Gary J. Minden
Kenneth L. Calvert
Marcin Solarski

Miki Yamamoto (Eds.)

Active Networks

IFIP TC6 6th International Working Conference, IWAN 2004
Lawrence, KS, USA, October 2004
Revised Papers

LNCS 3912

@ Springer

Gary J. Minden Kenneth L. Calvert
Marcin Solarski Miki Yamamoto (Eds.)

Active Networks

IFIP TC6 6th International Working Conference, IWAN 2004
Lawrence, KS, USA, October 27-29, 2004
Revised Papers

@ Springer

Volume Editors

Gary J. Minden

University of Kansas

Information and Telecommunications Technology Center
2335 Irving Hill Road, Lawrence, KS 66045, USA
E-mail: gminden@ittc.ku.edu

Kenneth L. Calvert

University of Kentucky

Department of Computer Science, Laboratory for Advanced Networking
Hardymon Building, 301 Rose Street, Lexington, K'Y 40506-0495, USA
E-mail: calvert @netlab.uky.edu

Marcin Solarski
Deutsche Telekom A.G.Laboratories
Ernst-Reuter-Platz 7, 10587 Berlin, Germany

Miki Yamamoto

Kansai University

Department of Electrical Engineering and Computer Science
3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan

E-mail: yama-m@ipcku.kansai-u.ac.jp

Library of Congress Control Number: 2007923238

CR Subject Classification (1998): C.2, D.2, H.3.4-5, K.6, D.4.4, H4.3

LNCS Sublibrary: SL 5 — Computer Communication Networks and
Telecommunications

ISSN 0302-9743
ISBN-10 3-540-71499-5 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-71499-6 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable

to prosecution under the German Copyright Law.
Springer is a part of Springer Science+Business Media

springer.com

©2007 IFIP International Federation for Information Processing,HofstraBe 3,2361 Laxenburg, Austria

Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper SPIN: 12038831 06/3142 543210

Preface

We are pleased to present to you the proceedings of the sixth Annual Interna-
tional Working Conference on Active Networks, which took place in October 2004
at The Information and Telecommunications Technology Center, The University
of Kansas, USA. The proceedings of IWAN 2004 mark a transition between the
funded active networking programs in Europe, Japan, and the United States and
a strong, continued interest in the architectures of programmable networks.

The technical committee accepted 14 papers for presentation from 32 submit-
ted papers. The papers are organized into sections on active network systems and
architectures, security in active networking, active network applications, mobile
active networks and active network management. Whereas the contributions on
active network architectures and management build upon mature concepts de-
vised in the previous years and are incremental follow-ups of the related research,
the security considerations are of primary importance to the active networks
practitioners. The papers on mobile applications of active networks, like TCP
gateways between wireless and wireline networks, provide additional inspirations
to the active network researchers.

Featured in the program were a keynote address by Jonathan M. Smith of
DARPA and two invited papers, one by Takashi Egawa, Yoshiaki Kiriha, and
Akira Arutaki on “Tackling the Complexity of Future Networks”, and one by
Bernhard Plattner and James Sterbenz, titled “Programmable Networks: Alter-
native Mechanisms and Design Choices”. Based on the reviewer feedback, the
authors of the paper “Dynamic Link Measurements Using Active Components”,
Dimitrios Pezaros, Manolis Sifalakis, Stefan Schmid and David Hutchison, all of
Lancaster University, were awarded this year’s Best Paper Award. During the
two days of the conference there were several lively discussions, including one at
the end of the first day on the scope and future of IWAN itself. The social event,
barbecue at the Circle-S ranch, provided a most enjoyable venue for discussion
and collegiality.

We would like to thank the members of the Program Committee for their
excellent work in reviewing, selecting, and in some cases shepherding papers for
the program. V. Rory Petty and F. “Ted” Weidling supported the Web site and
conference organization.

We appreciate the work of all the authors, they are the core of this workshop
and proceedings. The participation of all the attendees made an outstanding
conference. Enjoy the fruits of all their labors. We trust you will find these
proceedings interesting.

