David M. Chess

PROGRAMMING

Programming in IBM PC DOS
Pascal

David M. Chess
IBM Thomas J. Watson Research Center

Prentice-Hall, Inc., Englewood Cliffs, New Jersey 07632

Library of Congress Catalog Card Number 84-42860

Editorial/production supervision: Karen Skrable Fortgang
Cover design: Photo Plus Art
Manufacturing buyer: Gordon Osbourne

TO MARGARET

© 1985 by Prentice-Hall, Inc., Englewood Cliffs, New Jersey 07632

LIMITS OF LIABILITY AND DISCLAIMER OF WARRANTY

The author and publisher of this book have used their best
efforts in preparing this book. These efforts include the
development, research, and testing of the theories and
programs to determine their effectiveness. The author and
publisher make no warranty of any kind, expressed or
implied, with regard to these programs or the documentation
contained in this book. The author and publisher shall not be
liable in any event for incidental or consequential damages in
connection with, or arising out of, the furnishing,
performance, or use of these programs.

All rights reserved. No part of this book may be reproduced,
in any form or by any means,
without permission in writing from the publisher.

Printed in the United States of America

0 9 8 7 6 54 3 2 1

ISBN 0-13-730292-4 0L

PRENTICE-HALL INTERNATIONAL, INC., London
PRENTICE-HALL OF AUSTRALIA PTY. LIMITED, Sydney
EDITORA PRENTICE-HALL DO BRASIL, LTDA., Rio de Janeiro
PRENTICE-HALL CANADA INC., Toronto

PRENTICE-HALL OF INDIA PRIVATE LIMITED, New Delhi
PRENTICE-HALL OF JAPAN, INC., Tokyo

PRENTICE-HALL OF SOUTHEAST ASIA PTE. LTD., Singapore
WHITEHALL BOOKS LIMITED, Wellington, New Zealand

CONTENTS

I, Introductionccoiiiuneeoneeeeensoaanosasansosaeeanesonaesennes 1
1.1 Organization of the Book i, 2
2. Background ..cciisissssissivssiiinnasicsesdi s sniesesisdseeiieaseesne 4
2.1 DOS,BIOS, and Pascali ittt e 4
2.2 About Compilation and Linking i i 5
23 AQuick Path e 7
2.4 Compilationand Link Files i, 9
2.5 OnWard ... e e e e e 10
Part One -- Essential Pascal ittt nennnneeeennneens 11
3: BasiCPaSCAUT icuss 55 600ieim 6 o5 551856 8 5 5 518060 5050050815 56 5 be 65055005086 05 6 806 8 11
3.1 Pascal Programmingttt e 11
3.2 Identifiers e 12
3.3 The Program Heading:comussomwans s summes s smmass s smmmuns simsss s i 12
3.4 Variable and Type Declarationsc.uiiiiiiiininnnnnnnnnne... 13
3.5 The Simple Typesttt ettt et e e e 14
3.6 Structured TypPesottt e 18
3.7 Reference TyPesttt ittt et e e e 26
3.8 COnNStaNtSttt it e e e e e e 29
3.9 Value Sectionsttt 30
3.10 Attributesof Variablest 30
3.11 Notes on Declaration Sectionsoiiiiiiiniiiimnnnnnennnn. 32
3.12 Subroutine Declarationsttt 33
313 CONCIUSION . ..ttt ettt et e e e ettt e e 37
4, BaSiCPasCAl IT ¢ uccvoimsmwoasianmssssssiones sesionessssnessssssnsessssessss 38
4.1 STAEMENLS . .vwss s s vmmus s 8 6w m5 8 5 68 @35 5 56 WG W65 56 BE 65 5 555 b os s s 5amme 38
4.2 Assignment and Operatorsuuutemimtee e 40
4.3 Decision Statementsttt e e 42
4.4 Control FIoW e e 44
4.5 Miscellaneous Statementsi ittt 48
4.6 Extended Statements 50
5. Built-in Power0iiiittuiueeneeeroseocneescssoensosscsnnnnennnns 53
5.1 Procedures and FUnctionsttt mieiinnennennn. 53
5.2 Predeclared Mathematical0 ittt 54

