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PREFACE

. This book is designed to provide communication engineers with the theoretical and
practical knowledge needed to understand and design fiber optic communication sys-
tems. Since this is a new technology, the University study of most practicing engineers
did not include courses on fiber optic commumcatxons These people do, however,
have an understanding of communication systems and the fundamentals of electro-
magnetic theory. This book bridges the gap between classical communication practxce
and the new techniques required to design fiber optic communication systems.

The book is organized into eight chapters, each written by an expert with first-hand
experience. Chapter 1 reviews general properties of fibers, history, and some applica-
tions. This includes a review of the electromagnetic base of some important optical
phenomena, matrix methods for ray tracing, and Gaussian beams. Chapter 2 covers
optical waveguide manufacture. Various types of fibers and the processes used to pro-
duce them are explained. This includes preform preparation and fiber drawing. Mea-
surements used to characterize optical and mechanical properties of fibers are covered.
Chapter 3 explains propagation in fibers in terms of both wave and ray theory. Disper-
sion, coupling, modal noise, and the influence of fiber properties on system perform-
ance are covered. Sources are discussed in Chapter 4. Characteristics pertinent to op-
tical communication systems, including physical pririciples and structures of lasers and
IRED diodes are explained. Chapter 5 covers detectors. The principles of operation of
Si PIN and avalanche photo diodes are discussed. Detectors for long wavelength sys-
tems and noise in detectors is covered. Chapters 6 and 7 treat fibér optic communica-
tion systems. Chapter 6 covers the important topic of digital communication systems.
The operation of various components, such as fibers and lasers, are reviewed in terms
relevant to communication engineers. This is followed by an analysis of design criteria
for digital receivers. Practical constraints are covered. Analog sysjegm are covered in
Chapter 7° This includes a comprehensive treatment of the fundamentals and limita-
tions of analog transmission systems. Noise models and degeneration effects are cov-
ered. Practical considerations in implementing systems are included. Chapter 8 treats

" the use of optical fibers in imaging systems. Imaging theory, fiber fabrication, and

imaging applications are discussed.

The editor acknowledges the advice and assistance of Billy Burdine and Dr. John F.
Ambrose of GTE Laboratories and Fred Allard of the Naval Underwater Systems
Center. '
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2 Fiber Optics ’ .
I. HISTORY

The use of fibers for optical communications was suggested by Kao and Davies in 1968
At that time typical fiber losses were above 1000 dB/km. Kao suggested that purer materials
should permit much lower losses. In November of 1970, Kapron et al. reported dn observed
total attenuation of approximately 20 dB/km in a single mode fiber.' Today, fibers operate
at a wavelength of 1.5 wm with losses less than 1 dB/km.** Low losses have been achieved
by reducing impurity absorption due to transition metal tons such as iron, chromium, cobalt,
and copper. Absorption from OH~ ions due to water impurity is also an important factor.
Parts per billion purity of iron and chromium ions is required if their loss contributions are
to be kept below 1 dB/km.?

A communcation system requires a transmitter, a transmission medium, and a receiver.
Fiber optics became a feasible transmission medium in 1970 with the reduction of losses to
20 dB/km. At that time, technology also existed to produce semiconductor detectors suitable
for use with optical fibers, but there were no suitable sources. The earlier invention of the
laser and the possibility of using it for communication had stimulated fiber optics research.
In 1970 laser sources and light emitting diodes (LEDs) had preblems of short lifetime and
low outputs. Early semiconductor lasers were inefficient and required cooling. A series of
improvements has resulted in more efficient semiconductor lasers operating reliably at room
temperature with high outputs and lifetimes greater than 10° hr. Today, with high quality
semiconductor sources, low-loss fiber transmision media and low noise semiconductor de-
tectors, the three elements (transmitter, medium, and receiver) are available for the con-
struction of economical, reliable optical communication systems.