October 2004 Gary J. Minden
Ken Calvert

Marcin Solarski

Miki Yamamoto

Organization

IWAN 2004 was organized by The Information and Telecommunications Technol-
ogy Center (ITTC) at The University of Kansas. We would like to acknowledge
the support of our sponsors, The Information and Telecommunications Technol-
ogy Center, The University of Kansas, and Hitachi Ltd., and we thank them for
their contributions. Their support and the research presented in these proceed-

ings continue to demonstrate international interest in active networking.

Executive Committee

General Chair

General Co-chairs

Program Co-chairs

Gary J. Minden, The University of Kansas, USA

Tadanobu Okada, NTT, Japan
Bernhard Plattner, ETH Ziirich, Switzerland

Marcin Solarski, Fraunhofer FOKUS, Germany
Ken Calvert, The University of Kentucky, USA
Miki Yamamoto, Osaka University, Japan

Technical Program Committee

Stephane Amarger

Bobby Bhattacharjee

Matthias Bossardt
Bob Braden
Torsten Braun
Marcus Brunner
Ken Calvert
Hermann DeMeer
Takashi Egawa
Ted Faber

Mike Fisher

Alex Galis
Anastasius Gavras
Jim Griffioen
Robert Haas

Toru Hasegawa
Michael Hicks
David Hutchison
Javed Kahn
Andreas Kind
Yoshiaki Kiriha
Akira Kurokawa
Laurent Lefevre
John Lockwood
Douglas Maughan
Gary Minden
Toshiaki Miyazaki
Sandy Murphy
Scott Nettles
Bernhard Plattner

Sponsoring Institutions

The University of Kansas

Guy Pujolle

Lukas Ruf

Nadia Shalaby
Yuval Shavitt
Marcin Solarski
James Sterbenz
Christian Tschudin
Naoki Wakamiya
Marcel Waldvogel
Tilman Wolf

Miki Yamamoto
Krzysztof Zielinski
Martina Zitterbart

The Information and Telecommunications Technology Center

Hitichai

Table of Contents

IWAN 2004

Active Networking Systems

GateScript: A Scripting Language for Generic Active Gateways

Hoa-Binh Nguyen and Andrzej Duda

Management and Performance of Virtual and Execution Environments

in FAIN i smssmsvsmmens oo e i iesnsmgansSes aaeswsnsems o mes s

Thomas Becker, Lawrence Cheng, Spyros Denazis,
Dusan Gabrijelcic, Alex Galis, George Karetsos, and
Antonis Lazanakis

Active Networking Security

Secure, Customizable, Many-to-One Communication

Kenneth L. Calvert, James Griffioen, Billy Mullins,
Leon Poutievski, and Amit Sehgal

Distributed Instrusion Prevention in Active and Extensible Networks . . .

Todd Sproull and John Lockwood

Secure Service Signaling and Fast Authorization in Programmable

NetWOTKS . .ottt e e

Michael Conrad, Thomas Fuhrmann, Marcus Schéller, and
Martina Zitterbart

Invited Papers

Tackling the Complexity of Future Networks

Takashi Egawa, Yoshiaki Kiriha, and Akira Arutaki

Active Networking Applications

Evaluation of Integration Effect of Content Location and Request

Routing in Content Distribution Networks

Hirokazu Miura and Miki Yamamoto

Building a Reliable Multicast Service Based on Composite Protocols

for Active Networksot

S. Subramaniam, E. Komp, M. Kannan, and G. Minden

21

35

54

66

78

88

VIII Table of Contents

Network Programmability for VPN Overlay Construction and
Bandwidth Managementc.... ...
Bushar Yousef, Doan B. Hoang, and Glynn Rogers

Mobile Active Networks

A Framework for Developing Mobile Network Services
M. Sifalakis, S. Schmid, T. Chart, and A.C. Scott

Using Active Networking’s Adaptability in Ad Hoc Routing
Seong-Kyu Song and Scott M. Nettles

