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PREFACE

These proceedings contain the introductory and specific scientific papers
presented at the 1EES£EiEiSE§]

Conference on Multigrid Methods

which was held at Cologne-Porz from 23rd to 27th November, 1981.

The introductory part describes basic methods, theoretical approaches and

practical aspects in a systematic way. Furthermore, some simple applications
are discussed, and an exemplary multigrid program for a simple model problem

is presented. The four authors of the introductory papers have tried to use

a uniform notation. This has been rather difficult since in the meantime
several systems of notations have come into general use, and good arguments

can be found for all of them. The uniformity reached despite of these difficul-
ties does not concern all occurring quantities but the essential ones.

The specific papers deal with the fields of theory, applications and soft-
ware development. Most studies concern elliptic problems and their solution by
means of difference methods. The conference and the papers reflect an increasing
interest in the combination of multigrid techniques with defect correction
methods as well as in the solution of singularly perturbed and (indefinite) non-
linear problems. Apart from introductory and specific papers this volume also
contains a multigrid bibliography.

120 scientists from 12 countries participated in the Conference. Thanks to
the generous financial support by the organizing institutionsit was not necessary
to charge a conference fee.

The organizers are as follows:

e Gesellschaft fir Mathematik und Datenverarbeitung (GMD, St. Augustin)

e Sonderforschungsbereich (SFB) 72 "Approximation und mathematische Optimierung"
at the University of Bonn, funded by the Deutsche Forschungsgemeinschaft

e FachausschuB "Effiziente numerische Verfahren filir partielle Differential-
gleichungen" of the Gesellschaft fir Angewandte Mathematik und Mechanik (GAMM).

Within the cooperation with the GMD the Deutsche Forschungs- und Versuchs-
anstalt fir Luft- und Raumfahrt (DFVLR) provided the conference rooms. On this
occasion the editors like to thank the mentioned institutions and their representa-
tives, Prof. Dr. Norbert Szyperski (chairman of the Executive Board of the GMD),



v

Prof. Dr. Stephan Hildebrandt (speaker of SFB 72) and Prof. Dr. Hermann L. Jordan
(chairman of the Executive Board of the DFVLR) for the immaterial and material

support of the conference.

The practical organization was carried out by Kurt Brand and Heinz Reutersberg
(Institut fir Mathematik of the GMD). They were supported by Margarete Donovang,
Elisabeth Harf and Reinhild Schwarz. Furthermore, the Abteilung fiir Informations-
wesen of the GMD provided substantial assistance to the completion of this volume.
We like to express our gratitude to all persons involved.

Finally we like to thank all conference participants and especially the
lecturers for their contributions to the success of the conference.

Wolfgang Hackbusch

Ulrich Trottenberg



CONTENTS

PART I: SYSTEMATIC INTRODUCTORY PAPERS

K. Stiiben and U. Trottenberg
Multigrid Methods: Fundamental Algorithms, Model
Problem Analysis and Applications........ceeeeeeeceennans

W. Hackbusch

Multi-grid Convergence TheOIXY...eseeeeseesensecccnancnnns

A. Brandt

Guide to Multigrid Development......eeeeeeeesnceenscnsanns

PART II: SPECIFIC CONTRIBUTIONS

E.J. van Asselt
The Multi Grid Method and Artificial Viscosity.....eco...

W. Auzinger and H.J. Stetter
Defect Corrections and Multigrid Iterations.........ce...

0. Axelsson
On Multigrid Methods of the Two-level TypP€.:.sieeeeeeecnns

D. Braess
The Convergence Rate of a Multigrid Method with
Gauss-Seidel Relaxation for the Poisson Equation.........

H. Deconinck and C. Hirsch

A Multigrid Finite Element Method for the Transonic

Potential Equation..... Ceeesebneanesbseseassses cessesansa
I.S. Duff
Sparse Matrix Software for Elliptic PDE'S....ceeeeneennnn

H. Foerster, K. Witsch
Multigrid software for the solution of elliptic problems
on rectangular domains: MGOO (Release 1)...eeencecnnncnnn

.