A. Fiber Classes

The information-carrying capacity (bits/sec) of an optical fiber is determined by its impulse
response. The impulse response and thus the bandwidth are largely determined by the modal
properties of the fiber. The optical fibers, in common use, can be separated into two classes
based on their modal properties, (1) single-mode fibers, and ¢2) muitimode fibers. Single-
mode fibers are step-index. Multimode fibers can be divided into step- and graded-index.
Step- or graded-index refers to the variation of the index of refraction with radial distance
from the fiber axis. Fiber types are discussed thoroughly in Chapter 2. Figure 1 of Chapter
2 shows these three types of fibers (1) step-index multimode, (2) graded-index, and (3)
single-mode. These fibers consist of a core surrounded by a cladding. The higher index of
refraction of the core compared to the cladding causes total internal reflection at the core
cladding interface in step-index fibers. In graded-index fibers, the gradual decrease in the
index of refraction with distance from the fiber axis causes light rays to bend back toward
the axis as they propagate. Multimode guides are characterized by multiple propagation
paths for rays. A modal description of multimode fibers shows different propagation velocities
for different modes. Therefore, energy input into the fiber from a short pulse, coupled into
a muitiple of modes, will arrive at the receiving end of the fiber distributed over a time
interval. The spreading out in time of the received pulse is due to the differing propagation
delays of the different modes. This pulse spreading is referred to as modal dispersion. It
reduces the information capacity of the fiber by limiting the number of distinct pulses that
can be transmitted in a given time interval. Graded-index guides have less modal dispersion
than step-index guides. Of course, modal dispersion does not occur in single-mode guides
where only one mode propagates. Pulse broadening in single-mode fibers is due to material
dispersion and the dispersion associated with the waveguide mode. Single-mode fibers can
be designed so that these two sources of dispersion cancel at a particular wavelength.

B. Applications
Optical fibers have advantages that make them attractive in a variety of applications. They
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have extremely high bandwidth. Theii small diameter and high tensile strength result in
smaller, lighter weight cables and connectors. Since they are electrical insulators, optical
fibers are immune to inductive interference and are not subject to ground loop problems.
They can be used in high voltags environments_without providing unwanted conduction
paths. They do not radiate electromagnetic energy. In addition, they are tolerant to tem-
perature extremes, resist corrosion, are reliable, and easily maintaired. The raw material
used to fabricate glass fibers is sand, an abundart resource.

First generation optical fiber communication systems operate at a wavelength of 0.82 pm.
Second generation systems, operating at a longer wavelength of 1.3 pm where fiber losses
and material dispersion are less, offer significantly less attenuation and greater bandwidth.

Optical fiber applications have been pioneered by telephone companies. General Telephone
of California installed the first opiical fiber link carrying regular telephane service in Long
Beach, Calif.. on April 22, 1977.° It was a 1.544 Mb/s link utilizing a graded-index fiber
with a 6.2 dB/km mean loss, LED sources, and avalauche photodiode detectors. Only two
repeaters were used with the 9.1 km link. An equivalent metallic link would have required
five repeaters for the same data rate.® The current Bell System fiber optic program centers
around digital trunk transmission at 44.7 Mb/s.” As many as 672 voice circuits are transmitted
in a pair of fibers. Bell is planning a transatlantic cable operating at 1.3 wm. Each section
of cable uses a laser and one or more standbys to achieve a mean time between failures of
8 years. Repeaters are at about 30 km intervals. Multiple single-mode fibers capable of
carrying more than 4000 voice circuits are planned.’

CATYV systems use fibers to transmit signals from earth stations to studio facilities.’
Distribution of CATYV signals from studios to subscribers is being tested.'®

Optical fibers have promise for use in computer sysiems.!! It is attractive to replace
parallel interconnects with serial fiber optic links. Cable and connector bulk is significantly
reduced. Reliability is improved. Fiber optic high data rates, noise immunity, and low loss
make it possible to extend high data rate channel links beyond the confines of the computer
room. The use of smart terminals increases the need for high bandwidth local networks.
Smart terminals process dnd store information. Relatively large amounts of information are
transmitted to the host computer in bursts. A large bandwidth is required if excessive response
delays are to be avoided.'' The interest of the military has stimulated a wide range of fiber

" applications, from rotation and sonar sensoss to communication links. Fibers permit dramatic

weight and bulk reduction and provide large bandwidth and high reliability. A 64-km fiber
optic field link, used by the Army, transmutting 2.3 Mb/s requires seven repeaters and can
be transported on one 2'/, ton truck. The equivalent coaxial link requires 39 repeaters and
four 2!/, ton trucks for transportation.'? Fiber optic sonar links have been developed to
transmit information from external seasors through the submarine hull to inboard signal
processors.'* These links reduce the size of submarine hull penetrators in addition to in-
proving system performance.