5.3 External Mathematicalttt e e 58

54 StringRelatedcsovessnmsasssnmmas sumenss sammens s nases s swamva s 63
5.5 Predeclared File Relatedccciuuiiiiiiiiinnnnneeeeennannnens 66
5.6 Low-LevelFileRelatedc.0iiiiiiinitmnneeneeeaneannnnss 68
5.7 Miscellaneous Predeclared ittt 71
5.8 Miscellaneous EXternalt e 76
5.9 Other ROULINES . ..ottt ittt et et ettt e e e ettt e e 78
5.10 CONCIUSION . ..ttt ittt ettt e et e e e e e e e 80
Part Two--The Detailsciiiiiiiiniierennnnenserssoonnssnssaanes 81
6. PascalDataFilesc.iuiiiiiiiiieeteeeenenecensossnanssnsnsnns 81
6.1 PascalFilesand DOS Files ittt et 81
6.2 TypESOfFile§ i ccowmusss sommas cnmmes s su@@ns § EEAES 3§ aDE 8 ¢ 580853 83
6.3 DevicesasFIesS :::s:uosssosmuns sammisssas@anis sdnsnsssinbonigseansis 86
6.4 Operationson Files i e 87
6.5 More Featuresttt e e e 94
7. ScreenHandling0itiuiitiiiiiiiiiiiiieeneeoeonnnseseonnnons 99
7.1 The PC’s Displaysttt 100
7.2 Techniques and TrAdeoffS . ::smwuns copsnms somenss sE@umes su@rss 5555 100
T3 Pascal WILE :smsuai i sommss s snaans s d5msias s s8muins iddmaai sds@maisidmn 100
7.4 Using ANSLSYS under DOS 2.0 e 102
7.5 Using the BIOS e e 108
7.6 Writing Directly to Screen Memoryttt 117
7.7 Multiple Displaysttt 125
7.8 Some Speed Considerationsiiiiieterrnnnnennnn. 126
749 SUMMBEY s smwwsssswmps s s sowms 5§ spmmai ps@sni s i Fue9s § s sRBEEs & 0 127
8. Keyboard I/O iiuiiitiiiiiiiiietintteessneseessncscasanssansas 128
8.1 Pascal Read 128
8.2 Usingthe KeyboardasaFile 130
8.3 Scan Codes and Keystrokesc.oiuiiminininnnnnnnnnnnnnnnnn 132
8.4 TheDOS Callttt et e e e et 134
8.5 Shift Statesand the BIOS Byte it 135
8.6 Using ANSLSYS to Redefine the Keyboard 138
8.7 CONCIUSION . . ittt t ittt e e e e 139
9. DIOS SETVICES + s 555 5161615 s @ 9 51 508 16 18 % 30 6 579 8 35 88 S1576 1% © 191 9) 57848 (8 6 & 4§08 (8 16 & 9 9, 9) &38 (8 1 140
9.1 DOSXQQ - Accessing DOS Functions0iiiniiunnnnnn.. 141
9.2 Useful DOS FUnCtionsiiiiiii ittt 142
9.3 Other DOS FUNnCtionsttt e 152

iv Contents

10. Separate Compilationcciiuiiirenerenrcnanansns ceeaes cesesa 153

10.1 Include Files .:::cvacasssswnasssinmasisinasanns sshmoeass s imsmdassesss 154
10.2 MoOdUIES . ..ot e e e 155
10.3 UnIES .ottt e e et e et e e e e e e 158
10.4 Portability e e 161
10.5 ConCIUSIONottt et e ettt e e ettt e et 162
11. The Assembler Interfacecoiitiieiinieeeesonaronesesnsssssnnns 163
11.1 AsSemibler TFadeoffS . v inunmss sspawesssmsnnasrReanss 3866 588 s@Ees 164
11.2 Calling Conventions =:::ssaascsssmmassssosnessssbaasosssmsessssss 166
11.3 Parameter Passingottt e 166
11.4 Function Valuesttt et ettt eeeee e 170
11.5 POt I/ O e 172
11.6 Accessing Common Data ittt 173
11.7 Cautionsttt et it e e e e e e e e 176
11.8 ConCIuSIONottt ittt ettt e et e e e e 177
Part Three -- PASCAL for Real Applicationscciiiiiiteninnneennnns 178
12. ProgramminginPascalt iiiiiiiiiiiiiiiiiiiiieitinnnnnenns 178
12.1 Elements of Style e 179
12.2 MoOdUIArity . ..ot e e e e e 185
12.3 “Top-DOWR DESIFN ...ccmsssinmauns ssusumsssmaeps segsuass sagamass s 190
13. AProgramming Projectcciiiiiietiiiinenecrennencennnccanns 194
13.1 FUNCHIONttt et ettt e e e ettt e 194
13.2 TheTop Levelttt e e e 195
13.3 The Next Level e ettt e ettt e 197
13.4 The DepthS ... ettt ettt ettt e e 200
13,5 NS ottt ittt e ettt et e e et et e e e 203
13.6 ConCIUSIONttt ittt e e e e 207
A. Collected Factsand Reserved Wordscc0tttiieneeernnnecennnnnons 208
A.1 Some Useful Pascal Facts GatheredinOne Place 208
A2 PCPascal Reserved Wordsiiiiiiiieeeeneeneennnneanennnn 209
B. PCPascalandthe ISOStandardc.cottutiitiiierereennnenanans 211
B.l NoOtationttt ittt ettt e e e 211
B2 Types and/CONStANS : ccvwwuv s commens vosamus s sumesos s sEamaes s shmswai 212
B3 Compilandsc.civciiannnineineissananssaiooinsiomnoniesnonsos 213
B.4 Expressions and Operatorscoiiiiiiiittitain e 213
B.5 Statements e e 214

