ARTECH HOUSE

INFORMATION SECURITY AND PRIVACY SERIES

FUZZING

for Software Security
Testing and
Quality Assurance
20 1008 Zap T 1
T1®eis i1 901
2 111§ B . A
102 % 120 Byl
2 ®2s 788 2 O
20 Wen Lewn Vi
F Y 1.1 1
1 111 1@ #p
1 %01 F 1Py W
" Q-1 A
9 99 0l |

ARI TAKANEN « JARED D.DEMOTT
CHARLES MILLER

Fuzzing for Software
Security Testing and
Quality Assurance

Ari Takanen
Jared DeMott
Charlie Miller

ARTECH

HOUSE

BOSTON | LONDON
artechhouse.com

Library of Congress Cataloging-in-Publication Data
A catalog record for this book is available from the U.S. Library of Congress.

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library.

ISBN 13: 978-1-59693-214-2

Cover design by Igor Valdman

© 2008 ARTECH HOUSE, INC.
685 Canton Street
Norwood, MA 02062

All rights reserved. Printed and bound in the United States of America. No part of this
book may be reproduced or utilized in any form or by any means, electronic or
mechanical, including photocopying, recording, or by any information storage and
retrieval system, without permission in writing from the publisher.

All terms mentioned in this book that are known to be trademarks or service marks
have been appropriately capitalized. Artech House cannot attest to the accuracy of this
information. Use of a term in this book should not be regarded as affecting the validity
of any trademark or service mark.

10987654321

Fuzzing for Software
Security Testing and
Quality Assurance

This book is dedicated to our families and friends . . .

. .. and also to all quality assurance specialists and security experts
who are willing to share their knowledge and expertise
to enable others to learn and improve their skills.

Foreword

It was a dark and stormy night. Really.

Sitting in my apartment in Madison in the Fall of 1988, there was a wild mid-
west thunderstorm pouring rain and lighting up the late night sky. That night, I was
logged on to the Unix systems in my office via a dial-up phone line over a 1200 baud
modem. With the heavy rain, there was noise on the line and that noise was inter-
fering with my ability to type sensible commands to the shell and programs that I
was running. It was a race to type an input line before the noise overwhelmed the
command.

This fighting with the noisy phone line was not surprising. What did surprise
me was the fact that the noise seemed to be causing programs to crash. And more
surprising to me was the programs that were crashing—common Unix utilities that
we all use everyday.

The scientist in me said that we need to make a systematic investigation to try
to understand the extent of the problem and the cause.

That semester, [was teaching the graduate Advanced Operating Systems course
at the University of Wisconsin. Each semester in this course, we hand out a list of
suggested topics for the students to explore for their course project. I added this
testing project to the list.

In the process of writing the description, I needed to give this kind of testing a
name. [wanted a name that would evoke the feeling of random, unstructured data.
After trying out several ideas, I settled on the term “fuzz.”

Three groups attempted the fuzz project that semester and two failed to achieve
any crash results. Lars Fredriksen and Bryan So formed the third group, and were
more talented programmers and most careful experiments; they succeeded well
beyond my expectations. As reported in the first fuzz paper [cite], they could crash
or hang between 25-33% of the utility programs on the seven Unix variants that
they tested.

However, the fuzz testing project was more than a quick way to find program
failures. Finding the cause of each failure and categorizing these failures gave the
results deeper meaning and more lasting impact. The source code for the tools and
scripts, the raw test results, and the suggested bug fixes were all made public. Trust
and repeatability were crucial underlying principles for this work.

In the following years, we repeated these tests on more and varied Unix sys-
tems for a larger set of command-line utility programs and expanded our testing to
GUI programs based on the then-new X-window system [cite fuzz 1995]. Windows
followed several years later [cite fuzz 2000] and, most recently, MacOS [cite fuzz
2006]. In each case, over the span of the years, we found a lot of bugs and, in each
case, we diagnosed those bugs and published all of our results.