One of the original applications of fibers is image transmission. The flexible fiberscope
has been widely used in medicine since the 1950s. Modem fiber optics technology has
recently been applied to -office copy machines. This is discussed further in Chapter 7.

The following three sections of this chapter discuss basic electromagnetic theory and optics
useful in describing phenomena in fiber uptic systems. Section II reviews electromagnetic
piane waves. Section III illustrates some examples of matrix methods for the description of
ray propagation. Section IV covers some properties of optical beams.

. II. WAVE OPTICS

The electromagnetic description of optics forms a basis for the explanation of a number
of phenomena occurring in optical fiber systems. Reflection at a dielectric interface occurs
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when light passes through a lens, is injected into a fiber, or is reflected at the fiber core
cladding interface. Phenomena such as total internal reflection, penetration of the optical
field into the cladding, and Snell’s law follow from the description of the reflection of plane
waves irom a dielectric interface.

A. Maxwell’s Equations
Maxwell’s equations written in differential form are

- B

VxE————aT (a) (1)
N s}

VxH=1+" (b)

V-D =p ©

V-B =0 (d

where E,B,H,J,D and p are the electric field intensity, the magnetic flux density, the magnetic
field intensity, the current density, the electric flux density, and the electric charge density,
respectively. The del operator is V. In rectangular coordinates V = x & + yy + 22,
wiere X, ¥, and 2 are unit vectors in the x, v. and z directions. .

In a source-free region such as air or glass with no free charge, ] = Q0 and p = 0. Also,
if the medium is time invariant, homogeneous, isotropic, and linear, then B = pH and

D = €E, where the permeability, u, and the permittivity, €, are scalar quantities that do
* not vary in space or time. Under these conditions Maxwell’s equations are

H ‘
V x E = —[LE (a) (2) .
B
VXH=e ®)
V-E =0 ©
Y-H=0 ()

The wave equation is obtained by combining Equation 2a and 2b. The first step is to take
the curl of Equation 2a.

_V‘x(vXE)=T7“x(~p9§) (3

Interchanging the order of differentiation with respect to space and time, and moving the
constant . out of the derivative

Vk(VxE)=¥p§(VxH) )
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Substituting Equation 2b for V x H,

I 7E
V X (V X E) = —pe pe 5

Recall the vector identity V X V X E T V(VE) VE Applying this vector identity
to Equations 5 and using Equation 2c, results in the vector wave equation,

— a’E
o= = 6)
V?E e pYe

When the field vectors have sinusoidally varying components it is convenient to use
phasors to represent the components. Consider the electric field,

.

E "= & A cos(wt + 8,) + § B cos(wt + 68,) + % C cos(wt + 8,) @)

The x, y, and z components vary sinusoidally at the same frequency. Each component may
have a different amplitude and phase. When phasors are used to represent the sinusoidally
varying components the following phasor vector results

—

E=EX+EJE,2 (8)

representations of the components of the vector. :

Taking the derivative of a sinusoid with respect to time corresponds to multiplyving its
phasor representation by jw. Therefore, when field quantities are represented by phasors the
wave equation is .

o 7B
VE = —w’ue P )]

B. Plane Waves

Waves with planar constant phase surfaces are called plane waves. Although plane waves
have a simple mathematical form, their behavior is of general interest. Complex waves can
be represented as a sum of plane waves, and in the neighborhood of a point all waves appear
to be plane waves. When the amplitude and phase of field quantities are constant on a plane,
the wave is called a uniform plane wave. A simple solution to Equation 9 is a uniform plane
wave, polarized in the x direction and propagating in the z direction. A wave polarized in
the x direction has electric field components only in the x direction. Assume the phasor
vector representation of the electric field is.only a function of z

