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Preface

The monograph is dedicated to a class of models of optimization of trans-
portation networks (urban traffic networks or networks of railroads and
highways) in the given geographic area. One assumes that the data on dis-
tributions of population and of services/workplaces (i.e. sources and sinks of
the network) as well as the costs of movement with and without the help
of the network to be constructed, are known. Further, the models take into
consideration both the cost of everyday movement of the population and the
cost of construction and maintenance of the network, the latter being de-
termined by a given function on the total length of the network. The above
data suffice, if one considers optimization in long-term prospective, while
for the short-term optimization one also needs to know the transport plan
of everyday movements of the population (i.e. the information on “who goes
where”). Similar models can also be adapted for the optimization of networks
of different nature, like telecommunication, pipeline or drainage networks. In
the monograph we study the most general problem settings, namely, when
neither the shape nor even the topology of the network to be constructed is
a priori known.

To be more precise, given a region 2 C RY, we will model the transporta-
tion network to be constructed by an a priori generic Borel set X C 2. We
consider then the mass transportation problem in which the paths inside and
outside the network X' are charged differently. The aim is to find the best
location for X, in order to minimize a suitable cost functional F(X'), which
is given by the sum of the cost of transportation of the population, and the
penalization term depending on the length of the network, which represents
the cost of construction and maintenance of the network. To study the prob-
lem of existence of optimal solutions, we present first a relaxed version of the
optimization problem, where the network is represented by a Borel measure
rather than a set, and we prove the existence of a relaxed solution. We will
study then the properties of optimal relaxed solutions (measures) and prove
that, under suitable assumptions, the relaxed solution solve the original prob-
lem, i.e. in fact they correspond to rectifiable sets, and therefore can be called
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classical solutions. However, it will be shown that in general the problem
studied may have no classical solutions. We will also study some topological
properties of optimal networks, like closedness and the number of connected
components. In particular, we find rather sharp conditions on problem data,
which ensure the existence of closed optimal networks and/or optimal net-
works having at most countably many connected components. Finally, we will
prove a general regularity result on optimal networks. Namely, we will show
that an optimal network is covered by a finite number of Lipschitz curves
of uniformly bounded length, although it may have even uncountably many
connected components.
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.Chapter 1
Introduction

The present monograph treats one particular class of mathematical models
arising in urban planning, namely, the models of optimization of transporta-
tion networks such as urban traffic networks, networks of tram or metro
lines, railroads or highways. The optimization is performed so as to take into
account the known data of the distributions of the population and of ser-
vices/workplaces (or, more generally, sources and sinks of the network), the
costs of the transportation with and without using the network to be con-
structed, and the budgetary restrictions on construction and maintenance of
the network, as well as, in certain cases, the transportation plan of everyday
movement of the population. As an illustration, see the distribution of pop-
ulation as well as the railroad network in Italy (Figure 1.1). The functional
to be minimized corresponds to the overall cost of everyday transportation
of population from their homes to the services together with the cost of
construction and maintenance of the network. It is important to emphasize
that the shape and even the topology of the network is considered a priori
unknown.

From the most general point of view such models belong to the class of eco-
nomical optimal resource planning problems which were first studied in [44].
In the simplest cases under additional restrictions on the network such prob-
lems reduce to problems of minimization of so called average distance func-
tionals (see [20]), and are similar to the well-known discrete problems of
optimization of service locations (so-called Fermat-Weber, or k-median prob-
lems) studied by many authors (see, e.g. [7, 68, 69, 51]). Similar as well as
slightly different models have been proposed for telecommunication, pipeline
and drainage networks in [11, 41, 47], and are recently subject to extensive
study (see, for instance, [8, 9, 10, 17, 27, 34, 48, 55, 56, 62, 66, 52, 73, 74]. The
common kernel of all such models is the general (i.e. not necessarily discrete)
setting of the Monge-Kantorovich optimal mass transportation problem (see,
e.g. [42, 43, 67, 1, 36, 35, 60, 25, 38]); we give now a short description
of the mass transport problem, a more complete discussion is given in
Appendix A.