XV

Xvi

Foreword

In our more recent research, as we have expanded to more GUI-based applica-
tion testing, we discovered that classic 1983 testing tool, “The Monkey” used on the
earlier Macintosh computers [cite Hertzfeld book]. Clearly a group ahead of their
time.

In the process of writing our early fuzz papers, we came across strong resist-
ance from the testing and software engineering community. The lack of a formal
model and methodology and undisciplined approach to testing often offended
experienced practioners in the field. In fact, I still frequently come across hostile
attitudes to this type of “stone axes and bear skins” (my apologies to Mr. Spock)
approach to testing.

My response was always simple: “We’re just trying to find bugs.” As I have
said many times, fuzz testing is not meant to supplant more systematic testing. It is
just one more tool, albeit, and an extremely easy one to use, in the tester’s toolkit.

As an aside, note that the fuzz testing has not ever been a funded research effort
for me; it is a research advocation rather than a vocation. All the hard work has been
done by a series of talented and motivated graduate students in our Computer Sci-
ences Department. This is how we have fun.

Fuzz testing has grown into a major subfield of research and engineering, with
new results taking it far beyond our simple and initial work. As reliability is the
foundation of security, so has it become a crucial tool in security evaluation of soft-
ware. Thus, the topic of this book is both timely and extremely important. Every
practitioner who aspires to write safe and secure software needs to add these tech-
niques to their bag of tricks.

Barton Miller

Madison, Wisconsin
April 2008

Operating System Utility Program Reliability—The Fuzz Generator

The goal of this project is to evaluate the robustness of various Unix utility pro-
grams, given an unpredictable input stream. This project has two parts. First, you
will build a “fuzz” generator. This is a program that will output a random charac-
ter stream. Second, you will take the fuzz generator and use it to attack as many
Unix utilities as possible, with the goal of trying to break them. For the utilities that
break, you will try to determine what type of input caused the break.

The Program

The fuzz generator will generate an output stream of random characters. It will
need several options to give you flexibility to test different programs. Below is the
start for a list of options for features that fuzz will support. It is important when
writing this program to use good C and Unix style, and good structure, as we hope
to distribute this program to others.

Foreword xvii

-p only the printable ASCII characters
-a all ASCII characters
-0 include the null (0 byte) character
-1 generate random length lines (\\n terminated strings)
—f name record characters in file “name”
—d nnn delay nnn seconds following each character
—r name replay characters in file “name” to output
The Testing

The fuzz program should be used to test various Unix utilities. These utilities include
programs like vi, mail, cc, make, sed, awk, sort, etc. The goal is to first see if the pro-
gram will break and second to understand what type of input is responsible for the

break.

Preface

Still today, most software fails with negative testing, or fuzzing, as it is known by
security people. I (Ari) have never seen a piece of software or a network device that
passes all fuzz tests thrown at it. Still, things have hopefully improved a bit from 1996
when we started developing our first fuzzers, and at least from the 1970s when Dr.
Boris Beizer and his team built their fuzzer-like test automation scripts. The key
driver for the change is the adaptation of these tools and techniques, and availabil-
ity of the technical details on how this type of testing can be conducted. Fortunately
there has been enormous development in the fuzzer market, as can be seen from the
wide range of available open source and commercial tools for this test purpose.

The idea for this book came up in 2001, around the same time when we com-
pleted the PROTOS Classic project on our grammar-based fuzzers. Unfortunately
we were distracted by other projects. Back then, as a result of the PROTOS project,
we spawned a number of related security “spin-offs.” One of them was the com-
mercial company Codenomicon, which took over all technical development from
PROTOS Classic, and launched the first commercial fuzzers in early 2002 (those were
for SIP, TLS, and GTP protocols if you are interested). Another was the PROTOS
Genome project, which started looking at the next steps in fuzzing and automated
protocol reverse-engineering, from a completely clean table (first publicly available
tests were for various compression formats, released in March 2008). And the third
was FRONTIER, which later spun-out a company doing next-gen network analysis
tools and was called Clarified Networks. At the same time we kept our focus on fuzzer
research and teaching on all areas of secure programming at the University of Oulu.
And all this was in a small town of about two hundred thousand people, so you could
say that one out of a thousand people were experts in fuzzing in this far-north loca-
tion. But, unfortunately, the book just did not fit into our plans at that time.