Active Networking for TCP over Wireless
Seong-Kyu Song and Scott M. Nettles
Active Networking Management

A Detection and Filter System for Use Against Large-Scale DDoS
Attacks in the Internet Backbone
Lukas Ruf, Arno Wagner, Kdroly Farkas, and Bernhard Plattner

Dynamic Link Measurements Using Active Components
D.P. Pezaros, M. Sifalakis, S. Schmid, and D. Hutchison

Simple Active Mechanisms for Measuring and Monitoring Service Level
Topologies
Gisli Hjdlmtysson, Olafur Ragnar Helgason, and Bjorn Brynjilfsson

Author Index

126

GateScript: A Scripting Language for Generic
Active Gateways

Hoa-Binh Nguyen and Andrzej Duda

LSR-IMAG Laboratory
Institut National Polytechnique de Grenoble
BP. 72, 38402 Saint Martin d’Heres, France
{Hoa-Binh.Nguyen, Andrzej.Duda}@imag.fr
http://drakkar.imag.fr

Abstract. In this paper, we present GateScript, a scripting language
for active applications to be executed on generic active gateways. Unlike
other active networking platforms, it offers a simple scripting language
for expressing custom processing of packets at different protocol layers
without the need for interpretation of complex protocol data structures.
In this way, the user writes statements in a script-like language while
using protocol-specific variables and predefined function calls acting on
the packet’s content. From a textual description, we automatically create
a packet parser and reassembler for a given protocol. The parser decom-
poses PDUs arriving in an active application into protocol variables that
can be used in the script language. After processing, outcoming packets
are reconstructed from the protocol variables. GateScript also enables
active applications to react to the state of the environment: they can
receive events from monitors and test variables reflecting the state of the
environment.

We have designed an architecture for a generic active gateway (GAG)
that supports GateScript. An active application can dynamically in-
stall/remove a packet filter that intercepts relevant packets and passes
them to the application. We have implemented GAG on Linux: its packet
forwarding part is implemented in the kernel and all other components
as user space processes.

1 Introduction

In our work, we address the problem of customizing user flows in active gateways
at the border of the network infrastructure. Unlike traditional proxy nodes, ac-
tive gateways provide transparent processing of data streams without the need
of configuring client hosts. An active gateway may be placed in the access net-
work, for example in the last router connected to a LAN. Many applications
may benefit from custom processing physically located close to the client host,
especially if it has limited resources. Consider for example small mobile devices
that require some adaptation or reaction to changing conditions, and pervasive
environments with various devices such as sensors or actuators—an active gate-
way can provide additional processing in the fixed network infrastructure. In

G.J. Minden et al. (Eds.): IWAN 2004, LNCS 3912, pp. 1-20, 2007.
© IFIP International Federation for Information Processing 2007

2 H.-B. Nguyen and A. Duda

some cases, we may even want to place the gateway functionality on the end
system, so that the user can easily control, filter, or adapt flows arriving to the
device.

We have designed and developed GateScript, a scripting language for easy
programming of active applications that process packets in active gateways. Al-
though there are several platforms for adding programmability to a network
node, usually they are programmed in a full-fledged programming language such
as Java [8,18], C [5,21], or TCL [1]. Moreover, many platforms require kernel
modules or plugins to be developed [13,14], which can be done by experts, but it
is too tedious for most of users. With GateScript we want to offer a simple script-
ing language for expressing custom processing of packets at different protocol
layers without the need for interpretation of complex protocol data structures.
In this way, the user just writes a script that uses variables relative to a given
protocol and calls predefined functions working on the packet’s content.

More specifically, GateScript provides a higher level view than traditional
languages and automates the tasks of interpreting/constructing data packets.
Coupling protocol variables to values in a received packet is automatically done
by a packet parser generated from a formal description of a protocol. The vari-
ables available to script programs represent either protocol header fields (e.g.
$http.content_type for a HTTP Reply or $tcp.window for a TCP segment)
or elements of the packet data content (e.g. $html.title for the title HTML
markup). When some values of variables are detected in a packet by the protocol
parser, they are made available to a script program so it can take some action or
modify them. Simple statements allow to test the values contained in a packet
and invoke functions able to modify its content or perform other actions such as
packet duplication or drop.