G. Buttazzo et al., Optimal Urban Networks via Mass Transportation, 1
Lecture Notes in Mathematics 1961, DOI: 10.1007/978-3-540-85799-0_1,
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2 1 Introduction

Fig. 1.1 Density of population (left) and railway network (right) in Italy

The mass transportation problem was first proposed by Monge [49]. Using
a modern language, this can be restated as follows: we are given a metric
space (X,d) and two finite Borel measures f* and f~ with the same total
mass || f*|| = ||f||. A Borel map T : X — X is said to be a transport map if it
moves f* on f7, that is, if Ty f* = f~ being T the push-forward operator
(see Appendix B.2). We are also given the cost function, which is a lower
semicontinuous function ¢ : X x X — R*; its meaning is very simple, namely
c(z,y) is the cost to move a unit mass from z to y. In the original setting of
Monge c(z,y) = d(z,y), more generally one is often interested in c(z,y) =
d(z,y)P. The Monge transport problem consists then in determining, among
all the transport maps, the optimal transport maps, that is, those maps which
minimize the total transportation cost given by

-

/ o(z, T(z)) df*(z).
X

It may easily happen that there are no transport maps at all, namely when the
measure f* has singular parts; it may also happen that, even thought there
are transport maps, the existence of optimal transport maps fails. Also for
this reason, it reveals of primary importance to consider the relaxed form of
the problem proposed by Kantorovich (see [42, 43]). The idea of Kantorovich
is to define transport plan any positive measure v on X x X such that the
two marginals of 7y are precisely f* and f~; the meaning is quite intuitive:
such a measure v is to be interpreted as the strategy of transportation which
moves a mass ¥({(z,y)}) from z to y; more precisely, it moves a total amount
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¥(C x D) of mass from the set C to the set D. An optimal transport plan,
then, is any transport plan -y minimizing the cost

/ c(z,y) dfv(x y).
XxX

It is to be noticed that the transport plans are a generalization of the trans-
port maps: indeed, given a transport map 7' the measure vyr := (Id, T)4 f"
is a transport plan, and moreover by definition

//){xxC(w,y)d'rT(_x,y)=/Xc(x,T(x)) dft (z) ;

so, the search of optimal plans is a generalization of the search of optimal
maps. The power of this new definition is evident: while, as we said, it may
happen that there are no transport maps, or no optimal transport maps,
there are always transport plans, as for instance f* ® f~. Moreover, there are
always optimal transport plans, since the function c is lower semicontinuous.
A more detailed introduction to mass transportation problems is given in
Appendix A.

In this monograph we consider a problem of urban planning, in which
we take as ambient space a region 2 C RN, with N > 2 since the one-
dimensional case is in fact trivial; the measure f* represents the density of
the population in the urban area {2 and the measure f~ represents the density
of the services or workplaces. We also consider a Borel set ¥ C (2 of finite
H length, which represents the urban transportation network that has to
be constructed to minimize the cost of transporting f* on f~ according to
some suitable cost functional.

Once the set X is given, the cost dx(z,y) to be paid in order to connect
any two points z and y of {2 is defined as the least “price” of moving along
a Lipschitz curve connecting =z and y given by the number

55(0) == A(S(0\ X)) + B(H#' (0N 2)).

The functions A and B are two given nondecreasing functions from R* to
R* with A(0) = B(0) = 0, A being continuous and B lower semicontinuous:
A(s) is the “cost” of covering a distance s by own means, that is a number
including the expenses for the fuel, the fare of the highway, the fatigue of
moving by feet, the time consumption and so on; on the other hand, B(s)
represents the cost of covering the distance s making use of the transportation
network (i.e. the “cost of the ticket”).

In this monograph, we assume the point of view of an “ideal city”, where
the only goal is to minimize the total expenses for the people; therefore, the
number B(s) should be regarded just as a tax that people pay to contribute to
the cost of the network when they use it, and the case B = 0, corresponding
to a situation where everybody can use the public transportation for free, is
the simplest (and most common in the literature) choice in this ideal setting.
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An opposite point of view, where the owner of the network aims to maximize
his total income by choosing a suitable pricing policy B, has been studied
in [18]. .
Having fixed the set X, the“popﬁlation will naturally try to minimize
its expenses, that is, people choose to move following a transport plan +y
Simizing

Is(y) = //X _ds(@y)dray)

among all admissible transport plans, and we denote by M K (X') the respec-
tive minimum (or the infimum if the minimum is not achieved). We want to
find a network X' minimizing the total cost for the people. However, M K (X)
is not the only cost to be considered: otherwise, a network of infinite length
covering the whole 2 would be clearly the optimal choice. We will then con-
sider also a very general cost function H (%1(2)) for the maintenance of

the network, that will depend on the length #'(X) of ¥ and that diverges
if the length goes to oo. For instance, one can set

0, ifl<L,
H©) '~{+oo, if 1 > L,

which corresponds to a situation where one is allowed to build a network of
total length not exceeding L. Our goal is then to find an optimal network
Yopt Which minimizes ¥ — MK(X) + H(H# 1(Z‘)) among the admissible
sets Y.