The idea for the book re-emerged in 2005 when I reviewed a paper Jared DeMott
wrote for the Blackhat conference. For the first time since all the published and some
unpublished works at PROTOS, I saw something new and unique in that paper. I
immediately wrote to Jared to propose that he would co-author this fuzzer book proj-
ect with me, and later also flew in to discuss with him to get to know him better. We
had completely opposite experiences and thoughts on fuzzing, and therefore it felt
like a good fit, and so finally this book was started. Fortunately I had a dialog going
on with Artech House for some time already, and we got to start the project almost
immediately.

We wanted everything in the book to be product independent, and also technol-
ogy independent. With our combined experiences, this seemed to be natural for the
book. But something was still missing. As a last desperate action in our constant strug-
gle to get this book completed by end of 2007, we reached out to Charlie Miller. The

Xix

XX

Preface

main reason for contacting him was that we wanted to have a completely independ-
ent comparison of various fuzzer technologies, and did not want to write that our-
selves as both of us had strong opinions in various, conflicting, directions. I, for
instance, have always been a strong believer in syntax testing-based negative testing
(some call this model-based fuzzing), with no random component to the tests. Jared
on the other hand was working on evolutionary fuzzers. Charlie accepted to write a
chapter, but later actually got more deeply involved in the project and ended up writ-
ing almost one third of the book (Charlie should definitely do more traveling, as he
claims he wrote all that in an airplane).

Our goal was to write something that would be used as a course book at uni-
versities, but also as a useful reference for both quality assurance engineers and
security specialists. And I think we succeeded quite well. The problem with other
available books was that they were targeted to either security people, or to quality
assurance, or on very rare occasions to the management level. But fuzzing is not
only about security, as fuzzers are used in many closed environments where there
are no security threats. It is also not only about software quality. Fuzzing is a con-
vergence of security practices into quality assurance practices, or sometimes the
other way around. In all 100+ global customers of Codenomicon fuzzing tools (in
late 2007), from all possible industry verticals, the same logic is always apparent
in deploying fuzzers: Fuzzing is a team effort between security people and quality
assurance people.

There are many things that were left out of this edition of the book, but hopefully
that will motivate you to buy enough books so that the publisher will give us an
opportunity to improve. This book will never be complete. For example in 2007
and early 2008 there were a number of completely new techniques launched around
fuzzing. One example is the recent release of the PROTOS Genome. Also, commer-
cial companies constantly continue to develop their offerings, such as the rumors of
the Wurldtech “Achilles Inside” (whatever that will be), and the launch of the “fifth
generation” Codenomicon Defensics 3.0 fuzzing framework, both of which were not
covered in this book. Academics and security experts have also released new frame-
works and tools. One example that you definitely should check out is the FuzzGuru,
available through OWASP. I am also expecting to see something completely different
from the number of academics working with fuzzing, such as the techniques devel-
oped by the Madynes team in France.

We promise to track those projects now and in the future, and update not only
this book, but also our web site dedicated to fuzzing-related topics (www.fuzz-test
.com.) For that, please contact us with your comments, whether they are positive or
negative, and together we will make this a resource that will take software develop-
ment a giant leap forward, into an era where software is reliable and dependable.

Ari, Jared, and Charlie

Acknowledgments

From Ari Takanen

There have been several people who have paved the way toward the writing of this
book. First of all, I want to give big hugs and thanks to my home team. My family
has been supportive in this project even if it has meant 24-hour workdays away from
family activities. Combining a couple of book projects with running a security com-
pany, traveling 50% of the year around the globe attending various conferences,
and meeting with global customers can take a bit of time from the family. I keep
making promises about dedicating more time for the family, but always fail those
promises.