E =RE. @ (10)

Since for this case there is no dependence on x and y, the Laplacian operator reduces to,
V2 = 3%9z%. The wave equation becomes

9E,
922

= w’neE, (11
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The solution to Equation 11 is
VEx — E"etjky (12)

wherek = wVpe. E, = A <O is a complex constant depending on the boundary conditions.
E, given by Equation 12 is a phasor quantity that corresponds to the foilowing time function

E, (t,z) = Acos (wt = kz + 0) (13)
A point of constant phase for the wave given by Equation 13 is

const = wt * kz (14)

The phase velocity v',, is obtained by differentiating Equation 14 with respect to time

dz : )
0=w * k— 15
w it (15)
The velocity of a constant phase point is
d 1
v, = = = twk= = (16)

A plus sign before k in Equation 16 corresponds to a wave propagating in the negative z
direction, and a minus sign corresponds to a wave propagating in the positive z direction.
One wavelength is the distance for a 21 phase shift. Therefore, 2w = kA or k = 2w/A
where \ is the wavelength. '
The index of refraction of a medium is defined as the ratio of the phase velocity in free
space to the phase velocity in the medium. It follows from Equation 16 that the index of

refraction is
nzxezkz\/gzvgr an
v, k, €,

where ¢ is the velocity of light in free space, k, = o V€, € is the permittivity of free
space, and €, is the dielectric constant.

1. Generahzed Plane Waves

. Constant phase surfaces for the plane waves given by Equation 12 are planes perpendicular
to the z axis (x = constant). Consider the same wave propagating in some direction other
than along the z axis. Such a wave would result if the coordinate system were rotated. The
constant phase surface would be a plane described by kX + k,§ + k,2 = & = constants.
A field quantity associated with this wave is

E = Eoe—j(kxx+kyy+k171 ’ (18)

where E, is a constant phasor vector. Recall r , the vector position of any point in space,
T = xk + y§y + zi. Also define the propagation vector k = k & + k,§ + k2. The

constant phase point, ¢, may be written d = k.r = kx + ky + kz
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E = Ee o+ (19)

Taking derivatives with respect to x of plane wave field quantities with exponential spatial
variation such as given in Equation 18 is equivalent to multiplying by ~ jk.. Derivatives
with respect to other coordinates may be treated similarly. This allows the del operator,
which in rectangular coordinates is V = X 4/6x + § 3/dy + 2 9/dz, to be replaced by,
—Jk. Also, the Laplacian operator which in rectangular coordinates is V2 = §%/ax> +
d*dy? + 8%az’, is replaced by

Vi KR -KR-K= -k (20)

where k? is the magnitude of X squared.

Substituting Equation 19 into Maxwell’s equations, (Equations 2) results in the following
representation of Maxwell's equations for plane waves.

X x E = poH (a) @n
K xH = —ewE (b)
XK-E =0 - (c)
XK-H=0 (d

The magnitude of k is found by applying Equation 20 to Equation 9:

k = oVpe (22)

The magnetic field associated with the plane wave is obtained using Equation 2]a
H=—%k X E 23)

It follows from Equation 21b that E is perpendicular to both k and H. Since k and E

are perpendicular, the magnitude of H is the product of the magnitudes of K and E divided
by wp. Using Equations 23 and 22 it follows that

E=~\/EH : 24)
€

where E and H are the magnitudes of E and H and Vple is the characteristic impedance

of the medium. Note that
7 . .
Z= \/—'I- =2 : 25)
€ n

where n is the index of refraction and Z, is the characteristic impedancc of free space.
It follows from Equations 21a-and 21b that E H and X form an orthogonal set of

'vectors E x H is in the direction of k. Since E and H are perpcndlcular the magnitude -

of E X H is the magnitude of E inultiplied by the magnitude of H. From this and Equation
24 it follows that
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=y

(26)

N

where Kk is the unit vector in the direction of k . E X H is the Poynting vector. Its units
are watts per square meter (W/m?). The Poynting vector is in the direction of energy flow
in isctropic media. '

C. Reflection at a Dielectric Interface

The amount of light reflected at a dielectric interface depends on the polarization, the
angle of incidence, and the indices of refraction of the two media. The reflection and
transmission coefficients are found by satisfying the boundary conditions. At the boundary
conditions, the tangential components of both the E and H vectors are continuous across
the interface.