With GateScript, we also explore the possibility of coupling the behavior of an
active gateway with the state of the environment. Some active applications that
we call proactive are able to dynamically react and adapt to varying conditions
[17]. They cooperate with monitors, special entities that observe the state of the
network, routers, or hosts. GateScript proposes a statement for waiting for an
event to execute some operations when a monitor signals an event.

To support GateScript, we have designed and implemented an architecture for
a generic active gateway called GAG. An active application can install a packet
filter that recognizes some packets according to the information in the packet
header and passes them to the application. Then, it is parsed and the GateScript
engine interprets the code of a script that processes the packet. Intercepting
packets can be activated and disabled dynamically, so that there is no overhead
for forwarding packets that do not require active processing.

We have implemented GateScript in Java and GAG on Linux. GateScript
currently integrates two generators of packet parsers: one based on Flavor [6]
oriented towards bitstream protocols and a second one based on JavaCC [12] for
text oriented protocols. The packet forwarding part of GAG is implemented in
the kernel and all other components, such as scripts written in GateScript, are
user space processes. We have experimented with GateScript by implementing

GateScript: A Scripting Language for Generic Active Gateways 3

several example active applications enhancing the behavior of transport and
application level protocols. Even if the performance was not our primary goal,
we have evaluated the overhead of intercepting packets in GAG and compared
the processing performance of GateScript with a standard HTTP Java-based
gateway such as Muffin [15].

In this paper, we present the main features of GateScript and illustrate their
use by some examples. We do not cover many other aspects such as secure
deployment of scripts on active nodes, control of active applications, node ad-
ministration, event generation by monitors, and experimentation with active
applications specialized for different protocols.

The paper is organized as follows. Section 2 introduces the architecture of
GAG. We describe GateScript in Section 3 and present its implementation in
Section 4. Section 5 reports on our experience and presents a first evaluation
of the prototype. We discuss the related work in Section 6. Finally, we draw
conclusions in Section 7.

2 Generic Active Gateways

A generic active gateway needs to provide general support for processing the
content of different data flows and customizing the behavior of protocols. We
consider transparent gateways that are network nodes acting in a similar way
to routers: data packets are not directly addressed to them, rather they are
forwarded to a destination after processing some of them. The gateway forwards
packets in a usual way based on standard routing tables or according to the
effect of active packet processing.

Usually a gateway implementing active applications performs some packet
parsing, processing, and reconstruction while all these functionalities are com-
bined in the same piece of code. Our approach consists of separating packet
parsing and reconstruction from data processing to make them generic so that
they can be used for any bit oriented or textual protocol. The generic part of
an active gateway can be specialized for a given protocol or data flow based on
the structure of a PDU (Protocol Data Unit) defined by the protocol'. Examples
of such a use are intelligent HTTP, RTSP, or SIP proxies, media transcoding
gateways (e.g. from HTML to WML), or adaptation gateways (e.g. from MPEG
to H.263).

An active gateway needs to support the following functionalities (we illustrate
them with examples in the context of HTTP when relevant):

e Active applications need to execute some code upon the arrival of a packet
or when the state of the system changes (e.g. when receiving a HTTP Reply,
check for the MIME type of the message body and filter out all images). The

! We use the term of a packet to designate the PDU entering an active gateway.
A packet may contain encapsulated PDUs defined by higher level protocols, e.g. a
TCP segment containing a HTTP Reply. When describing the protocol parsing part
within GateScript, we will use the term of a PDU.