I am forever grateful to both Marko Laakso and Prof. Juha Réning from Univer-
sity of Oulu for showing me how everything is broken in communication technolo-
gies. Everything. And showing that there is no silver bullet to fix that. That was really
eye-opening. To me, my years as a researcher in the OUSPG enabled me to learn
everything there was to learn about communications security.

Enormous thanks to all my colleagues at Codenomicon, for taking the OUSPG
work even further through commercializing the research results, and for making it
possible for me to write this book although it took time from my CTO tasks. Special
thanks to Heikki and Rauli. Thank you to everyone who has used either the Code-
nomicon robustness testing tools, or the PROTOS test-suites, and especially to every-
one who came back to us and told us of their experiences with our tools and
performing security testing with them. Although you might not want to say it out
loud, you certainly know how broken everything is. Special thanks to Sven Weizeneg-
ger who provided valuable insight into how fuzzers are used and deployed in real-
life penetration testing assignments.

I would like to thank everyone involved at Artech House, and all the other peo-
ple who patiently helped with all the editing and reviewing, and impatiently reminded
about all the missed deadlines during the process. Special thanks to Dr. Boris Beizer
for the useful dialog on how syntax testing (and fuzzing) was done in the early 70s,
and to Michael Howard for the review comments.

Finally, thanks Jared and Charlie for joining me in this project. Although it was
slow and painful at times, it certainly was more fun than anything else.

From Jared DeMott

Jared would like to thank God and those he’s known. The Lord formed me from dust
and my family, friends, co-workers, classmates, and students have shaped me from
there. Special thanks to Ari, Charlie, and Artech for working hard to keep the book
project on track. Thanks to my beautiful wife and two energetic boys for supporting

XXi

XXii

Acknowledgments

all of my career endeavors, and thanks to our parents for giving us much needed
breaks and support.

Our goal is that readers of this book will receive a well-rounded view of comput-
ing, security, software development, and of course an in-depth knowledge of the art
and science of this evolving branch of dynamic software testing known as fuzzing.

From Charlie Miller

I’d like to thank my family for their love and support. They make everything worth
while. I’d also like to thank JRN, RS, JT, OB, and EC for teaching me this stuff.
Finally, thanks to Michael Howard for his insightful comments while editing.

e
Recent Related Artech House Titles

Achieving Software Quality Through Teamwork, Isabel Evans

Agile Software Development, Evaluating the Methods for Your Organization,
Alan S. Koch

Agile Systems with Reusable Patterns of Business Knowledge: A Component-Based
Approach, Amit Mitra and Amar Gupta

Discovering Real Business Requirements for Software Project Success,
Robin F. Goldsmith

Engineering Wireless-Based Software Systems and Applications, Jerry Zeyu Gao,
Simon Shim, Xiao Su, and Hsin Mei

Enterprise Architecture for Integration: Rapid Delivery Methods and Technologies,
Clive Finkelstein

Fuzzing for Software Security Testing and Quality Assurance, Ari Takanen, Jared DeMott,
and Charlie Miller

Handbook of Software Quality Assurance, Fourth Edition, G. Gordon Schulmeyer

Implementing the ISO/IEC 27001 Information Security Management Standard,
Edward Humphreys

Open Systems and Standards for Software Product Development, P. A. Dargan
Practical Insight into CMMI®, Tim Kasse
A Practitioner’s Guide to Software Test Design, Lee Copeland

Role-Based Access Control, Second Edition, David F. Ferraiolo, D. Richard Kuhn, and
Ramaswamy Chandramouli

Software Configuration Management, Second Edition, Alexis Leon
Utility Computing Technologies, Standards, and Strategies, Alfredo Mendoza