177

.220

«313

.327

.352

.368

.387

.410

.427



\1

W. Hackbusch

On Multi-grid Iterations with Defect Correction............461

Hedstrom and G.H. Rodrique
Adaptive-grid Methods for Time-dependent Partial
Differential Equations.......ceeeeeeecennnns e e e e e ....474

Hemker
Mixed Defect Correction Iteration for the Accurate

Solution of the Convection Diffusion Equation......e.ceeee. 485

R. Kettler

Analysis and Comparison of Relaxation Schemes in Robust
Multigrid and Preconditioned Conjugate Gradient
Methods..ccceceeees. o 8 B e 8B 6 W 0L 6 80 e @ W BOE W ie) e E win e a5 3 D02

Maitre and F. Musy

The Contraction Number of a Class of Two-level Methods;

an Exact Evaluaﬁion for some Finite Element Subspaces

and Model. ProDLlemS c camie sisisis s assinnsesesessunsnsosssessesss 535

Th. Meis, H. Lehmann and H. Michael

Application of the Multigrid Method to a Nonlinear

Indefinite Problem....ceuouveeeeunnnn A T 151

Mittelmann

Multi-grid Methods for Simple Bifurcation Problems...... ...558

Nowak
Use of the Multigrid Method for Laplacian Problems

in Three DimensSiONS..c.ccesssseecccscssnsscssssssscsssssanscs .576

W. Sechmidt and A. Jameson

Applications of Multi-grid Methods for Transonic

Flow Calculations........ R L I I I I I I I Y 599



P. Wesseling

Vil

A Robust and Efficient Multigrid Method..........eicevennnnn
K. Brand
Multigrid Bibliography .« .coe ceeesneeesesesnessscssionesseensssse

Participants

.....................................................



MULTIGRID METHODS:
FUNDAMENTAL ALGORITHMS,
MODEL PROBLEM ANALYSIS
AND APPLICATIONS

Klaus Stiiben™
Ulrich Trottenberg**

*Gesellschaft fiir Mathematik und Datenverarbeitung
Postfach 1240, D-5205 St. Augustin 1, Germany

**Institut fir Angewandte Mathematik, Universitdt Bonn,
Wegeler StraBe 6, D-5300 Bonn, Germany

Contents

PART I. MULTIGRID IDEA

1.

Introduction
1.1 Historical remarks and current perspectives
1.2 Contents of this paper, acknowledgements
1.3 Some notations
1.3.1 Continuous boundary value problems
1.3.2 Discrete boundary value problems
1.3.3 Model problem (P)
1.3.4 General difference stars on rectangular grids
1.3.5 Restriction and interpolation operators
1.3.6 Some remarks on the parameter h and admissible meshsizes

multigrid idea, multigrid components

Iteration by approximate solution of the defect equation
Relaxation and coarse-grid correction

Structure of an (h,H) two-grid operator

Some specifications and extensions

2.4.1 Choice of the coarser grid

.4.2 Choice of the coarse-grid difference operator

.4.3 More general smoothing procedures

.4.4 Coarse-to-fine transfer using the grid equation
.4.5 More general treatment of boundary conditions

SIS EOSE S|
HSwrn—=O

ysis of a sample (h,2h) two-grid method for Poisson's equation
An (h,2h)-algorithm

The relaxation operator

The coarse-grid-correction operator

Spectral radius of the two-grid operator

Norms of the two-grid operator

Algorithmic variants

3.6.1 Use of straight injection for the fine-to-coarse transfer
3.6.2 Jacobi w-relaxation with several parameters

a
1
2
3
4
5
6



PART II. FUNDAMENTAL ALGORITHMS

4. Complete multigrid cycle
4.1 Notation, sequence of grids and operators
4.2 Recursive definition of a complete multigrid cycle
4.3 The iteration operator for a complete multigrid operator, h-independent con-
vergence
4.4 Computational work and efficiency
4.5 Other coarse-grid operators, extensions

onlinear multigrid methods, the full approximation scheme (FAS)
1 Indirect application of multigrid methods to nonlinear problem
2 The full approximation scheme
3 A simple example
4 A remark on nonlinear relaxation methods
5 Some additional remarks
5.5.1 An exemplary bifurcation problem
5.5.2 The (h,H)-relative truncation error and the dual view of multigrid
methods

