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Preface

The Burroughs B1700 family of computers exhibits a new style of
architecture. These computers are known as interpretive definable-field
machines. Their normal mode of execution is the interpretation of ozher
computers, virtual or real. A system designed to interpret other com-
puter systems should have a flexible storage-accessing mechanism so
that bit strings of arbitrary length may be fetched and processed under
control of the programmer. The definable-field feature of the B1700
family supports efficient interpretation of instructions and promotes
effective use of storage. Overviews of these features were presented by
W. T. Wilner in a series of papers in 1972 [*‘Design of the B1700"’, pp.
489-497, and ‘‘B1700 Memory Utilization’’, pp. 579-586, in AFIPS
Conference Proceedings, Vol. 41, Part 1, and ‘‘Microprogramming
Environment of the Burroughs B1700” in IEEE Computer Society
COMPCON?72, pp. 103-106.]

Innovative systems such as the B1700 and its successors are attractive
laboratory facilities for education and research in computer science,
especially for software engineering studies, including the design and
evaluation of new or special-purpose computer and data-base systems,
and for studies in software portability.

This book describes the architecture of the Burroughs B1700 family,
with primary attention given to the B1726 computer system, its internal
structure, and how it may be programmed for the emulation of other
computer systems. The book may have only limited appeal to computer-
system specialists who are looking for reasons to select one computer
organization over another. We do not address the comparative strengths
and weaknesses of the B1700. We do not address such interesting
questions as why interpretation is important and when it is to be
preferred over the more conventional compiler-based general-purpose
systems popular today. We do not dwell on the history of interpretation
nor on its potential for the future. (We only hint at the promise for
multilevel interpreters.) Finally, we do not suggest other applications of
the B1700 architecture, say for database computing. Rather, our objec-
tive is to help the person who is already motivated to learn the *‘insides’’
of the B1700 and who wants the knowhow to implement an interpreter at
the microcode level.

The book grew out of a set of notes written for upper-level undergrad-
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X Preface

uate computer-science students who have some prior knowledge of
conventional computer-system organization and low-level language pro-
gramming. Students at the University of Utah have used these notes in a
software laboratory course in which the major objective is to produce a
microcoded emulator for a fairly simple computer, e.g., a PDP-11. For
more advanced students who expect to use the B1700 for research, the
same notes have been useful for self-study as a supplement to or
replacement for available reference manual literature.

The programming language introduced and used in this text, McMIL,
is an enhanced version of MIL (Micro Instruction Language, an assem-
bler for which is supplied by Burroughs). The McMIL superset of MIL
contains statement types which can be used by the programmer to
simplify the generation of MIL instruction sequences that correctly
interface a MIL interpreter program with the system environment (e.g.,
for achieving interrupt handling, i/o management, file system services,
and process switching).

The text consists of seven chapters and several appendices. The first
three chapters focus on the architecture of the B1700 family as interpret-
ing machines, on the internal structure of the B1700 processor, and on
its (symbolic) micro-level machine language. The next three chapters
show ways to write micro-level programs. A major case study vehicle
that is used is a simulator for the hypothetical computer SAMOS
outlined in Appendix F. It is in Chapters 4, 5, and 6 that the assembly
language MIL and its McMIL enhancements are thoroughly illustrated.
Methodologies of higher-level language programming including stepwise
decomposition, clean structure, and good documentation are applied in
translating from problem statements expressed in relatively abstract
terms to concrete McMIL programs. Appendices A, B, and C are
intended as reference manuals for MIL, for the actual computer sys-
tem’s register and instruction semantics, and for the McMIL extensions,
respectively. (Appendix D provides additional reference materials used
for setting up test runs of an interpreter, and Appendix E offers listings
of the toy SAMOS interpreter and a sample test run. The toy interpreter
may be used in a set of exercises as a study vehicle and point of
departure for some interesting modifications and enhancements.) Chap-
ter 7 examines the fine points in the control structure of the B1726 as a
microprogram processor.

These seven chapters intentionally focus on the existing hardware of
the B1700 family for use in design and implementation of interpreters
and are to a great extent independent of the supporting software
supplied by Burroughs. It is expected that another book would be useful
for focusing on the structure and functions of the Burroughs software,
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including the operating system (MCP) and the critically important
central module (known as GISMO) which serves as an i/o-device driver,
process switcher, i/o buffer server, and interface with the MCP. Such a
book would provide the reader with a serious look at the (system-
controlled) environment which supports the execution of programs one
has learned to write and test.