4 H.-B. Nguyen and A. Duda

code of an active application should involve variables variables proper to a
given protocol (e.g. an active application should be able to test the MIME
type of the HTTP message body).

e The value of a variable used in an active application should be set to the
value of a PDU field assigned when a packet is received by the gateway (e.g.
variable $http.content_type should be set to the value image/jpeg for a
HTTP Reply containing a JPEG image).

e A rich library of functions able to process specific data types should be
available to active applications (e.g. ReduceImageSize or TranscodeVideo
for processing objects in a HTTP Reply).

e We need means for dynamically enable or disable processing of packets pass-
ing through a gateway to obtain good performance when custom processing
is not required.

e Active applications require support for reacting to changes in their environ-
ment such as network congestion, host disconnection, lack of resources (e.g.
when a client host changes the access network, it may request to change
processing of packets, because of the increased available bandwidth).

/ Generic Active Gateway
4 Active Application

Variables Code

. ’EE <§O§ i GateScript

Values

PDU Parser PDU Reassembler
1 8
Monitors _l user space

Packet
Filter

Forwarding Kernel

Matching Engine | outcoming
packets

Incoming
packets

Fig. 1. Architecture of GAG

The architecture of GAG, a generic active gateway supporting GateScript is
presented in Figure 1. GAG is composed of the following entities:

e Active applications that process some packet data. They are programmed us-
ing the GateScript scripting language. The script program involves variables
proper to a given protocol or representing the state of the environment.

GateScript: A Scripting Language for Generic Active Gateways 5

e A GateScript engine for executing a script program once the variables used in
the program have their values assigned. It couples a script program with the
variables recognized in data packets and with the functions able to process
them.

e Protocol variables that represent fields defined in the PDU structure of a
given protocol or some parts of the packet content. Protocol variables are
predefined for any given protocol.

e A PDU parser for recognizing the structure of a given PDU contained in a
packet, parsing the data contents, and setting up variables used by the script
program of active applications.

e A PDU reassembler to reconstruct a data packet from the variables used
by the script program (the inverse function to the PDU parser). The PDU
parser and reassembler are automatically created from the description of a
given protocol.

e Processing functions, an extensible library of useful functions that allow to
process data packets. The functions are proper to a given protocol or to a
data format. They are supposed to be developed by an expert Java program-
mer, because they may require an extensive knowledge of a protocol, system
calls, and programming conventions (parameter passing, operations allowed
on the PDU context, cf. Section 4).

e Monitors able to detect varying conditions in the environment (network,
gateways, devices, services, hosts, users). In some cases it is important that
an active application reacts to the change of the system state. A monitor
can signal an active application by sending an event that can be tested in
the script program.

o A matching engine that allows to dynamically install and uninstall packet
filters responsible for intercepting packets and passing them to active ap-
plications. An active application can decide when to install or uninstall a
packet filter so that when intercepting packets is not needed, there is no
overhead of passing packets to the user space. Packets that do not match
any filter are forwarded in the standard way.

Active applications can be loaded or unloaded dynamically into the active
gateway. Some active applications that we call proactive cooperate with monitors
and are able to dynamically react and adapt to varying conditions.

3 GateScript Language

GateScript is a scripting language for programming active applications that pro-
cess packets in GAG gateways. Below we review the main constructs of the
GateScript language (see Appendix for more formal description).

3.1 Statements

A GateScript program is composed of statements. Each statement can test
the values of variables representing specific PDU fields and invoke appropriate

6

H.-B. Nguyen and A. Duda

functions. User defined variables can be declared and initialized using the set
statement and substitute to their values when preceded by $. There are several
types of statements:

assignment statement to assign a value to a variable, e.g.
set State $AckState;

conditional statement to execute one of two groups of statements based on
the test of a condition, e.g.

if ($ip.destination_address = $Client) then
WriteToCache;
endif

function call to invoke a function with some arguments, e.g.
CheckIfExistPacket $tcp.Ack_Number

event statement to wait for a condition related to an event and to execute a
statement when the event is received, e.g.

onEvent $EventName = "ClientDisconnects" then
PacketFilter "add $ClientIPAddress";
endEvent

When a monitor signals event ClientDisconnects, the application executes
function PacketFilter to install a packet filter for intercepting packets con-
taining the IP address of the client. In this way, the active application starts
receiving packets on behalf of the client, which can be for instance stored in
a cache for later delivery.