Workflow Modeling: Tools for Process Improvement and Application Development,
Alec Sharp and Patrick McDermott

For further information on these and other Artech House titles, including previously considered
out-of-print books now available through our In-Print-Forever® (IPF®) program, contact:

Artech House Artech House

685 Canton Street 46 Gillingham Street

Norwood, MA 02062 London SW1V 1AH UK

Phone: 781-769-9750 Phone: +44 (0)20 7596-8750

Fax: 781-769-6334 Fax: +44 (0)20 7630-0166

e-mail: artech@artechhouse.com e-mail: artech-uk@artechhouse.com

Find us on the World Wide Web at: www.artechhouse.com
|

Contents

Foreword

Preface

Acknowledgments

CHAPTER 1

Introduction

1.1 Software Security

1.1.1 Security Incident
1.1.2 Disclosure Processes
1.1.3 Attack Surfaces and Attack Vectors
1.1.4 Reasons Behind Security Mistakes
1.1.5 Proactive Security
1.1.6 Security Requirements
1.2 Software Quality
1.2.1 Cost-Benefit of Quality
1.2.2 Target of Test
1.2.3 Testing Purposes
1.2.4 Structural Testing
1.2.5 Functional Testing
1.2.6 Code Auditing
1.3 Fuzzing
1.3.1 Brief History of Fuzzing
1.3.2 Fuzzing Overview
1.3.3 Vulnerabilities Found with Fuzzing
1.3.4 Fuzzer Types
1.3.5 Logical Structure of a Fuzzer
1.3.6 Fuzzing Process

1.3.7
1.3.8

Fuzzing Frameworks and Test Suites
Fuzzing and the Enterprise

1.4 Book Goals and Layout

CHAPTER 2

Software Vulnerability Analysis
2.1 Purpose of Vulnerability Analysis

2.1.1

Security and Vulnerability Scanners

XV
Xix

XXi

35

36
36

vii

viii

Contents

2.2

2.3
2.4

2.5

2.6

2.7

2.8

People Conducting Vulnerability Analysis
2.2.1 Hackers

2.2.2 Vulnerability Analysts or Security Researchers
2.2.3 Penetration Testers

2.2.4 Software Security Testers

2.2.5 [IT Security

Target Software

Basic Bug Categories

2.4.1 Memory Corruption Errors
2.4.2 Web Applications

2.4.3 Brute Force Login

2.4.4 Race Conditions

2.4.5 Denials of Service

2.4.6 Session Hijacking

2.4.7 Man in the Middle

2.4.8 Cryptographic Attacks

Bug Hunting Techniques

2.5.1 Reverse Engineering

2.5.2 Source Code Auditing

Fuzzing

2.6.1 Basic Terms

2.6.2 Hostile Data

2.6.3 Number of Tests

Defenses

2.7.1 Why Fuzzing Works

2.7.2 Defensive Coding

2.7.3 Input Verification

2.7.4 Hardware Overflow Protection
2.7.5 Software Overflow Protection
Summary

CHAPTER 3

Quality Assurance and Testing

3.1

3.2

3.3

Quality Assurance and Security

3.1.1 Security in Software Development

3.1.2 Security Defects

Measuring Quality

3.2.1 Quality Is About Validation of Features
3.2.2 Quality Is About Finding Defects

3.2.3 Quality Is a Feedback Loop to Development
3.2.4 Quality Brings Visibility to the Development Process
3.2.5 End Users’ Perspective

Testing for Quality

3.3.1 V-Model

3.3.2 Testing on the Developer’s Desktop

3.3.3 Testing the Design

38
40
40
41
41
41
42
42
42
50
52
53
53
54
54
54
55
55
57
59
59
60
62
63
63
63
64
65
66
68

71

71
72
73
73
73
76
76
77
77
77
78
79
79

Contents) ix

3.4 Main Categories of Testing 79
3.4.1 Validation Testing Versus Defect Testing 79
3.4.2 Structural Versus Functional Testing 80