The above problem can be considered as a long-term optimization model.
In fact, in this case while choosing the optimal network X' one is allowed to
change freely the transportation plan 7 (i.e. it is supposed that people may
consider it more convenient to choose different destinations for their every-
day movements, e.g. change the shops they usually use or even change their
workplace, in view of the cost of transportation), which is only reasonable in
a quite long-term prospective. On the contrary, the reasonable model for the
short-term prospective is obtained by considering given the transport plan
(i.e. the information on “who goes where” in the everyday movements) and
thus minimizing ¥ — I'(v)+H (" (X)) among the admissible sets X. How-
ever, it is easy to notice, similarly to [18], that the short-term optimization
problem is in fact simpler than the long-term one. Hence in this monograph
we concentrate on studying the latter with all the results applying also to
the former.

Plan of the Monograph

In Chapter 2 we define the general problem setting without additional as-
sumptions on admissible networks. The simplest case, when X' is a priori
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required to be connected, will be considered in Chapter 3, and some known
facts about this problem will be reported. In this case, by a suitable use
of the Hausdorff convergence on conwbed sets, we show the existence of an
optimal network. A particular-situation happens when the goal of the planner
is simply to transport the source mass f* to a network X in the most efficient
way, that is f~, instead of being a priori fixed, is chosen in an optimal way
among the probabilities with support in Y. This problem then corresponds
to the minimization of the functional

F(X):= /(;A(dist (z, %)) df *(z). (1.1)

We will refer to the minimization problem for the functional F' defined
by (1.1) as the irrigation problem in view of the natural interpretation of
the cost (1.1) as the total effort to irrigate the mass distribution f* us-
ing a network Y. It is assumed that the effort to irrigate the point z € 2
depends on its distance ¢ from the network X' through the function A(t).
Taking A(t) := t we have the minimization problem for the average distance
functional

min {/ dist(z, £)df *(z) : ¥ C 2, ¥ connected, " (X) < L},
2

that has been studied in several recent papers (see, e.g. [17, 21, 19, 20, 54]).
On Fig. 1.2 below we show the plot of two cases when (2 is the unit bi-
dimensional disc, f* is the Lebesgue measure over {2, and X varies among
all connected sets of length L, with two different choices of L.

It is immediate to see that dropping the connectedness assumption leaving
the cost functional as in (1.1) would give zero as the minimal value of F, since
the set X would have the interest to spread everywhere on (2. This is why the
particular situation considered by functional (1.1) is meaningful only in the
connected framework.

Fig. 1.2 Optimal irrigation networks for L = 0.5 (left) and L = 1 (right)
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In Chapter 4 we show that without extra assumptions on the functions A,
B and H there may be no optimal networks. Therefore, we introduce a relaxed
version of the problem, where the setyre replaced by Radon measures, and
in particular each set X correspends to the measure ¢ '|_X. Then, we show
the existence of optimal “relaxed networks”, and in particular we prove that
optimal measures y on {2 of the form u = a(x)H# 'L X for a one-dimensional
rectifiable set X and a Borel function a : X — [0, 1] always exist. Roughly
speaking, this means that there is an optimal transportation network concen-
trated on a Borel set X, but it has a pointwise density in [0, 1]: the density
1 corresponds to a standard railway, where covering a path of length I has
a cost B(l). In general, covering a path of length I on a network of density
0 < p <1 costs A((1 — p)l) + B(pl), as if one covers a length pl on the
network, and the remaining (1 — p)! by own means. Moreover we show that,
under suitable assumptions, there are also “classical solutions”, that is, op-
timal networks which naturally correspond to sets (in other words, relaxed
solutions with the coefficient a(z) above taking only values 0 and 1). However,
we give counterexamples showing that this does not always occur.

In Chapter 5 we consider two questions, namely whether or not there ex-
ists an optimal classical network which is closed, or which has only countably
many connected components. We present counterexamples to show that this
is not always the case, even when classical solutions exist. However, we are
able to find conditions under which one has the existence of an optimal clas-
sical network that is closed or has countably many connected components.