N
5
5
5
5
5

e full multigrid method (nested iteration)

1 Idea and purpose

.2 Structure of the full multigrid method

3 A simple thearetical result

4 Computational work, some practical remarks

PART III. FOURIER ANALYSIS OF MULTIGRID METHODS

7. The concept of model problems analysis, smoothing and two-grid convergence factors
7.1 Assumptions on the difference operator
7.2 The (h,H) coarse-grid correction operator
7.3 Smoothing operators
7.4 Two-grid operator
7.5 General definition of smoothing factors
7.6 Modifications and extensions

8. Applications of model problem analysis
8.1 Analytic results for an efficient two-grid method
8.2 Further results for Poisson's equation
8.3 Results for the anisotropic model equation

9. Local Fourier analysis and some general theoretical approaches
9.1 Purpose and formal tools of local Fourier analysis
9.2 Applications of local Fourier analysis
9.3 A short discussion of other theoretical approaches
9.3.1 Splitting of the two-grid operator norm into a product
9.3.2 Splitting of the two-grid operator norm into a sum
9.3.3 Further remarks on the definition of "low" and "high"

PART IV. STANDARD APPLICATIONS

10. Multigrid programs for standard applications
10.1 Description of domains and discretization
10.2 Helmholtz equation (with variable c)

10.3 Anisotropic operators
10.4 More general situations



11. Multigrid methods on composite meshes
11.1 Composite mesh discretization and a "naive" multigrid approach
11.2 A "direct” multigrid method for composite meshes
11.3 Some results for a model problem

Appendix: A sample multigrid program (FORTRAN Tisting)

References

1. Introduction

This paper gives a systematic introduction to multigrid methods for the solution
of elliptic differential equations. The paper is based on the two introductory lec-
tures held by the authors on the occasion of the "Conference on Multigrid Methods".
It includes basic ideas (Part I) and fundamental methodical approaches (Part II),
theoretical approaches (Part III) and simple applications (Part IV). The paper is to
be seen in the context of the two other introductory papers in which Wolfgang Hack-
busch outlines his general theory of multigrid methods and Achi Brandt gives a guide
to the practical realization of multigrid methods. Brandt's paper deals, in parti-
cular, with problems of a more general type (systems of differential equations in
higher dimensions) than that of the problems we consider in our paper. Brandt also
discusses more sophisticated multigrid techniques.

Although our description of the multigrid principle and of the fundamental meth-
odic approaches is quite general, the concrete considerations in this paper refer
- in accordance with its introductory character - to a Timited class of problems: We
explicitly treat only scalar equations in two fdimensions; the underlying discretiza-
tions are based on finite difference methods. Mostly we are concerned with second

order Dirichlet boundary value problems. Most of these restrictions, in particular

the restriction to two dimensions, are mainly for the sake of technical simplifica-
tion.

In this introduction we give a short survey of the development of multigrid meth-
ods and on the state of the art (Section 1.1). We will then describe contents and
objectives of this paper in some more detail (Section 1.2). In Section 1.3, we will
introduce some fundamental notation which is needed.



1.1 Historical remarks and current perspectives

Multigrid history. The multigrid principle (for discrete elliptic boundary
value problems) is extremely simple: Approximations with smooth errors are obtai-
ned very efficiently by applying suitable relaxation methods. Because of the
error smoothness, corrections of these approximations can be calculated on coarser

grids. This basic idea can be used recursively employing coarser and coarser
grids. This leads then to "(asymptotically) optimal" iterative methods, i.e.
methods for which the computational work required for achieving a fixed accuracy
is proportional to the number of discrete unknowns. If the multigrid methods are
then combined with the idea of nested Zteration (use of coarser grids to obtain
good initial approximations on finer grids), a suitable algorithmization even
yields methods for which the computational work required for achieving the
discretisation accuracy is still proportional to the number of discrete unknowns.

Consequently, we may distinguish three elements (stages):

(1) error smoothing by relaxation,

(2) calculation of corrections on coarser grids and recursive application,
(3) combination with nested iteration.

