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Preface

Polymeric materials, both “inert” and degradable, constantly interact with the
surroundings. Because of this interaction changes take place in the polymer
matrix and small molecules are released to the environment. Reliable meth-
ods for testing biodegradability and environmental interaction of renewable
resources and biodegradable polymers are required to answer the remain-
ing questions concerning the environmental impact of these future materials.
In the case of degradable polymers multiple factors affect the degradation
process and small changes in the chemical structure or product formulation
may change the susceptibility to degradation or cause different degradation
product patterns, rendering the product less environmentally adaptable. De-
velopment of sustainable polymeric materials also demands the development
of more migration-resistant polymer additives. Chromatographic techniques
especially gas chromatography and liquid chromatography preferentially cou-
pled to mass spectrometric detection are ideal tools for studying these low
molecular weight compounds and polymer-environment interactions.

In the first chapter of this volume chromatographic fingerprinting and in-
dicator product concepts are presented as tools for evaluating polymeric ma-
terials. These concepts have great potential in evaluation of degradation state
and life-time/service-life of polymeric materials, evaluation of anti-oxidant or
pro-oxidant systems, degradation mechanism and processing parameters as
well as rapid comparison and quality control of materials. The solid-phase mi-
croextraction technique has rapidly found applications in numerous fields. The
second chapter reviews the extraction of polymer degradation products and
additives, monomer-rests, odour compounds, migrants from packaging and
medical products as well as extraction of polymer additives from environmen-
tal samples and biological fluids by solid-phase microextraction demonstrating
the high versatility and potential of this technique also in polymer analysis.
In the third chapter the possibilities and limitations in the headspace extrac-
tion of volatiles from solid polymer matrixes are discussed. Examples of the
use of multiple headspace extraction to remove matrix effects are shown and
finally the application of headspace analysis for early degradation detection
and quality control of recycled materials is presented. The fourth chapter sum-
marises the literature on chromatographic analysis of degradation products
from the most common aliphatic and aliphatic-aromatic polyesters. Espe-
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cially the effect of macromolecular architecture and copolymer composition
on the resulting degradation mechanism and degradation product pattern is
discussed. The last two chapters deal with the analysis of polymer additives.
The fifth chapter overviews different extraction techniques and aspects of an-
alyzing antioxidants in polymeric materials. The sixth chapter discusses the
migration of monomeric and polymeric PVC plasticizers with the focus on
migration from medical products and food packaging. Especially the possi-
bilities of improving the migration resistance and plasticizing properties of
polymeric PVC plasticizers through the right plasticizer design are presented.

The interest in degradable and/or renewable materials is increasing rapidly.
Degradation of these materials is still often studied only by measuring the
weightloss or changes in molecular weight, which can be misleading. Especially
in the case of bioresorbable materials the knowledge of degradation products
is a crucial point for biocompatibility of the materials. As an example we have
in chapter four presented results showing the influence of macromolecular
design on the formation of acidic degradation products, a possible cause of
negative impacts in the body. We have also shown that copolymer composition
influences the stability, degradation mechanism and amount of degradation
products formed during radiation sterilization. Hopefully these chapters will
inspire more extensive use of chromatographic techniques for polymer analysis
and result in increased understanding of polymeric materials, which in turn
will provide tools for the development of sustainable future materials.

Stockholm, April 2008 Ann-Christine Albertsson
Minna Hakkarainen
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Abstract The demands on polymeric products are growing both with respect to their
function and purity. There is a need for new high-throughput characterisation tools for
rapid quality control and evaluation of materials. Precise control over degradation rate
and service-life are also prerequisites for successful use of degradable polymers in an
increasing number of applications. The chromatographic fingerprinting and indicator
product concepts, presented in the current paper, are novel and attractive alternatives
for rapid evaluation of the product quality, degradability, durability and service-life. The
sensitivity of these techniques allows for detection of small initial changes in the ma-
terials and signs of early degradation. The possible applications include evaluation of
different pro-oxidants or antioxidants, optimisation of processing parameters, evaluation
of long-term properties or storage stability and lifetime prediction. The same princi-
pal could also be applied to process control and monitoring, acceptance or rejection
of raw materials, intermediate and final products. The usefulness of indicator products
and chromatographic fingerprinting is shown for estimation of the degradation state of
degradable polyethylene. In addition, chromatographic fingerprinting together with mul-
tivariate data analysis is utilised to classify degradable polyethylene materials based on
their incorporated pro-oxidant systems.