Contents v

B.6 Parameters and Attributes i e 214

B.7 File Handlingttt et ittt e e eeie e 215
B.8 Other FUNCONSttt ittt e et e ieieeee e 215
B9 Metalanguage . ..:cussssmmvnss cammaas s amasms s s amss s smmssss snu s 215
B.10 Other EXtensionsttt ittty 216
C. Keyboard Codesccceiieiieencasosacseassccascscsssacssncse 217
C.1 Alternate-shift AlphabeticKeys 217
C.2 Function Keysttt ittt e ettt e e e 218
C.3 Cursor Controlttt 218
C4 Other Codesttt ettt ettt et ettt e e e e et e e 218
D. BiblHography :..ssssssssssisoeussssamnoisissasssiasissssssuasnsesssss 220
D.1 Pascal e 220
D.2 Programming, Algorithms,and Style 221
Indexoiiiiiiiiiiiiiettieeesoneenoeosassosonoossasosssneassasannens 223

vi Contents

1. Introduction

This book is a description of, and a learning guide for, the advanced features offered
by Pascal under the IBM Personal Computer Disk Operating System (DOS).! It does
not apply to the UCSD P-System Pascal (also sold by IBM). Versions 1.0 and 2.0
of PC Pascal are covered; differences, where they exist, are noted in the text.

The reader of this book should either know Pascal (or some comparable
block-structured language, like PL/1), or have an introductory work at hand (the
Bibliography gives several suggestions). A working knowledge of DOS and the PC
is also recommended. The book is intended primarily for PC users looking for a
good, powerful language, and for Pascal users new to the PC looking for ways to get
to the power of the machine from Pascal.

The Pascal language was designed by Niklaus Wirth in the late 1960’s as a
simple, easy to understand language for teaching computer science. Since then, it
has been implemented on a vast number of computers, from 8-bit micros to large
industrial mainframes. The original language has been extended to include more
powerful facilities for input/output, character and string manipulation and systems
programming, and has become one of the most popular general-purpose program-
ming languages. The International Standards Organization, which establishes stan-
dard definitions for common languages, has drafted a document defining a set of
functions that are essential to the language. Most current Pascal implementations,
including IBM PC Pascal, start with this basic set, and extend it in several directions.

1 IBM PC Pascal version 1 is IBM order number 6024010; version 2 is 6024128.

This book briefly describes the essentials of the Pascal language, with emphasis on
the extensions PC Pascal provides. It also goes into detail on interfacing Pascal
programs to the rest of the PC environment; the handling of disk files, access to the
PC’s displays, the keyboard, and various DOS and BIOS functions. Use of system
utilities such as the library manager is not covered; these are described in the system
manuals. The linker is described in only enough detail to illustrate a "fast path"
through Pascal compilation.

1.1 Organization of the Book

The Background chapter discusses the PC as a microcomputer, and gives some gen-
eral facts about the machine, its basic I/O system, the DOS operating system, and
how they all relate to Pascal.

Part One covers the basic concepts of Pascal as PC Pascal implements them,
describing in detail those features that are extensions of the Pascal standard. The
reader who does not know Pascal, but does know another block-structured language,
can treat this section as a quick Pascal tutorial.

Part Two consists of several chapters, each devoted to a different aspect of
PC Pascal. As I will be saying several times in this book, standard Pascal is a
"sparse'' language. Each chapter of Part Two shows how PC Pascal offers some
function that is not specified in the standard. External routines and linkage of sep-
arately compiled subroutines, access to DOS disk files in various modes, powerful
screen and keyboard handling, direct access to some DOS function calls, and the
interface to assembler language routines, are all covered. By the end of Part Two,
the reader should be eager to apply these functions to a real problem, and to see
them working together in a genuine application.