The authors acknowledge with deep appreciation the support of our
colleagues, students, and secretarial friends at Utah who have helped us
assemble this text. We are also most fortunate for the support received
from the Burroughs Corporation. Many persons within Burroughs
helped make the project at Utah and this book, one of the byproducts, a
reality and, we hope, a success. We are grateful to all of these
individuals. In particular, the project could not have become a reality
without the help and confidence of R. R. Johnson, R. D. Merrell, and R.
S. Barton, members of the Burroughs engineering organization who
were early advocates of the B1700 as a system worthy of serious
attention and use in computer-science and engineering studies. This
book is published with the permission of the Burroughs Corporation.

E. I. Organick
Salt Lake City, Utah

J. A. Hinds
Goleta, California
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Chapter 1
Universal host computers

An important characteristic of conventional (von Neumann) computer
systems is the control mechanism, or processor, which is designed to
decode and execute a sequence of instructions fetched from storage
(Figure 1.1). The processor generally has at least two groups of
registers: one for control, and one for ‘‘processing information’’. The
first set of registers is mainly used for controlling the sequence of
instructions in the program and for decoding each instruction so that it
can be properly executed. The second set of registers, nearly but not
totally unrelated to the first set, is used in carrying out the execution of
decoded instructions. Generally speaking, execution involves fetching
(or storing) data from (or to) storage, or examination and manipulation
of data fetched trom storage or produced by the execution of preceding
instructions.

The picture of the computing machine given in Figure 1.1 is clearly
incomplete, since it lacks a connection to the storage in the outside
world. The input/output (i/0) controls and devices provide channels for
information to flow from or to the computing machine and the *‘outside”
storage which may consist of various media (tapes, disks, displays,
printed paper, etc.) For the present discussion we shall ignore i/o
transfers to outside storage.

The tasks of actually decoding and executing each instruction of the
computing machine are primitive. The programmer normally cannot
influence the manner in which these tasks are carried out. In all early
computers these primitives were achieved by hardware circuitry. In
many recent computer designs they are implemented as sequences of
microsteps or microprograms which are themselves interpreted by
hardware circuitry. By one means or another these microprograms are
often made inacessible to the programmer, so that interpretation of the
instructions that a user programmer might compose remains primitive;
i.e., he has no influence over the interpretation mechanism.

Although the programmer of a computer of this class may not vary the
primitive behavior of such a computer, he may as an expedient compose
a simulator (or emulator) program whose function is to interpret
programs for other machines. The logic of the programmed interpreter is

1



2 Universal host computers

Processor
Storage
Control Instructions
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logic Information J by the
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other
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Figure 1.1. A view of a typical computer architecture.

completely under the control of the user. Not only can he vary the steps
of the decoding mechanism, but he also can select whatever execution
logic he chooses.

The user has a wide spectrum of redesign opportunities available. It
may be that he wishes to simulate a machine that offers only a slightly
different set of responses from that of the basic machine, e.g., augment
its instruction set with a few more instructions, or alter the interpreta-
tion of the existing instructions. On the other end of the spectrum, he
may have in mind thc simulation of a machine having an entirely
different set of instructions, with formats quite different from that of the
“*host”” machine and having quite different semantics. For example, he
may have in mind to emulate on a PDP-9 a PDP-15, a SAMOS machine,’
or a FORTRAN machine. The first one (PDP-15) is just an extension of
the PDP-9 itself (i.e., has only a few new instructions.) The second
(SAMOS), though quite different in its semantics (having decimal
arithmetic rather than binary) is roughly similar in the syntax and
semantic power of its instructions to that of the PDP-9. Thus the formats
of both SAMOS and PDP-9 instructions are fixed in length and have a
small number of fixed subfields, both use index registers, etc. On the
other hand, the instructions of FORTRAN have variable formats, a
variable number of subfields, and a much greater range of semantic
complexity than those of the PDP-9.

Figure 1.2 is a first view of a two-level host/guest system, consisting
of a host, or H-machine, which functions as an interpreter of another
computer system—G, for guest. Recursion in computer organization is

' A hypothetical computer used for instructional purposes in certain introductory
computer science courses. (See Appendix F.)



Universal Host Computers 3

G-storage

G-Processor (=H-machine)

H-Processor H-storage
Instructions to

Instructions be decoded

C I R to be J| by the G-processor

‘ontrol egs

] ‘,- . Ll s i 3 decoded +

o8l by the other data
H-processor

Figure 1.2. Structure of a two-level host/guest system.

clearly implied in this view.? Here we examine it from the inside out.
The H or host processor consists of control logic and some storage (the
registers). The H-machine consists of the H-processor and storage for its
instructions (H-storage). But the H-machine in turn functions as a
processor for another machine G, so the H-machine is in effect a G-
processor. Adding ‘‘outside’’ storage for the H-machine forms a new
machine (the G-machine). The outside storage for the G-machine is not
actually shown in Figure 1.2, but its existence is implied (as was the
outside storage for the machine depicted in Figure 1.1). In principle this
recursion can be extended, since the G-machine might be designed to
behave as a processor for some other machine G-G (guest of guest) and
be coupled to storage containing programs for the G-G machine, etc.

