1, m20 . Then the func-
’ -
tion g(z) = T f(z) belongs to the class Cm+1 a(G) , the operator T
ey r
is completely continuous in the space Cm u(G) and
’
f(t)do
39 _ ¢ , 39 _ n. = - ; JJ _ t (1.22)
= 9z f T 2
9z fe (t-2)

The integral in (1.22) is understood in the sense of the prinicipal
value. The operator I 1is a linear bounded operator in Cm,a(é)
mapping this space into itself. The operator [l can be continued up
to a unitary operator in L2(G) and up to a bounded operator in any
Lp(G) , P >1 . The first formula (1.22) is valid also for f € L1(G).

Consider the operator

BE = 2 JJ 2o, (1.23)
T t=z ) :
G
Theorem 1.5. Let a(z) € Lp(a) , P > 2 . Then the operator (1.23) is
completely continuous in the space C(G) , maps this space into

c(G) , a= p-2 and
Qa P



-~ £
Il PE ”C <M |la HL I £1

L@ T Tp 5@ c(8)

Moreover, this operator is completely continuous in the space Lq(a) .

% < % + % <1, too. If an integer n satisfies the condition
g ¢ 2p Q11
n 1_p_2(+q 2) n ,
then
1 eRe 1 ; SMy oo Mally & NENL &
L. (T) p q
Yk
k =1, 75 0 S
1
e E < M Hall, ,= £, = .,
c, (T ey L (G L (G
B( ) P,g9,a p( ) q( )
where
1 _ 1,k _k _
7; o + = 5 + ko , k =1, ;0
B=1-2 (& n;1+na)+n,

and o 1is an arbitrary number satisfying the inequality

O<a<L2._
2p

S|=
o=
Q=

N =

The reader may find the proofs of these facts and related ones in
the book I.N. Vekua [a] .

B. The Carleman-Bers-Vekua system

1. Obviously, the elliptic system

du + au = 0 (1.24)

is reduced to the inhomogeneous Cauchy-Riemann equation (1.4) by
taking the logarithm. Equation (1.4) entails the representation for

the general solution of (1.24) in the bounded domain G



1 dog
u(z) = o(z)exp = JJ a(t) Tz -
G
Here ¢(z) 1is an arbitrary analytic function in G . In particular,

all zeros and poles of the function wu(z) are determined by the mul-
tiplier ¢(z) . It provides a natural way to define orders of zeros
and poles and to generalize the argument principle.

A more general system than (1.24) is the Carleman-Bers-Vekua (CBV)

system
du = 3u + au + bu = 0 . (1.25)
As a rule, we assume that a,b € Lp(@) , D> 2
The function u(z) is called a solution of the equation (1.25) in
the vicinity G0 of the point 2z, if u € D_(GO) and the equation
z
(1.25) is valid almost everywhere in GO . If ul(z) is a solution of
(1.25) in the vicinity of every point of the domain G , u(z) 1is cal-
led a regular solution of (1.25). If wu(z) 1is a solution of (1.25)

in the vicinity of every point of the domain G except some discrete
set of points G* < G , called singularities, then following I.N. Vekua
[a] such a solution is called a generalized solution. Generalized and
regular solutions of the inhomogeneous equation 3Ju = F , F € Lp(@) ;
p > 2 , are defined in an analogous manner.

By Theorem 1.3 the class of generalized solutions of the Cauchy-
Riemann equation 3du = 0 coincides with the class A*(G) of analytic
functions in the domain G with singularities at the points of G* ;
the class of regular solutions of the Cauchy-Riemann equation coincides

with the class A(G) of functions holomorphic in the domain G .

We denote by K*(a,b,F,G) the class of generalized solutions of
(1.25) such that 3du = - au - bu + F € L, (G)
It is clear that this class contains the class K(a,b,F,G) of regular

solutions and solutions with singularities of order less than two if
the coefficients of the equation at the points of G are bounded. If
a, b, F € Lp(G) , we write K;(a,b,F,G) and Kp(a,b,F,G) , respective-
ly. The union of all classes K;(a,b,F,G) corresponding to all

a, b, F for fixed p 1is denoted by K;(G) (and KP(G), respectively).
For F = 0 we write A;(a,b,G) 7 AE(G) 7 Ap(a,b,G) 7 Ap(G) . All
these notations are due to I.N. Vekua [a].

By Theorem 1.3 these solutions are representable in the form

u - Pu = ¢(z) + TF (1.26)



where
a 1 f(t)dot
Pf=—T(af+bf) ’sz_?JJT, (1.27)
G
and ¢(z) 1is a holomorphic function in G . For F = 0 we obtain
the integral equation
1 — . 99
ulz) - < JJ la(t) u(t) + b(t) u(t)] = - ¢(2) (1.28)

G

for generalized analytic functions.

Let a, b, F € Lp(é) , P > 2 , and the function u(z) in (1.26)
be continuous in G . Then, by Theorem 1.1, the functions Pu and
TF belong to the class Ca(@) , O = Bég , are analytic in the domain
C -G (C is the complex plane) and are equal to zero at infinity.

It entails the representation

_ 1 u(t)dt

$(z) = 50¢ _[ —_ (1.29)
3G

Theorem 1.6. If wu(z) is a regular solution of the equation 3du = F ,

a, b, F € Lp(é) , p>2 ,uc€ Kp(a,b,F,G) , then wu(z) satisfies the

Holder condition, u € Ca(é) , o = E%E
For the proof see I.N. Vekua [a].