3.5 White-Box Testing 80
3.5.1 Making the Code Readable 80
3.5.2 Inspections and Reviews 80
3.5.3 Code Auditing 81

3.6 Black-Box Testing 83
3.6.1 Software Interfaces 84
3.6.2 Test Targets 84
3.6.3 Fuzz Testing as a Profession 84

3.7 Purposes of Black-Box Testing 86
3.7.1 Conformance Testing 87
3.7.2 Interoperability Testing 87
3.7.3 Performance Testing 87
3.7.4 Robustness Testing 88

3.8 Testing Metrics 88
3.8.1 Specification Coverage 88
3.8.2 Input Space Coverage 89
3.8.3 Interface Coverage 89
3.8.4 Code Coverage 89

3.9 Black-Box Testing Techniques for Security 89
3.9.1 Load Testing 89
3.9.2 Stress Testing 90
3.9.3 Security Scanners 90
3.9.4 Unit Testing 90
3.9.5 Fault Injection 90
3.9.6 Syntax Testing 91
3.9.7 Negative Testing 94
3.9.8 Regression Testing 95

3.10 Summary 96

Fuzzing Metrics 99

4.1 Threat Analysis and Risk-Based Testing 103
4.1.1 Threat Trees 104
4.1.2 Threat Databases 105
4.1.3 Ad-Hoc Threat Analysis 106

4.2 Transition to Proactive Security 107
4.2.1 Cost of Discovery 108
4.2.2 Cost of Remediation 115
4.2.3 Cost of Security Compromises 116
4.2.4 Cost of Patch Deployment 117

4.3 Defect Metrics and Security 120
4.3.1 Coverage of Previous Vulnerabilities 121

4.3.2 Expected Defect Count Metrics 124

Contents

4.4
4.5

4.3.3 Vulnerability Risk Metrics
4.3.4 Interface Coverage Metrics
4.3.5 Input Space Coverage Metrics
4.3.6 Code Coverage Metrics

4.3.7 Process Metrics

Test Automation for Security
Summary

CHAPTER 5

Building and Classifying Fuzzers

5.1

5.2

5.3

5.4

Fuzzing Methods

5.1.1 Paradigm Split: Random or Deterministic Fuzzing

5.1.2 Source of Fuzz Data
5.1.3 Fuzzing Vectors
5.1.4 Intelligent Fuzzing

5.1.5 [Intelligent Versus Dumb (Nonintelligent) Fuzzers
5.1.6 White-Box, Black-Box, and Gray-Box Fuzzing

Detailed View of Fuzzer Types

5.2.1 Single-Use Fuzzers

5.2.2 Fuzzing Libraries: Frameworks
5.2.3 Protocol-Specific Fuzzers

5.2.4 Generic Fuzzers

5.2.5 Capture-Replay

5.2.6 Next-Generation Fuzzing Frameworks: Sulley

5.2.7 In-Memory Fuzzing

Fuzzer Classification via Interface
5.3.1 Local Program

5.3.2 Network Interfaces

5.3.3 Files

5.3.4 APIs

5.3.5 Web Fuzzing

5.3.6 Client-Side Fuzzers

5.3.7 Layer 2 Through 7 Fuzzing
Summary

CHAPTER 6

Target Monitoring

6.1

6.2

What Can Go Wrong and What Does It Look Like?
6.1.1 Denial of Service (DoS)

6.1.2 File System—Related Problems

6.1.3 Metadata Injection Vulnerabilities

6.1.4 Memory-Related Vulnerabilities

Methods of Monitoring

6.2.1 Valid Case Instrumentation

6.2.2 System Monitoring

125
127
127
130
133
133
134

137

137
138
140
141
142
144
144
145
145
146
148
149
150
159
161
162
162
162
163
164
164
164
165
166

167

167
167
168
168
169
170
170
171