There have always been practical trade-offs in building interpretive
systems of this type. If the instruction set of the host machine and its
registers is sufficiently different from that of its guest, the H-language
subroutines which interpret G-language instructions may become long
(and occupy a lot of H-machine storage). Also the time required to
interpret a G-language instruction sequence on the H-machine may far
exceed the time required to execute a ‘“‘comparable’’ H-language in-
struction sequence executed on the same H-machine. Ratios of 10 to 100
for G-time/H-time are not uncommon. Even so, interpreters built to run
on conventional computer systems are valued widely.

Since any machine may in principle be coded to behave as a host for
any guest machine, it is also feasible that the same host may behave at

* The concept that a processor may be viewed as having a recursive structure was first
brought to the authors’ attention by Robert S. Barton.



4 Universal host computers

different times like the processor for any of a number of different guests.
The backing store for an H-machine may contain interpreters for
different guests. These interpreter programs may be swapped in and out
of H-storage by some scheduling discipline, so that during discrete time
slices the H-machine in fact acts like first one G-processor and then
another. The duration of the time slices may be days, minutes, or
seconds (or less), depending on the ‘‘swapping’’ technology that is used.
Whatever the size of the time slice during which one of the interpreters
is active, it should now be easy to accept the fact that any host may
behave as a universal host, i.e., a host for a variety of guests.

Even so, few actual computer systems have been designed for
applications in which they behave typically as hosts, much less as
universal hosts for other machines. The B1700 class of computers,
however, is one system which was indeed intended to behave mainly as
a universal host. As we study it we shall hope to see in what ways its
special features support such behavior.

The B1700 family of computer models, produced by the Burroughs
Corporation, has been recently augmented with upgraded versions called
B1800. In this book we will use the term ‘*B1700 to refer to all
members of this augmented class of computer systems except when we
explicitly mention one member. For these systems the machine language
of the host processor (H-language) is defined by the same base set of 16-
bit microinstructions. Moreover, these systems have essentially the
same internal logical structure, differing only in the mechanisms for
accessing microinstructions. The B1700 has also been called an *‘in-
terpretive definable field machine’ because the programs and data
executed by its interpreters are accessed from a storage that is viewed as
an ordered set of fields (bit strings), each of definable length.

1.1 STRUCTURE OF STORAGE
IN THE B1700 FAMILY
OF COMPUTERS

To satisfy requirements of a universal host machine, the H-machine
processor must have access to microprograms of many interpreters, one
for each guest machine. One way to translate this requirement into an
implementation is to imagine that the H-processor actually has access to
several H-stores, each holding an interpreter for a different guest
machine. Naturally, the processor must then be capable of switching
from one H-store to another so that the system can multiprogram among
several active interpreters. Storage technology and storage management
techniques that have been developed over the past 15 years suggest
several cost-effective ways by which such a system can be implemented.
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Three related approaches have been taken in the B1700 family, one for
each of three models within this family. These models are the B1710,
B1720 and B1800.

The first approach (simplest, least expensive in hardware and slowest)
is found in the B1710 model. Here (Figure 1.3) main storage is allocated
into separate sections, some representing H-store and some representing
G-store. The section representing H-store holds the microprograms that
comprise the interpreter for a G-machine. The figure shows only one G-
store and one H-store section represented, but in principle and in
practice the main store is large enough to hold several of each.

Each H-store holds the microprograms that constitute the interpreter
for a G-machine. The B1700 processor can be initialized to begin
fetching and executing microinstructions from any H-store section of
main storage using a G-store section as its workspace. At any given
moment the B1700 processor knows about (has access to) only one H-
store and one G-store representation in main storage. Switching inter-
preters implies resetting registers of the B1700 processor so it has access
to a different H-store/G-store pair.

The B1800 model uses a similar principle for the representation of H-
and G-stores in main storage, but is able to fetch microinstructions more
rapidly through the use of a ‘‘cache memory’’ (Figure 1.4). The cache
holds copies of blocks of microinstructions transferred from the main
store as needed. The access to a microinstruction, when it is found in
the cache (the usual case), is roughly an order of magnitude faster than
the access to a microinstruction that must first be brought to the cache

""""" Lo

H-store
Processor ]

control unit [ ]

-

_______ G-store
Main store conceptual
actual

Figure 1.3. B1710 Processor access to H-store code.
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Figure 1.4. B1800 Processor access to H-store code.

from main store. The size of the cache is large enough to contain an
entire interpreter, or at least that portion of it that is most frequently
executed.