Part Three shows how Pascal can be used for real programming. In the ra-
pidly expanding small computer market, Pascal has had a good deal of bad press: it
has been called a toy language, good for teaching programming, but not for much
else. This section of the book will discuss how Pascal’s structure makes top-down
design possible, and how top-down design can make it easy to construct and test
full-blown application and systems programs. To give some teeth to the assertions,
the last chapter of the book will illustrate the process of writing a real program; a
simple file-browsing program that can be written in about two hours. I will also give
suggestions as to how it might be expanded into a genuine full-function text editor.

The appendices include a compendium of useful Pascal facts, a list of re-
served words, and a summary of the ways that PC Pascal extends the ISO standard.

As well as the code for the browser, sample programs and program frag-
ments are given throughout the book; the importance of examples in teaching, par-
ticularly in teaching programming, cannot be stressed too strongly. The difference

2 Introduction

between being told how to do something and seeing it done can be the difference
between obscurity and understanding.

All the examples and hints given, as well as illustrating the point in question,
stress the importance of structured coding and top-down design: techniques that
Pascal was designed around, and that the Pascal language structures make natural.
These principles should help the reader in learning and using other structured lan-
guages and in writing cleaner and more reliable programs in any language.

Organization of the Book 3

2. Background

This first chapter outlines the relationship between Pascal, Pascal programs, and the
rest of the PC environment. The experienced PC user, eager to begin using the
power of Pascal immediately, may want to proceed directly to the next section, and
the description of the language. Readers not as familiar with the PC and its operat-
ing system are encouraged to read this chapter, and even the PC expert may want
to return to it eventually, during an idle moment or a long compilation.

2.1 DOS, BIOS, and Pascal

When a Pascal program runs on any modern computer, it is not running by itself.
There are other programs in the machine at the same time, keeping track of the time
of day, accepting input from the keyboard and holding it until the program asks for
it, carrying out requests from the program to write data onto the screen, and gener-
ally making the program’s (and the programmer’s) task easier. When the program
completes, the machine does not come to a halt; there is another program in the
machine ready to accept control, and ask the user ''what next, boss?" These other
programs are called, among other things, the "operating system," the "I/O system,"
and the "background."

The PC’s Disk Operating System, usually called DOS, is the program that
controls all the operations of the PC. You run a Pascal program by telling DOS the
name of the program you want to run. DOS determines where in memory to load
the program, reads it in from a disk or diskette, makes any necessary adjustments to
allow the program to run where it has been loaded, and passes control to it. When

the program needs to communicate with the user through the keyboard or the display
screen, it can call a routine in DOS to do it. When the program ends, it returns
control to DOS, which displays its prompt to indicate to the user that it is ready for
the next task.

Most of the operation of DOS is not visible to the Pascal programmer.
Whenever a Pascal program uses the standard output routine write, for instance,
to display data on the screen, Pascal calls DOS automatically; the programmer
needn’t worry about the details. The same applies to the function read; the pro-
grammer may use it to get data from the keyboard or from a diskette, without wor-
rying about the details of keyboard buffers, single or double sided diskettes, or file
allocation. Because Pascal knows to call DOS, and DOS keeps track of these things,
the Pascal programmer can make use of the PC’s hardware without knowing any-
thing about the hardware-specific details.

Even DOS is not on its own in the machine. Underlying DOS is the I/O
system, called the BIOS (for ''Basic Input/Output System'). BIOS handles the de-
tails of input and output; when DOS needs to read data from a certain place on a
diskette, it calls BIOS. BIOS determines just what commands to send to the diskette
to accomplish the reading, deals with the timing and other hardware requirements
of the device, and eventually returns the data to DOS. In similar ways, DOS calls
BIOS to write data to the display, to read data from the keyboard, and to interface
with the rest of the environment. When you press a key on the keyboard, it is BIOS
that gets control, stores the data that you enter away in memory, and then returns
control of the machine to whatever was running when you interrupted things by
pressing a key.

Specific calls to DOS and BIOS will be mentioned in their places later on in
the book. As we will see, there are times when it is useful to be able to call DOS or
BIOS directly, or even to circumvent them entirely, to make a program faster or
more powerful. The fact that, for instance, every character output to the display in
a write statement causes a call to DOS and multiple calls to BIOS, means that, for
applications where speed is vital, it is good to know faster paths. In general, how-
ever, it is simplest to write standard Pascal statements, let Pascal call DOS, and let
DOS call BIOS, in the usual way.