3.2 Variables

There are three kinds of variables:

user defined variables that are not related to any protocol, e.g. variable
$State given in the example above.

protocol-related variables that represent PDU fields or data content values,
e.g. variable $tcp.SYN representing the SYN TCP flag. The PDU parser
assigns values recognized in a packet to such variables each time a new
packet arrives in the gateway and is passed to the active application.
monitor variables that represent the state of some environment conditions,
e.g. variable $Disconnected becomes true if a client host probed by a moni-
tor cannot be reached (we assume that we use a monitor able to detect such
a condition).

In GateScript PDUs arriving in an active application are decomposed into
protocol variables that can be processed in script statements. After processing
packets are completely reconstructed from the variables on the way out.

Variables can be combined by using operators to form expressions. Function
calls in expressions are separated from operators with square brackets.

GateScript: A Scripting Language for Generic Active Gateways 7

3.3 Events

When a monitor detects a modification in the state of the environment, it signals
an application with an event. An event has a name and a list of variables. Con-
sider the following example: an application subscribes to a congestion monitor
that detects congestion conditions in the network and passes some information
about the available resources:

onEvent $EventName = "Congestion" then
AdaptEncoding $AvailableBandwidth;
endEvent

The monitor signals the Congestion event and makes the current value of the
available bandwidth accessible. Upon this event, the monitor invokes a function
to adapt encoding.

3.4 Static Attribute

Statements may be static or not. A static statement is executed only once per
execution of a script, whereas a non static statement is executed each time a
packet is received and parsed. Such an execution semantics is needed when we
want to initialize some variables or start monitors. It allows keeping a limited
state during the execution of a script. Any statement can be static. As packet
processing is the main goal of active applications, statements are not static by
default. Consider the following example:

if ($tcp.SYN = 1) then
static set Client $ip.destination_address;
set State $SynState;

endif

If the active application receives a SYN TCP segment, it stores the IP desti-
nation address in the variable $Client and the current state of the connection
in the variable $State. The first assignment will be executed only once, while
the second one, every received SYN segment.

We can characterize GateScript as an active platform supporting limited state-
full packet processing—limited by the script language itself, because the static
attribute only allows initializing some variables of a script. However, if required,
it is extendable by functions such as WriteToCache.

3.5 Examples

The following three examples concern pervasive environments in which com-
puter devices connected via different types of networks provide the user with
some augmented functionalities. Due to energy or capacity limitations pervasive
environments and mobile components usually require some additional processing
to be done in the fixed network infrastructure by a proxy node or a gateway.

8 H.-B. Nguyen and A. Duda

The GateScript program presented below corresponds to TCP snooping [2].
It operates in a gateway located between the wired and the wireless parts of
the network. It caches TCP packets in order to respond more quickly to ACK
packets from a mobile client.

static set State O0;
static set SynState 1;
static set AckState 2;
static set EtablishedState 3;
if ($tcp.SYN = 1) then
static set Client $ip.destination_address;
set State $SynState;
endif
if ($tcp.SYN = 1) and ($tcp.ACK = 1) and
($State = $SynState) then
set State $AckState;
ForwardPacket;
return;
endif
if ($State = $AckState) and ($tcp.ACK = 1) then
set State $EtablishedState;
ForwardPacket;
return;
endif
if ($State = $EtablishedState) then
if ($ip.destination_address = $Client) then
WriteToCache;
endif
if ($ip.source_address = $Client) then
if ([CheckIfExistPacket $tcp.ack_number]) then
ForwardFromCacheToClient $tcp.ack_number;
return;
endif
endif
endif
ForwardPacket;

The script performs TCP snooping for one TCP connection with a given
client host. At the beginning, it defines four variables to represent the state of a
TCP connection: $State, $SynState, $AckState, and $EtablishedState. For
each segment during the three-way handshake, the state is modified. When the
connection is established, the active application caches all the packets going to
the given client host and forwards them to the destination. When it detects by
means of the TCP ACK that the next not yet acknowledged segment resides in
the cache, it forwards it directly to the client (the TCP ACK number corresponds
to the next not yet received segment), and the ACK segment is dropped. In this
way, the client quickly obtains a retransmitted segment from the gateway instead
from the source.