Looking back on the development of multigrid methods we see that the above
elements, if considered separately, have already been known or used for a Tong
time before they were combined to efficient multigrid methods. Especially the
error smoothing effect of relaxation methods belongs to the classical inventory
of numerical knowledge. The idea to use this effect for convergence acceleration
can already be found in the early literature (e.g. Southwell [92], [93];

Stiefel [94]). However, the recursive use of coarser grids is not yet elaborate
there. But it is only this recursion which gives the above mentioned "optimality".

On the other hand, the recursive application of coarser grids for an efficient
solution of specific discrete elliptic boundary value problems was used in the
context of "reduction methods" introduced by Schrioder [86] (see also [85], [87],
[881). Here, however, no explicit error smoothing is performed. Elimination techni-
ques are used instead which transform the original problem "equivalently" to coarser
grids. (These elimination techniques restrict the range of direct application of
reduction methods to a small class of problems.)

Finally, the self-suggesting idea of nested iterations has in principle been
known for a Tong time.

The first studies introducing and investigating multigrid methods in a narrow



sense (elements (1) and (2)) are those by Fedorenko [34], [35] and then that of
Bakhvalov [6]. While in [35] Fedorenko restricts the convergence investigation

to the Poisson equation in the unit square, Bakhvalov [6] discusses general ellip-
tic boundary value problems of second order with variable coefficients (in the
unit square). Bakhvalov also indicates the possibility of combining multigrid
methods with nested iteration (element (3)).

Though the.studies published by Fedorenko and Bakhvalov have, in principle,
shown the asymptotic optimality of the multigrid approach (and to a certain
extent its generality as well), their actual efficiency is first recognised only
by Achi Brandt (by 1970). Studying adaptive grid refinements and their relation to
fast solvers, Brandt has been led to the papers of Fedorenko and Bakhvalov through
information given by O0lof Widlund. In the first two papers [15], [16] and later
on summarised in the systematic work [17], Brandt shows the actual efficiency of

multigrid methods. His essential contributions (in the early studies) concern the
introduction of non-linear multigrid methods ("FAS-scheme") and adaptive techni-
ques ("MLAT"), the discussion of general domains and Tocal grid refinements, the
systematic application of the nested iteration idea ("full multigrid" FMG) and

- last but not least - the provision of the tool of the "local Fourier analysis"
for theoretical investigation and method optimisation.

Representative for the further multigrid development are the following papers
which we would like to mention as being "historically" relevant contributions.

In [4] Astrakhantsev generalises Bakhvalov's convergence result to general
boundary conditions;1ike Bakhvalov he uses a variational formulation in his
theoretical approach. - 1n [39], Frederickson introduces an approximate multigrid-
like solver which can be regarded as a forerunner of the "MGR methods", which were
developed later on. - After a first study of multigrid methods for Poisson's
equation in a square [75], Nicolaides discusses multigrid ideas in connection with
finite element discretisations systematically in [76]. -

In the years 1975/76, Hackbusch develops the fundamental elements of multi-
grid methods anew without having knowledge of the existing Titerature. It is again
0Tof Widlund who informs Hackbusch about the studies which are already available.
Hackbusch's first systematic report [42] contains many theoretical and practical
investigations which have been taken up and developed further by several authors.
So one finds considerations of the "model problem analysis" type, the use of "red
black" and "four colour" relaxation methods for smoothing, the treatment of non-

rectangular domains and of nonlinear problems etc. In the papers [43], [45], [49],
Hackbusch then presents a general convergence theory of multigrid methods.



The recent development. Since about 1977 multigrid methods have increasingly

gained broad acceptance. This more recent development shall not be described here
in detail. (A survey of the literature presently available is given by the multi-
grid bibliography in this Proceedings.) However, we want to mention some important
fields of applications and mathematical areas to which multigrid methods have
been applied and extended. The field of finite elements which has first been of

a more theoretical interest to multigrid methods (see, for example, [761, [43],
[81) is now undergoing an intensive practical investigation (see, for example,
[9], [32]).Apart from linear and non-Tinear boundary value problems (scalar
equations and systems) eigenvalue problems and bifurcation problems (see, for
example, [44], [27]1, [73]1) are treated as well. Parabolic (see, for example,
[33], [90], [63])and other time-dependent and non-elliptic problems (see e.g.
[23], [22], [84]1)are attracting more and more interest. A1l these situations
occur in numerical fluid dynamics, probably the most challenging field for
multigrid methods. Here the studies are now concentrating on singular pertur-
bation phenomena, transonic flow, shocks, the treatment of Euler equations and

of the full Navier Stokes equations.