In Chapter 6 we prove that, under suitable hypotheses, there is a classical
optimal network that is covered by a finite number of Lipschitz curves of
uniformly bounded length, even if it may still have infinitely many (even
more than countably many) connected components.

Finally, the monograph is concluded by two appendices, which present
with more details the general mass transportation problem and some tools
from Geometric Measure Theory, among which the Disintegration Theorem
and the I'—convergence, which are used through the volume.



Chapter 2
Problem Setting

//

In this chapter we introduce the notation and the preliminaries to rigor-
ously set the problem of optimal networks. The formulation in the sense of
L. Kantorovich, by using transport plans, i.e. measures on the product space
£2 x 12, will be presented together with a second equivalent formulation where
the main tools are the so-called transport path measures that are measures on
the family of curves in §2. This seems to be a very natural formulation that
has already been used in previous papers (see for instance [24, 65, 6, 58]) and
that allows to obtain in a rather simple way existence results and necessary
conditions of optimality.

2.1 Notation and Preliminaries

In this monograph the ambient space §2 is assumed to be a bounded, closed,
N —dimensional convex subset of RN, N > 2, equipped with the Euclidean
distance; the convexity assumption is made here only for simplicity of presen-
tation; in fact, all the results are still valid in the more general case of bounded
Lipschitz domains. For any pair of Lipschitz paths 6y, 65 : [0,1] — 2, we in-
troduce the distance ~

do(61,02) = inf { max|s () ~ 62(p(0)],
’ (2.1)
¢ :[0,1] — [0, 1] increasing and bijective} :

where | - | is the Euclidean norm in RY. We define then © as the set of the
equivalence classes of Lipschitz paths in {2 parametrized over [0, 1], where
two paths 6; and 60 are considered equivalent whenever dg(6;,6;) = 0: it is
easily noticed that © is a separable metric space equipped with the distance
do. Moreover, simple examples show that the infimum in (2.1) might not
be attained. It will be often useful to remind that, given any sequence {6, }

G. Buttazzo et al., Optimal Urban Networks via Mass Transportation, 7
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8 2 Problem Setting

of paths in © with uniformly bounded Euclidean lengths, by Ascoli-Arzela
Theorem one can find a # € © such that (possibly up to a subsequence)
0, 9o, 9. This implies, in particular, that the corresponding curves 6.([0,1])
converge in the Hausdorff distance to 6([0, 1]), while the converse implication
is not true. Notice that

0, 220 — 2 (6(0,1])) < liminf 2" (6,([0,1])) ,

where " denotes the one-dimensional Hausdorff measure.

In the sequel, for the sake of brevity we will abuse the notation calling
0 also the set 6([0,1]) C 2, when not misleading. We call endpoints of the
path @ the points #(0) and 6(1), and, given two paths 6,02 € © such that
0:(1) = 05(0), the composition 6, - 6, is defined by the formula

By - Oy(t) = 0:(2t) for0<t<1/2,
2= 10,2t —1) for 1/2<t < 1.

As already introduced in Chapter 1, we let now A, B : Rt — R* be the costs
of moving by own means and by using the network, i.e. A(s) (resp. B(s)) is
the cost corresponding to a part of the itinerary of length s covered by own
means (resp. with the use of the network). This means that, if the urban
network is a Borel set X C (2 of finite length, the total cost of covering a
path 6 € © is given by

55(0) == A(H'(0\ 2)) + B(H' (6N X)), (2.2)

since the length J#" (6\ X) is covered by own means and the length J#" (4N %)
is covered by the use of the network. Concerning the functions A and B, we
make from now on the following assumptions:

A is nondecreasing, continuous and A(0) =0; (2.3)
B is nondecreasing, l.s.c. and B(0) =0. (2.4)

Note that these hypotheses follow the intuition: the meaning of the assump-
tions A(0) = 0, B(0) = 0 and of the monotonicity are obvious, while the
continuity of the function A means that a slightly longer path cannot have
a much higher cost, and it is a natural assumption once one moves by own
means. On the contrary, a continuity assumption on the function B would
rule out some of the most common pricing policies which occur in many real
life urban transportation networks: for instance, often such a pricing policy
is given by a fixed price (the price of a single ticket) for any positive distance,
or is a piecewise constant function.

We define now a “distance” on 2 which depends on X and is given by the
least cost of the paths connecting two points: in short,

ds(z,y) :=inf {6x(0): 6 € O, 0(0) ==z, (1) =y} . (2.5)