GateScript: A Scripting Language for Generic Active Gateways 9

The next example presents a caching service for a mobile host. It subscribes to
a $PresenceMonitor that checks for the presence of a client host by periodically
sending ICMP Echo Request. The state of the client host is represented in the
variable $Disconnected updated by the monitor. When the state changes, an
event is sent to the active application: ClientDisconnects or ClientConnects.
Based on these events, the application enables or disables packet intercepting in
the kernel. At the beginning, when the client host is connected, the application
is running and packets go through the gateway without processing. When the
monitor detects the disconnection of the client host, it signals the application
that installs a packet filter for the IP address of the client. In this way, the
application starts receiving packets. Each packet is stored in a cache. When the
client host connects again, packets are forwarded to the host and the packet filter
is deleted so that packets are no longer processed by the active application.

static set Client "client.host.edu";
static PresenceMonitor $Client;

onEvent $EventName = "ClientDisconnects" then
PacketFilter "add $Client";

endEvent

onEvent $EventName = "ClientConnects" then
PacketFilter "delete $Client";

endEvent

if $Disconnected then
WriteToCache;

else
ForwardCacheToClient;

endif

The following example shows an active application that detects high temper-
ature and generates a fire alarm. First, it calibrates a raw measurement from a
temperature sensor, then it tests to detect whether it is higher than a prede-
fined threshold, and generates an event handled by applications that subscribed
to it. If the temperature is low, the packet is dropped. We assume a simple
packet structure with two fields: the sensor id and the raw measurement of the
temperature.

static set FireAlarmThreshold 50;
set Temperature [Calibrate $RawMesurement];
if $Temperature > $FireAlarmThreshold then
GenerateEvent "FireAlarm" [GetLocalization $SensorID];
else
DropPacket;
endif

The last examples illustrate a HT'TP gateway developed using GateScript—it
scans the HT'TP traffic on behalf of a user and performs customization (filtering
out ad banners, reducing image size, etc.). Table 1 lists the functions developed
to process HT'TP typed objects.

10 H.-B. Nguyen and A. Duda

Table 1. Processing functions for HT'TP

Name Functionality

RemoveTag Remove a tag
RemoveColor Remove color information
ContentDiscard Discard the data

ReduceImageSize Reduce image size
ColorToGreyScale Transcode to grey scale

ColorToBW Transcode to black and white
JPEGToGIF Transcode JPEG to GIF
GIFToJPEG Transcode GIF to JPEG
BreakPage Break page

FilterHtmlFrame Filter out a frame
FilterHtmlTable Filter out a table

The examples below deal with the content of Web pages. The first one filters
images by removing all image tags from an HTML page and by discarding all
image objects (RemoveTag function makes use of a HTML parser on a HTTP
object of type text/html).

if $http.content_type contains "text/html" then
RemoveTag "img";

endif

if $http.content_type contains "image" then
ContentDiscard;

endif

The next example reduces the size of JPEG images by half if the original image
is greater than 1 Kbyte.

if (($http.content_type = "image/gif") or
($http.content_type = "image/jpeg")) and
($http.content_length > 1000) then
ReducelImage 0.5;

endif

4 Implementation of GAG and GateSecript

4.1 GAG Prototype on Linux

We have implemented GAG on Linux (its first version was called ProAN [17]).
Linux is a good candidate for such an active node because of its properties: packet
forwarding support, loadable kernel modules, and the ease of modifying the ker-
nel behavior. The forwarding part of our architecture with the matching engine
is implemented in the Linux kernel. Each active application is implemented as
a user space process and may receive packets belonging to a flow defined by