2. The following theorem is called the Bers-Vekua similarity principle.

Theorem 1.7. Let u(z) be a generalized solution of (1.25),
u € A;(a,b,G) , P > 2 , and

u(z)

a(z)+b(z) , 2 € GN{G* U {z: u(z) = 0}}
uiz) (1.30)

g(z) =

a(z)+b(z) , z € G* U {z: u(z) = 0}
Then the function

1 da;
©(z) = u(z)exp {- = JJ g(t) E?E} (1.31)
G

is analytic in the domain G~G* , ¢ € A*(G) .
Since g € LO(G) , P > 2 , the right hand side of (1.31) belongs to

D_(G ~G¥*) where G* is the singularities set of the solution wu(z) .
z



Then

3¢ = {u(z)g(z) - au - bulexp {- % JJ g(t) 4 } =0 .
G

almost everywhere in G~G* . This entails the holomorphy of ¢ in
G~G* . In particular, if u(z) is a regular solution, then the
function @(z) is holomorphic in G .

Formula (1.31) involves some consequences. The most important one
is the argument principle: the difference between the numbers of zeros
and poles (taking their orders into account) of a generalized analytic

function in the domain G 1is equal to

1
He = Bg = 37 Pag

arg u(z) . (1:32)
The formulae (1.28), (1.31) were obtained by N. Theodoresco [a,b] ,
Carleman [a,b] , L. Bers [a,b], I.N. Vekua [a,b] .

3. Let us return to the integral equation

[‘ do

u - Pu = u(z) - l” JfJ (a(t)u(t) + b(t)u(t)) t—_—; = g(z) (1.33)
G

for the case a,b € Lp(é) , P > 2 and show that it is solvable for
any right hand side g € Lq(é) i g 2 527

By Theorem 1.5 the operator Pu is completely continuous in the
space Lq(é) r 9 2 EgT . Therefore, it is sufficient to show that the
homogeneous equation

u - Pu =0

has no nontrivial solutions.

Let U, € Lq(é) ¢ g 2 EgT , be a solution of equation (1.33). Then
ug = Pu0 = ... = Pnu0 . By Theorem 1.5 there exists such an n for
which Pnuo € Ca(G) . Hence ug is continuous in G and satisfies
a Holder condition. By Theorem 1.4 the function ug = Puo belongs
to the class D_(@) and, consequently, is a regular solution of the

z
equation
du = 3u + au + bu = 0 .
By formula (1.32) the value 5% AaG arg uO(z) is non-negative and

equal to the sum of the orders of zeros of the function ug in the

domain G . On the other hand, the function



10

u,(z) - Pu.(z)=u,(z) - = (f (a(t)u,(t) + b(t)u,(t)) ESE
0 0'“"=%0 ) 0 0 t-z
G
is holomorphic in the domain C~G and is equal to zero at infinity.
i 1 . . . .
This means that > argaG uo(z) < -1 if uO # 0 . This contradiction
proves that u, = 0

Therefore, any generalized analytic function in the domain G
having poles which orders < 1 is a solution of the integral equation

do

u - Pu = u(z) - % JJ (a(t)u(t) + b(t)u(t)) E:§ = ¢(2) (1.34)
G

where the analytic function ¢(z) and wu(z) have the same poles.

Conversely, if ¢(z) is an analytic function in G continuous in G
up to poles of first order, then ¢ € Lq(@) ‘ EgT £ g < 2 . 1In this
case (1.33) has a solution u € L (é) being a generalized analytic

function in G with poles determined by the function ¢(z).

4. Theorem 1.8. (Poincaré lemma). Let a, b, F € Lp(é) » P> 2 .« Then

the equation Ju = F 1is solvable in any space Lq(é) r gq > EgT :

Consider the equation
u - Pu = TF (1.35)

The function TF € Ca(G) , O = Bég by Theorem 1.1. As it was shown
above, the equation u - Pu = 0 has no non-trivial solutions in
Ca(é) . It entails the unique solvability of equation (1.35). It is
clear, that the solution of (1.35) is a function of the class

x(a,b,F,G) and hence is a regular solution of the equation gu =F .



§ 2. The Carleman-Bers-Vekua System on Riemann surfaces

A. Riemann surfaces

Let M be a closed Riemann surface of genus g . As it is known,
a Riemann surface is a topological Hausdorff space with a complex
structure. The complex structure is determined by the set of simply-
connected coordinate neighborhoods U such that to any point p € M
there belongs at least one coordinate neighborhood. In any coordinate
neighborhood U one defines the local coordinate z(p) , p € U , map-
ping U into the unit disk |z| < 1 of the complex z-plane. If
U N U' 1is not empty, the relations between the corresponding local
coordinates z and z' are analytic in this set and 2z = z(z') ,
z'" = z2'(z) are conformal mappings.

For example, the equation

w = (z-z,) (z-2,) (z-2,) (z-2,) (2.1)

determines a two-sheeted surface over the z-plane. It may be construc-
ted by attaching two copies of z-planes cut along lines connecting
and

the points As it is seen from Figure 1, this

z210 2, Zys 2y
surface is topologically equivalent to a torus.

A compact (closed) Riemann surface is homeomorphic to a sphere with
g handles. For g = 0 we have a sphere, and for g = 1 a torus. A
typical property of all surfaces for g > 0 1is the existence of cyclic
sections, i.e. closed curves not separating the surface (see figure 2).
For any handle there exist two kinds of such oriented sections (for a

torus a parallel and a meridian one).

LT 78 [
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Figure 1
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