A representation of a plane wave reflection is shown in Figure 1. The plane wave shown
is polarized parallel to the plane of incidence. The plane of incidence is defined as the plane
containing the normal to-the surface and the k vector of the incident plane wave.

The incident, reflected and transmitted plane waves are

—_—

€ = E, e

—_— _ —

€p = Epeir

—_

€, = E, e Qn

1. Snell’s Law

Snell’s law follows from the boundary conditions and states that the phase variation along

the interface must be the same for the incident, reflected, and transmitted fields. That is, at
the interface

— — — e
r

K- T = Kg- T = K,* T (28)

3

At the interface z = 0. Also in Figure 1, the coordinate system has been drawn with the

incident k vector in the xz plane; therefore, the y component of k; = 0. In this situation,
the phase variation along the-interface depends only on x. Equating the phases of the incident,
reflected, and transmitted waves at the interface.

nk, sin 8; = nk, sin 8; = n)k, sin §, 29)

where n k sin ©,, nk sin Oy, and nk sin O, are the x components of the incident, reflected,
and transmitted propagation vecors, respectively.

Equation 29 leads to two important observations. The first is that the angle of incidence
equals the angle of reflection, ©, = O,. The second is the familiar form of Snell’s law

n, sin 0, = n, sin 6, 30y

Total internal reflection occurs at the interface between two media where n, is less than
n, and the angle of incidence is large. This happens in a step-index fiber at the core-cladding
interface. :

As ©, the angle of incidence is increased, O, the transmitted angle also increases. When
n, > n,, O, is greater than O,. There is a critical incidence angle for which ©, = 90°. For
incident angles greater than this critical angle no light propagates into medium 2.

The propagation vector in medium 2 is
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FIGURE 1. Plane wave reflection from a dielectric interface is represented in terms of the E,
H, and K vectors of the incident reflected and transmitted waves. The plane of the paper is the
plane of incidence (defined as the plane containing the surface normal and the incident ray). The
polarization is parailel since the E field is parallel to the plane of incidence.

X, = n)k, (sin 8, & + cos 8, 2) 3D

where by Snell's Law and a well-known trigonometric identity cos ©, = [1 — (n/n,)
sin2@,]""2. For incident angles greater than the critical angle, the cos O, and therefore the z
component of k, are imaginary. This results in an evanescent transmitted wave. The trans-
mitted wave does not propagate in the z direction, but decays exponentially with z. The
expression for the electric field associated with the wave in medium 2 is

%‘ = E( e—z/& e-—j(nzko sin B0x (32)

where E: is a constant vector, a’nd.S = (I/ko)(nj - nf'sinze,)’“2 is the depth of penetration
of the light into the second medium. :

2. The Reflection and Transmission Coefficients

The reflected and transmitted waves are found in terms of the incident wave by applying
boundary conditions to the interface. The tangential E and H fields are continuous across
the interface. For parallel polarization shown in Figure 1, equating the tangential electric
field in medium 1 to the tangential field in medium 2 results in the following equation,

E cos 8, + E; cos 8, = E, cos 6, (33

Similarly, equating the tangential components of the magnetic fields results in the following
equation

H - H, = H _ (34)
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Equations 33 and 34 apply only to parallel polarization. A similar set of equations can be
obtained for perpendicular polarization.