The B1720 model uses a less elegant but quite effective method for
speeding up the fetching of microinstructions. A second storage unit,
here called fast control store, is added to the system (Figure 1.5). This
unit is large enough to hold the most frequently used portions of one or

A —
Processor &K | 1  hbeo- /

control unit / H-store
Fast by _____J
control /b =

store
‘‘‘‘ G-store
N ———

Main store Conceptual

Actual
Figure 1.5. B1720 Processor access to H-store code.
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more interpreters, space permitting. H-store is represented in part in the
fast control store and in part in main store, depending on the size of the
available fast control store. Extra base registers are provided in the
B1720 processor for use in determining the access path needed to fetch
the next microinstruction, a path leading either to the fast control store
(path A) or to the main store (path B). Other things being equal, the
B1720 and the BI1800 degrade gracefully to B1710-like performance as
the size of fast control store or the size of the cache, respectively, is
reduced to zero. Chapter 7 of this book deals with these details.

Other differences exist between the B1710, B1720 and B1800 models
than those just mentioned, but they are unimportant for the purposes of
this book. Nevertheless, to avoid fuzziness, we shall always be as
specific as possible about which model we are discussing. Because the
authors’ experience at the University of Utah has been primarily with
the B1720 model, in particular the variant known as the B1726, this book
will describe the B1726; but in so doing it also describes the related
models to a very large extent. When we have occasion to discuss one of
the other models, we will be careful to identify it.

1.2 THE B1726 MODEL OF STORAGE

We can now gain additional initial perspective by focusing on how
storage in the B1726 achieves the effect of a universal host machine. A
typical mainstore, which Burroughs refers to as S-memory (S for string),
normally has a size of at least 64K bytes (2'° bits). The fast control store,
which Burroughs refers to as M-memory (M for microinstruction)
usually has a size in the range 4K to 8K bytes, enough to hold at least
2048 H-language, 16-bit microinstructions.

Let us first assume that the B1726 is busy executing programs for only
one G-machine. [Later we will consider the more general case of two or
more different G-machines as simultaneous guests on the host B1726.]
And further, let us assume that the one G-machine interpreter needed
consists of about 4096 microinstructions, or twice that of the available
H-store. Then we expect that at some point in time the main-store S-
memory will hold half of the G-machine interpreter. If there are more G-
machine language programs active (i.e., being executed in multiprogram-
ming mode), then storage will be needed for procedures of each program
and for the data sets of each program. [If two or more programs shared
certain procedures, duplicate copies of those (reentrant) procedures will
not be needed. So the remainder of S-memory will be occupied by
various procedures and data structures of the active programs of the
guest machine.]
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Any time the host machine needs to execute a microinstruction from
H-store that is not in the M-memory, one of three approaches can be
taken:

1. A block of microinstructions, including the ones currently needed,
can be swapped in from S-memory, replacing a selected block of
microcode now present.

So long as the microcode has the attributes of a pure procedure

(read only), a simple overlaying strategy will also work, making

swapping unnecessary. This also assumes that a backup copy of the

entire interpreter is kept in S-memory.

3. Since the B1726 processor is so designed that individual microin-
structions can also be fetched into the instruction register directly
from S-memory (not just directly from M-memory), only the fre-
quently needed microinstructions need be fetched from M-memory.

o

When blocks of microinstructions are needed in control store, ap-
proach 2 is used. (Approach | is never needed or used, since microcode
is treated as pure procedure.) The B1726 executive system known as
““MCP’" (Master Control Program) also uses approach 3, since H-store
microinstructions may be fetched directly from either M-memory or
from S-memory.

To summarize. our conceptual G-store maps onto the physical storage
called S-memory, and our conceptual H-store maps, to a first approxi-
mation, onto the physical storage called M-memory; but in actuality,
since M-memory is a relatively scarce resource, H-store maps onto S-
memory as well. It will be convenient and simpler to adopt the more
ideal view, that of a one-to-one correspondence, which is H-store onto
M-memory and G-store onto S-memory. We will take this simpler view
in the next five chapters without loss of rigor. In the last chapter
(Chapter 7)., however, we will need to examine the details of the actual
mapping between conceptual and actual host stores in the B1726 system.

To appreciate the motivation for the ‘‘two-level control store’’ of the
B1726, it is important to observe the following.

1. Because the M-memory is regarded as a relatively scarce resource,
the different interpreters being multiprogrammed can if necessary
reside on and be executed entirely from S-memory. The operating
system has responsibility for keeping track of which physical storage
resources currently hold the interpreters, and is able to redistribute
all or part of each interpreter among the two levels of storage as
deemed appropriate.