Keywords Chromatographic fingerprinting - Degradation - Indicator products -
Lifetime prediction - Long-term properties
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Abbreviations

ATD automated thermal desorption

ATR-FTIR attenuated total reflection-Fourier transform infrared spectroscopy
CL chemiluminescence

CP conducting polymers sensor

DSC differential scanning calorimetry

FTIR Fourier transform infrared spectroscopy
GC gas chromatography

GC-MS  gas chromatography mass spectrometry
HDPE high density polyethylene
LLDPE linear low density polyethylene

LSE liquid-solid extraction

MALDI  matrix-assisted laser desorption ionisation
MDA multivariate data analysis

MFI melt flow index

MOS metal oxide semiconductors

MOSFET metal oxide semiconductors field effect transistor
MS mass spectrometry

NIR near infrared reflection spectroscopy

PC principal component

PCA principal component analysis

PCL polycaprolactone

PCR principal component regression

PLLA poly (v-lactic acid)

PLS partial least squares regression

SEC size exclusion chromatography

SPE solid phase extraction

SPME solid phase microextraction

1

Introduction

Throughout their life cycle, polyolefin’s suffer oxidative degradation pro-
moted by heat, UV-radiation and mechanical stress. The degradation is as-
sociated with irreversible changes in the chemical structure of the polymer.
It influences the physical and chemical properties, such as morphology, mo-
lecular weight, tensile strength, elongation at break and colour. The new
methods presented in this review for classification and rapid degradation
state estimation are valuable tools for evaluation of polyolefin long-term
properties and further for development of tailored polymer materials.
Degradable materials are desirable in various applications ranging from
disposables, decreasing the amount of litter, to mulch films improving growth
conditions for grain. Therefore, several different degradable polyethylene ma-
terials have been developed and are on the market today. The susceptibility of
polyolefins to degradation can be varied by additives or by copolymerisation.
Transition metal ions, e.g. iron, manganese and copper, catalyse the decom-
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position of hydro peroxides in thermal and photo-oxidation, see Egs. 1 and
2 [1], and are used to enhance the degradation at low temperatures of other-
wise relatively stable polymers such as polyethylene [2]. The products of the
catalysed decomposition of hydro peroxides are similar to the products from
un-catalysed oxidation processes [3].

Catalytic decomposition of hydro peroxides.

ROOH + M" — RO’ + OH™ + M"*! (1)
ROOH + M™! — ROO" + H* + M" (2)

The use of transition metals as pro-oxidants in polyethylene gives degrad-
able cost effective materials with good technical performance. Pro-oxidant
systems may also contain natural polymers, such as starch, or unsaturated
polymers [4-6]. The ability of materials to degrade by thermal oxidation and
UV radiation as well as controlled degradation rate are crucial for their appli-
cation. It is therefore important to investigate the degradation process during
the early stages of oxidation to be able to produce materials for specific appli-
cations and for different degradation rates.

A good example of a class of materials with specific stability and degrad-
ability criteria are mulch films for corn production as seen in Fig. 1. They
should protect the crops at the beginning of the season but be brittle enough

Fig.1 Corn production with and without mulch-film
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after 4 to 6 weeks for the crops to puncture the films without being dam-
aged. However, the films must also be sufficiently resistant so that they are
not torn into pieces by wind and normal weather conditions during the time
when the plants are still small. With such demands it is crucial to understand
and to have control over the degradation process during the early stages. To
be able to detect small changes in the material would be very valuable for
the development of rapid classification methods based on the initial stages
of degradation. This would provide further tools for the development of im-
proved degradable polyethylene materials and for making the right choices
between the already existing ones.

Early degradation state detection is also a key issue in the field of sta-
bilised materials [7]. The evaluation of long-term efficiency of antioxidants
under non-accelerated conditions takes too much time to be practical. The
accelerated tests currently in use are often made under unrealistic physical
conditions leading to unreliable results [8-10]. Accelerated aging at high tem-
perature is frequently used even though the degradation and stabilisation
reactions taking place at high temperatures are different from those taking
place at low temperatures. Sensitive techniques for early degradation detec-
tion are, thus, essential components in the effort to reduce the acceleration
needed to reach practical test times.

2
Evaluation of Long-Term Performance of Polyethylene

Polymer degradation can be analysed at macroscopic, macromolecular or
molecular scale, Fig. 2. The detection of early degradation and small dif-
ferences in degradation behaviour between different materials requires an

MOLECULAR SCALE
Formation of degradation products

/ AN

MACROMOLECULAR SCALE MACROSCOPIC SCALE
Chain scission +—> Long-term property changes

Fig.2 Degradation of polymers can be analysed at macroscopic, macromolecular or mo-
lecular level
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analytical technique with high sensitivity. Macroscopic scale properties are
less sensitive parameters for early degradation detection and degradation
state evaluations than the changes taking place at the molecular level, e.g., the
formation of degradation products. The most common techniques used to-
day to monitor the degradation of polymers are Fourier transform infrared
spectroscopy (FTIR), where a carbonyl index is used as a measure of the ox-
idation induction time and degradation rate, size exclusion chromatography
(SEC) to follow the changes in molecular weight [11, 12], differential scanning
calorimetry (DSC) to follow the changes in crystallinity [13], and mechanical
testing of changes in strength and brittleness. As an example loss in mechan-
ical properties occurs first when the molecular weight of the polymer has
decreased to a critical value [14].