Since E and H for each of the three waves are related by the characteristic impedance of
the medium, Equation 34 can be written in terms of the electric fields as follows,

n(E — Eg) = n,E, ' (35)

Multiplying Equation 33 by n, and using Equation 35 to eliminate E, from the right hand
side of Equation 33, results in the following

(E, + Ex) n, cos 6, = (B, — Ep) n, cos 0, . (36)

Solving for the reflection coefficient, defined as the ratio of E; to E,,

N _ Eq _ n,cos 8, — n,cos 8 an
P = E n, cos 8, + n, cos B, _

t

Since by Snell’s law and a well-known trigdnome:ric identity, cos ©, = [1 — (n,/n,)?
sin® ©,]'2 it follows that ’

11 — (n/n,) sin” ;] — n, cos 6,
" n[1 - (n/n,)?sin® §,]'"2 + n, cos 9,

(38)

This equation is good for pblarizatidn parallel to the plane of incidence. A similiar analysis
for polarization perpendicular to the plane of incidence yields the following expression for
the reflection coefficient ’

_cos B, — [(n/n,)* — sin® §]'7
Pi ™ Cos 8, + [(ngn,)? — sin? 612

39

Brewster’s angle is the incident angle at which no parallel polarized light is reflected at
a dielectric interface. When this occurs, the numerator of Equation 38 equals zero. That is,

n,[l — (n/n,)? sin® 0;]"2 = n, cos Oy (40)

where O, has been reptaced by O, Brewster’s angle. Squaring both sides of Equation 40,
solving for the cos Oy using the trigonometric identity sin?© = 1 — cos?0 results in the
following expression for the tangent of G,

Tan 6, = ny/n, 41)

The.transmission coefficient is the ratio of the phasor representing the transmitted wave

to the phasor representing the incident wave, E/E,. It can be found using the boundary

conditions in a manner similar to that used to obtain the reflection coefficients. The trans-
mission coefficient for parallel polarization is

. T = 2n, cos 6, : @2)
" n,cos 8 + n, [l — (n/ny)? sin%6,]"2"

The transmission coefficient for perpendicular polarization is

.
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T = 2 cos 0, ”
Y7 cos ®, + [(nJ/n,)* - sin @,]"2 (43)

[II. MATRIX RAY OPTICS

Ray propagation analysis provides a useful description in many situations. In isotropic
materials, the ray direction is the direction of energy propagation. Rays are related to the
wave description of optics in that rays arc normal to constant phase surfaces. The matrix
description of ray propagation allows complex optical structures to be described as com-
binations of simple elements. The matrix describing the structure is the product of the matrices
of its elements. Below, the ray matrices for three optical elements that occur frequently in
fiber optic systems are found. ‘

A. Homogeneous Medium

A ray propagating through a homogeneous medium follows a straight line as shown in
Figure 2. The displacement and slope of the line relative to the optic axis at reference plane
2 is described by the following set of linear equations

r, = r, + dr (44)

rn=r
where r, and 1’, are the ray displacement and slope relative 1o the optic axis at reference
plane 2. r, and r', are the ray position and slope at reference planc i. The distance between
reference planes is d. When matrices are used, Equation 44 becomes

r,] [t d][r,
HER “)
B. Thin Lens

The ihin lens is an idealized model that provides an accurate approximation to actual
lenses. Paraxial rays are those rays propagating in directions nearly parallel to the axis. A
thin lens changes the slope of a paraxial ray propagating through it an amount proportional
to the displacement of the ray from the optical center of the lens. Actual lenses not obeying
this law are said to have aberrations. Ray displacement from the axis is unchanged by the
thin lens. Ray propagation from reference plane 1 just before a thin lens to reference plane
2 just after the thin lens is depicted in Figure 3 and is described by the following equation,

[Z] - [—lllf (1)] [:i] ‘ (46)

where f is the focal length of the lens.

C. Quadratic Index Medium

A medium whose index of refraction varies as the square of the distance from the optical
axis has the ability to guide ray's. Such a medium is an idealized model for graded-index
fibers. The index of refraction for such a medium is »

n=n, [l - 1/2 (t/a)] 47)

where n,, is the index of refraction con the optical axis, r is the distance from the optical axis,
and a is a constant. Ray trajecteries in this type of medium can be determined by applying