2.2 About Compilation and Linking

The process of generating an executable program (in a file with extension EXE)
from a Pascal source program (usually with extension PAS) is described in some
detail in the Pascal manual. These sections contain a few words about what each
phase of the compilation does, along with a description of the quickest way to get
from source to executable. The various compiler and linker options will not be de-
scribed in detail, because they are adequately covered in the respective manuals.

About Compilation and Linking 5

The four steps involved in generating an executable file are:

1.

The creation of the source file. This is generally done with an editor of some
kind. The EDLIN program that comes with DOS is a good line-oriented editor;
many more powerful full-screen editors are available, such as the IBM Personal
Editor or the IBM Professional Editor. Word processors that put special con-
trol characters into the files they create should not be used, since Pascal will not
understand the control characters, and will report them as errors. A term often
used to describe source files is "'flat ASCIL." If your editor can create flat AS-
CII files, consisting of lines of characters separated by carriage returns and line
feeds, it can most likely produce acceptable Pascal source files.

The production of "intermediate code" from the source file. This is done by
the PAS1 program on one of your Pascal diskettes. PAS1 analyzes your source
program for errors, and produces output (in files PASIBF.BIN and PA-
SIBF.SYM) that is ready for the next step. If PAS1 reports errors in your
source, return to step 1 and correct them. The intermediate code files them-
selves are not very interesting, and are useful only in that they serve as input
to the next step.

The production of object code from the intermediate code. This is done by the
PAS2 program on another of your Pascal diskettes. PAS2 reads the interme-
diate files produced by PAS1, and writes an object file (with extension OBJ).
The data in an object file is almost in executable form; most of the intermediate
data has been converted into data that the PC can execute directly.

The production of an executable file from one or more object files and libraries.
This is done by the LINK program that comes with both DOS and Pascal.
LINK takes one or more object files, and optionally one or more libraries (ex-
tension LIB), and combines them to produce a file that DOS can load and ex-
ecute. Object files may contain references to routines or data that are not
actually contained in the file; for instance, if your Pascal program calls a built-in
routine to compute some trigonometric function, the object file will contain a
call to that routine. But the routine itself is in the Pascal library (file PAS-
CAL.LIB), and not in the object file. LINK’s job is to find the places in the
object file that these external references occur, and to fill in the correct address,
once the object file has been combined with all other object files and library
members that it uses. The result of a successful LINK is a file with the exten-
sion EXE. Files with this extension may be executed simply by typing their
names at the DOS prompt.

In addition to these steps, Pascal version 2.0 provides a PAS3 program that may be
used to generate a pseudo-code file (see '"Compilation and Link Files'" later in this
chapter). In version 1, this function is accomplished by PAS2.

Background

The programs PAS1, PAS2, and LINK, as well as the editor that you use to
create the Pascal program source in the first place, are all simply programs that run
under DOS. When PAS1 needs to read in your source file, it calls DOS to get access
to the file, and DOS calls BIOS to read the actual data from the diskette. When it
needs to write to the display to report an error, it calls DOS, which in turn calls
BIOS. In fact, a good portion of the programs PAS1 and PAS2 are actually written
in Pascal! So as you can see, there is nothing special or privileged about the compiler
or the linker; they all read one or more files, perform some computations based on
the contents of the files, and produce one or more new files as output.

2.3 A Quick Path

The various compiler and linker options can often be useful, and the reader is urged
to read the section in the Pascal manual that describes them. For most compilations,
however, only a very few of the possibilities are actually used, and the simplest forms
of the commands will do. In these cases, there is a simple and easy to remember
"quick path' through the process.

This section will illustrate the quick path by way of an example. Assume
that you have just created a file called PROG1.PAS, containing a small Pascal pro-
gram. The simplest steps from here to execution are:

e Run PASI1 to produce the intermediate code. To do this, put a diskette con-
taining PAS1 into your PC’s ""A" drive, put the diskette containing your pro-
gram into the "B" drive, and execute the commands "b:" and "a:pas1
prog1;". This has the effect of making the "B drive the default drive, which
is where Pascal will put the intermediate files, and then running the PAS1 pro-
gram on the source file. The semicolon following the second command indi-
cates to Pascal that no special options are required for this run. This is what the
screen might look like after executing these commands (the characters "a>"
and "'B>" in the following examples are the standard DOS prompts):

A>b:

B>a:pas1 progl;

PAS1 will run for awhile, notifying you of any errors found by displaying the
incorrect lines and error messages on the screen, and then return control to
DOS. If all went well, the last lines it will type will read "Pass One No
Errors Detected.." (If there were any errors in the program, they should
be corrected, and PAS1 should be run again.)