2.1
Evaluation Based on Changes at the Molecular Level

Degradation products can usually be detected, identified and quantified
long before the mechanical performance of the material changes. Degra-
dation products also give information regarding the degradation mechan-
isms beyond these changes. FTIR is a useful technique that provides in-
formation at a molecular level but compared to chromatographic tech-
niques there are limitations in how detailed the information is that is ob-
tained. Carbonyl compounds account for most of the oxidation products
and they are seen in the FTIR spectra in the region between 1680 and
1780 cm™! as overlapping bands corresponding mainly to acids (1712 cm™),
ketones (1720 cm™'), aldehydes (1730 cm™!), esters (1743 cm™!) and lactones
(1785 cm™!) [15, 16]. Because of the overlapping of the bands, derivatisation,
using for example NO and SF4, is necessary for quantification of the func-
tional groups. [17]. During the 1970s and 1980s Albertsson et al. followed
the degradation of polyethylene by measuring the CO; emission from the
polymers using a '*C technique with liquid scintillation spectrometry [18-
20]. The labelling assured that the CO; containing *C came from degrading
polymers. Chemiluminescence (CL) is a newer technique that has mostly
been used for evaluation of stabiliser efficiency, but that today is sensi-
tive enough for early degradation detection and classification of degradable
polyethylene materials [21]. The counted photons emitted from the oxidis-
ing polymer correlate with the amount of hydro peroxides in the material,
i.e. the initial degradation products during oxidation [22,23]. CL has been
shown to detect oxidation earlier than FTIR [21] in degradable polyethy-
lene, even when looking at the range of the hydro peroxide detection in
the FTIR spectra. However, good degradation state estimations are pre-
vented by a non-linear increase in the luminescence intensity versus the
degradation time.
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2.1.1
Evaluation Using Gas Chromatography

FTIR is a valuable technique for obtaining information of the various prod-
uct groups. However, identification of the individual degradation products
gives more insight into the degradation mechanisms [24]. Gas chromatography
(GC) in combination with selective extraction method and mass spectromet-
ric detection are the ideal tools for identification of volatile and semi-volatile
products. Since the early 1980’s Albertsson et al. have used chromatographic
analyses of low molecular weight degradation products to study the long-term
performance of polymers [25, 26]. Their latest works on degradable polyethy-
lene have focused on the development of rapid and informative tools to provide
a greater understanding within this area. Reliable extraction methods are vital
for the correct chromatographic analysis of long-term performance of poly-
mers. The choice of extraction technique depends on the analytes, on the
surrounding media and on the purpose of the extraction. The development of
several extraction methods utilising liquid-solid extraction (LSE), solid phase
extraction (SPE) and solid phase microextraction (SPME), made it possible
to identify over 200 degradation products and product fingerprints to clarify
the complex degradation patterns of polyethylene [27-32]. The most abun-
dant groups of degradation products were mono- and dicarboxylic acids, but
alkanes, alkenes, ketones, aldehydes and alcohols were formed as well.

2.1.2
Multivariate Data Analysis for Optimised Information Extraction

The amount of data that can be obtained from, for example chromatographic
and spectrometric techniques, has increased dramatically. Wold [33] intro-
duced the principle of multivariate data analysis (MDA) in the mid-1970s as
a way to obtain as much information as possible from these analyses. Esti-
mates based on many variables have in addition the advantage of being more
robust than estimates from a few measurements since the first are decided
with higher degrees of freedom [34].

Principal component analysis (PCA) is a qualitative method where the
X-data can be studied without any knowledge of the Y-data. A score plot of
the X-data gives an overview of possible patterns in the data and is there-
fore a useful tool for classification. The X-data are explained using uncorre-
lated vectors in pairs called principal components (PC). The first principal
component (PC1) is in the direction of the largest variation in the multi-
dimensional X space, Fig. 3. PC2 is in the direction of the second largest
variation perpendicular to PC1 etc, all orthogonal to each other. The two-
dimensional plane containing two principal components, e.g. PC1 and PC2, is
called a score plot. The number of components to be included in the model
is chosen on the basis of the amount of variation in the data that each of