Apart from differential equations, integral equations can also be efficiently
solved by multigrid methods (see e.g. [25] and the whole complex of multigrid
methods "of the second kind" [48], [57]). Furthermore, multigrid-Tike methods
are also being suggested for the solution of special systems of equations without
continuous background [25]. A certain amount of multi-level structure (at least
the nested iteration idea) can also be found in algorithms used in pattern recogni-
tion.

Perhaps as important as the extension of the field of applications of multi-
arid methods is the combination of the multigrid idea with other numerical and more
general mathematical principles. In this context we would 1ike to mention the combi-
nation with extrapolation and defect correction methods (see e.g. [251, [5], [51],
[56]) .Finally, there are considerations which refer to the optimal use of multigrid
methods on vector and parallel computers (and the construction of corresponding
multigrid components) (see, for example, [24]) as well as to approaches within
computer architecture concerning a direct mapping of the multigrid principle onto
a suitable - perhaps pyramidal - multiprocessor structure (see corresponding
remarks in [103]).

Delayed acceptance, resentments. The historical survey has shown that the

acceptance of multigrid methods was first a rather troublesome process. Only the
rapid development of recent years has convinced most people working in the field
of numerical methods for partial differential equations of the sensational possibi-



lities provided by the multigrid principle.

Nevertheless, even today's situation is still unsatisfactory in several respects.
If this is true for the development of standard methods, it applies all the more
to the area of really difficult, complex applications. With respect to standard
applications, we would Tike to discuss this in some detail (since this area is in
the center of this introductory paper) and with respect to the complex applica-
tions, for example in fluid dynamics, we would like to confine ourselves to some
remarks.

As far as standard problems (simple elliptic 2D problems of second order) are

concerned, the opinion prevailed for a Tong time - even and just among experts -
that, despite of their "asymptotic optimality", multigrid methods were in reality
far from being as efficient as the "direct fast solvers" (such as the Buneman algo-
rithm [29] or the method of total reduction [88]) and their combination with capa-
citance matrix techniques [81]. Only by providing generally available programs
(such as MGOO, MGO1l, see chapter 10), has it been proved in practice that suit-
able multigrid methods are at least competitive in these areas as well. The deci-
sive advantage of multigrid methods is however that they can be applied easily to
problems which do not meet - or do not fully meet - the requirements demanded by
direct fast solvers and capacitance matrix techniques.

Doubts in the high efficiency of multigrid methods were also fed by the multi-
grid convergence theories. The abstract theories are often far too pessimistic and
do usually not provide constructive criteria for the construction of optimal
methods for concrete situations (see also Section 9.3 ).0Only the model problem
analysis (see Chapters 3, 7 and 8) and local Fourier analysis (see Sections 9.1,
9.2) yield quantitative results to be used for the construction of algorithms.

On the other hand, these theoretical approaches, being relatively simple from
the mathematical viewpoint, also have disadvantages: The model problem analysis
can be applied directly to a small class of problems only, and local Fourier
analysis is based on idealising assumptions.

As a consequence, even in the field of standard applications the disagreement
about which approach would really supply the "best" or the "most robust" algorithms,
is not completely settled as yet. For example, as far as the smoothing methods are
concerned, each expert recommends "his" method and emphasises its benefits (A.Brandt
recommends standard relaxation techniques - pointwise, linewise and "distributed";
Wesseling the ILU smoothing, Jameson smoothing methods of the ADI type, we re-
commend MGR methods....). Since so far systematic and fair comparisons were
hardly available, it was also impossible, until recently, to obtain reliable state-
ments on which method should be preferred in which situation. Among users this



confusion has led to misunderstandings and false conclusions.

