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B To Rose Mary



The past few years have seen a revolution in the way computer graph-
ics is practiced. Computer graphics, while still an area of much activ-
ity in computer science, is also an area of great importance to students
and practitioners of engineering, science, business, and mathematics.
The advances in both hardware and software have led to the modern
graphics workstation as a standard tool. These workstations include
not only the hardware for high-resolution, bit-mapped displays but
also the necessary software tools that allow users to develop their own
applications. Thus, we are seeing the electrical engineer writing her
own interface to a circuit-analysis package and mechanical engineers
writing menu-driven CAD packages. For the computer scientist, com-
' puter graphics has expanded to include a wealth of new and exciting
problems from the generation of photorealistic displays to the design
of software tools.

This book is intended for use in a first course in computer graph-
ics for computer scientists and engineers. Although such a course is
normally taught for seniors, the only prerequisites assumed are good
programming skills (equivalent to CS 2 in the ACM model curriculum)
and trigonometry.

There are four fundamental precepts on which the book is based.
First, with the availability of present software and hardware tools, it
is both possible and important that students get working on signif-
“icant applications of computer graphics early in the course. Hence,
I have adopted a top-down approach that attempts to get students
working on projects using Graphical Kernel System (GKS)—or any
other available system—before we spend significant time on the stan-
dard graphics algorithms, such as line drawing and fill. This approach
is in contrast to most books that use a bottom up approach that be-
gins with pixels and works up through lines and eventually gets to
applications.



Second, the adoption of GKS as the standard graphics language
is of great significance to the teaching of computer graphics. In spite
of its faults, GKS provides a conceptual basis for the teaching of
computer graphics that is shared by many systems and allows us to
teach using tools that can easily be transported to other systems. Just
as we do not teach our own locally-developed programming language
to our beginning students, I believe we should avoid teaching home-
grown graphics software in a first graphics course.

Third, the increased programming skills of both engineers and
computer scientists has had a significant effect on this book. Material
such as modeling with hierarchical data structures, which most texts
leave to the end or completely omit, is well within the abilities of
sophomores and juniors in computer science and engineering. The
chapters on transformations and hierarchical modeling are core to
this book and appear early. ,

Finally, the expansion of our knowledge in computer graphics has
made it likely that there will be at least two courses in computer
graphics within most computer science departments. The first will
be an introduction covering the range of the field with a significant
emphasis on the systems and software engineering aspects of com-
puter graphics. Follow-on courses will emphasize algorithms, geome-
tric modeling, ray tracing, and computational geometry. This book is
designed for such a first course.

The choice of the C language and the level of detail on GKS were
decisions made after great thought and with the input of a number of
people. C provides a nice balance between the desire to provide some
abstraction while still being close enough to the machine that imple-
mentation issues can be discussed. The fact that it is presently the
language of choice by implementors of graphics systems is an added
benefit. The level of C used should not present any serious problems
to students who know only Pascal or FORTRAN. The level of detail
on the GKS C language binding may be more controversial. My ex-
perience with other books has been that a lot of class time has been
wasted clarifying or correcting sketchy material on some particular
graphics language used by the text. I have tried to strike a balance
by using a subset of GKS but providing the details for the functions
used. Even in courses that do not have an available GKS implemen-
tation, I believe it is important to see the details even if the students
write no code. For those with other software systems such as PHIGS
or some of the commercial systems, the changes necessary to convert
the GKS code should be minor.

The first eight chapters form the basis of a one-semester senior
course, primarily for computer scientists and computer engineers. The
book can be used for a two-semester course by going into more depth
on some of the algorithms and doing more than surveying the final two
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chapters. For courses with a heavy project emphasis, a two-semester
(or two quarter) sequence can be obtained by using Chapters 1-5 for
the first course and Chapters 6—10 for the second. Chapters 1-4 and
probably 5 should be studied in order. Chapters 6-7 and 8-10 are
fairly independent of each other.

The book should also be accessible to professional programmers,
engineers, computer scientists, and others. The notes that preceded
this book are the basis for two four-day intensive short courses, one a
survey of computer graphics and the other on GKS, which have been
taught to thousands of programmers, engineers, and scientists in the
United States and Europe.

I would like to acknowledge a number of people who have helped
me not only with this book but also in learning computer graphics.
This book started when I returned from sabbatical in 1982 to find
there was no one available to teach computer graphics in my depart-
ment. I thank the University of New Mexico for providing me with
that opportunity and the facilities to develop a laboratory in computer
graphics. David Collins, Eric Garen, and Anders Amundson of Learn-
ing Tree International, Inc. (formerly Integrated Computer Systems,
Inc.) gave me the chance to create two short courses. Instructors,
including Jim Burk, Mark Henderson, Mike Bailey, and Kelly Booth,
and the thousands of participants in these courses provided signifi-
cant feedback. Many students contributed to early versions of the
programs and diagrams in this book. In particular, I wish to thank
Mark McLaughlin, Dan Shawver, Mathew Nordhaus, and Joe Higgins.
. Of the many reviewers of various versions of the manuscript, George
Grinstein, University of Lowell; Michael J. Zyda, Naval Postgraduate
School; Lewis Hitchner, University of California, Santa Cruz; Spencer
W. Thomas, The University of Michigan; Mark Henderson, Arizona
State University; and Steve Wampler, Northern Arizona University
provided particularly helpful comments. My colleagues John Brayer,
Dick Nordhaus, and Bernard Moret were both knowledgeable and pa-
tient in filling in gaps in my knowledge in subjects as diverse as TgX,
data structures, and architecture (both computer and building de-
sign). Rab Hagy and George Schaeffer provided me with the latest
versions of the GKS and PHIGS C language bindings at a crucial
- time. Professors Michael Duff of University College London and Mike
Godfrey of Imperial College were extremely generous in providing me
with friendship and facilities during my recently completed sabbatical
leave.

A few comments on the illustrations in this book are appropriate.
Early in this project, Jim DeWolf, of Addison-Wesley, and 1 agreed
that a book on computer graphics should use computer graphics to
generate all the figures and that all the figures must be of high quality.
With the exception of the color plates, all diagrams were produced on
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an Apple Macintosh SE by Rose Mary Molnar. Tools range from the
use of Aldus Freehand (for most figures), to Super 3D, to the direct
production of PostScript files from C programs. A few images, such
as the pixel image of my cat Mongo, were created using a Thunder
Scanner on an ImageWriter. Hopefully the figures are both informa-
tive and illustrate the quality of interactive graphics software presently
available. Writing programs to generate the images in some of the fig-
ures or to crease the: kindds oftirawing tools needed to produce such
images can lead to innumerable interesting programming projects for
students.

The people at Addison-Wesley, especially Karen Myer and Mona
Zeftel, could not have been more helpful. I will have no author horror
stories to share with my colleagues. A final thank you is due to Bob
Drake. While Bob was at Addison-Wesley, he promised to (and did)
call me once a month to convince me to do this book. .

At this point, most authors thank their wives for their patience
during the writing of their books. When your spouse is the illustrator
of the book, patience is only one of many important and necessary
characteristics. Fortunately for me, Rose Mary has so many wonderful
qualities we were able to survive this experience.

Edward Angel
University of New Mexico
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