If you were to look at the contents of the ''B'" diskette at this point,
you would see files called "'PASTIBF.SYM" and ''PASIBF.BIN'.

A Quick Path 7

Run PAS2 to produce the object code. To do this, put a diskette with PAS2
into the "A' drive, and enter the command "a:pas2" (no parameters are
needed after the command, because PAS2 always reads the files PASIBF.SYM
and PASIBF.BIN). Entering the command would look like

B>a:pas?2

When PAS2 completes, it will issue the message

Pass Two No Errors Detected

and return control to DOS. PAS?2 erases the PASIBF files created by PASI,
and creates an object file; in this case, the object file is ""PROG1.0BJ".

Produce the executable file. To do this, put a diskette containing the LINK
program and the Pascal library (in file "'PASCAL.LIB") into the "A" drive.
The command you will issue now depends on what version of LINK you are
using. If you are using LINK version 1.0, enter the command "a:1ink", and
respond to the first question with the name of the program, followed by a
semicolon. This might look like:

B>a:1link
IBM Personal Computer Linker

Object files [.OBJ]: progl;

If you are using a later version of the linker (1.1 or later), issue the
command "a:1link prog1;'". This might look like:

B>a:1link progil;

In both cases, the semicolon tells the linker that no special options are
required. When the linker completes, it will return control to DOS, and the file
"PROG1.EXE" will be on the "B" diskette. The linker does not erase object
files, so ""PROG1.0BJ" will still be there, also.

To summarize the commands in the quick path:

1
2.
3.
4

:pas?

b:

a:pasl1 progl;

a

a:link prog1; (for linker version 1.1 or later).

Background

After compiling, you may want to issue "a:" to restore the default drive to
"A", if that is the way you usually operate. The EXE file produced by the compi-
lation may be copied to any diskette or fixed disk, and executed by typing its name.
The object file is no longer of any use. Later, in the chapter on Separate Compila-
tion, we will see what OBJ files are good for, and why the OBJ file for a useful
subroutine might be a good thing to keep around.

2.4 Compilation and Link Files

During the compilation and link steps, various files are produced. Some of them are
always produced, and some require special options to the commands. This section
is a quick summary of these files, where they come from, and what they are for.

e The Pascal source file - This is the file that contains the Pascal program in hu-
man-readable form. It is usually produced by a programmer, using an editor.
It may have any name, but for the sake of keeping one’s files in order, and
taking advantage of compiler defaults, it should have the extension PAS.

e The intermediate files - These files are produced by PAS1 for use by PAS2, and
are really of no interest in themselves. Their names are always
"PASIBF.SYM" and "PASIBF.BIN'".

e The object file - This is produced by PAS2 for use by the linker. It will have
an extension of OBJ.

° The executable file - This is produced by the linker, and is the file that DOS can
actually load and execute. Its extension is EXE.

e The listing file - This file is optionally produced by PAS1; if you use the quick
path described above, it will not be produced. The Pascal manual describes
how to invoke PASI1 in order to produce a listing. The listing file has an ex-
tension of LST, and contains a formatted listing of your source program, along
with line numbers, titles, the time and date, descriptions of all parameters used
by your subroutines, and other sometimes-useful information. The format of
the file is described in detail in the manual.

e The pseudo-code file - This file is optionally produced by PAS2, at the request
of PAS1 (in Pascal version 1.0), or by PAS3 (in Pascal 2.0). Again, see the
Pascal manual for instructions on how to produce the pseudo-code file. This
file has an extension of COD, and contains an approximation of the machine
instructions that correspond to your program. The instructions in the pseu-
do-code file are in a sort of assembler language; as a last resort, an assembly-
language programmer may refer to a pseudo-code file to determine where a
Pascal program is going wrong.

Compilation and Link Files 9

2.5 Onward

The rest of this book will concern itself with PC Pascal as a language, rather than
as a compiler. The LINK command and object files will be mentioned again in the
chapters on Separate Compilation and the Assembler Interface, but the major con-
cern of the book is how a Pascal program can be written to use the power of the PC
and its I/O devices most effectively.

10 Background