While in the field of standard problems the differences in efficiency shown by
the various algorithms are, afterall, not very large and the disagreement previous-
1y mentioned is therefore of a more or less academic nature, the disagreement in
the field of non-elementary applications is of direct practical importance and it

has especially unpleasant consequences there.

Such acontroversy exists, for example, in the field of fluid dynamics between many
numerical practitioners who Tike to take up multigrid methods and multigrid experts
(even among the practically oriented experts) who like to develop "optimal" methods
from a more fundamental viewpoint. With respect to more complex problems the experts
usually supply efficient algorithms for simplified situations only and do not go to
the work of solving full fledged industrial problems. The practitioners are therefore
sceptical about the full applicability of multigrid methods. They mostly prefer to in-
clude single multigrid components in certain parts of available software. Thus, they
obtain improvements which are possibly rather impressing, but, on the other hand, they
regard their scepsis as being justified since the improvements obtained are far from
being as large as predicted for "optimal" methods. However the multigrid experts also
feel justified since they regard the stepwise inclusionof multigrid elements in the
available "non-multigrid software" as being unsatisfactory in any case. This discre-
pancy can be found in many publications and comments and it was also reflected on the
conference which is the subject of these proceedings. There is some hope, that these
proceedings contribute towards bridging the gap between multigrid experts and practi-
tioners.

1.2. Contents of this paper, acknowledgements

In part I, we describe the multigrid idea (Chapter 2) and give a first analy-
sis of a sample method for Poisson's equation. For both chapters we have intention-
ally chosen a very detailed and elementary representation. The sample method
considered in Chapter 3 is a rather inefficient method (since Jacobi relaxation
is used for smoothing), but it has the advantage of being particularly theoreti-
cally transparent. The theoretical considerations and the tools introduced in
Chapter 3 are characteristic for the model problem analysis which is discussed
more systematically in part III.

Part II (Chapters 4,5,6) describes the well-known fundamental multigrid tech-
niques: the recursively defined complete multigrid cycle (Chapter 4), the non-
linear full approximation scheme (Chapter5)and the full multigrid method
(Chapter 6).



Parts III and IV, in particular Chapters 7.8 (together with Chapter 3) and 10, 11,
inform about results which are largely new and have not been published as yet.

Part III discusses the concepts of the so-called model problem analysis and
local Fourier analysis. For a certain class of model problems and a certain class
of multigrid algorithms, it is possible to give exact statements (not estimates) on
the convergence behaviour of the method in question using basic tools of discrete
Fourier analysis. In Chapter 7, we introduce the required formalism. In this con-
text, various cases of the coarse grid definition are discussed.

Readers who are interested in concrete results rather than in the technically
quite complicated formalism should proceed to Chapter 8. All results in this chap-
ter refer to standard coarsening (doubling the meshwidths); the emphasis lies on
the discussion of efficient smoothing methods, namely on RB (= red black), ZEBRA,
and alternating ZEBRA relaxation. Within the class of methods discussed, the model
problem analysis allows the construction of optimal multigrid components.

Problems and methods which can no longer be treated rigorously by model prob-
lem analysis may possibly be studied by means of Fourier analysis (Chapter 9). In
this context,however, no exact statements on the problem given are obtained but
only statements on an idealised problem (and thus on an idealised method) where,
in particular, the influence of the boundary and the boundary conditions are neg-
lected. The exact statements on the idealised problem (and method) are then regar-
ded as approximate statements on the original problem (and method). Subjects of
this idealizing local Fourier analysis are, for example, the usual GauB-Seidel-
relaxation method (with lexicographic ordering of the grid points) and ILU-
smoothing. Among other things, we make a short comparison of ILU-smoothing with
ZEBRA relaxation in Section 9.2. - In Section 9.3., we make some remarks on more
abstract convergence theories.

On the basis of the model problem and local Fourier analysis, the programs
MGOO and MGO1 for elliptic "standard problems" have been developed. MGO1l is de-
scribed in Chapter 10. - Chapter 11 describes the possibility of applying multi-
grid methods in combination with simultaneous use of various coordinate systems
to a given problem (composite mesh system).



