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Preface

This volume contains the papers presented at the third Robotics Science and Systems (RSS) Conference,
held in Atlanta, Georgia, from June 27 to June 30, 2007. Set in the intricately ornamented Egyptian
Ballroom of the Fox Theatre, the conference brought together over 230 researchers from around the
world. RSS strives to showcase the leading scientific research and the most advanced systems from
all areas of robotics. This goal is reflected in the diversity of the topics covered in this volume. The
papers collected here cover work in mechanism design, motion planning, control, computer vision, mobile
robotics, mapping, navigation, machine learning, manufacturing, distributed systems, sensor networks,
self-reconfigurable systems, dynamic simulation, robot safety, and field applications.

The RSS area chairs and program committee carefully reviewed 137 submissions and selected 41 papers
for publication. The review process was double-blind, that is, program committee members were not told
authors’ identities in the reviewing process. Authors were given the opportunity to respond to the reviewers’
comments in a rebuttal process. The final program was selected during an in-person meeting at MIT. This
meeting was attended by the general chair, the program chair, and the area chairs. Decisions were based on
the recommendations of three to seven program committee members (most papers received four reviews),
discussions among the reviewers, the rebuttals of the authors, and intense discussions among the area
chairs. Twenty-three of the papers were presented orally in a single conference track; eighteen additional
papers were presented at a vibrant and stimulating poster session. Each poster was advertised in a plenary
spotlight presentation session.

In addition to the contributed papers, the technical program also featured five invited talks. Shree
Nayar from Columbia University gave an inspirational presentation on Computational Cameras: Redefining
the Image; Arthur Horwich from Yale University took his audience on a breathtaking journey into the
miraculous world of proteins, reporting on GroEL: A Protein Folding Machine; Atsushi Iriki from the
Riken Brain Science Institute gave an insightful and fascinating account of Latent Precursors of Human
Intelligence in Monkey Tool Use Actions; Daniel Wolpert from the University of Cambridge gave an
exciting and thought-provoking presentation on Probabilistic Models of Human Sensorimotor Control,
and Mathieu Desbrun from California Institute of Technology shared his deep insights in a superb
presentation on Calculus Ex Geometrica: Structure-Preserving Computational Foundations for Graphics
and Simulation.

This year’s RSS introduced a new feature: the Early Career Spotlight Presentations. These presentations
allow promising early-career researchers to present their research vision beyond the scope of a single
conference or journal paper. Noah Cowan from Johns Hopkins University gave a fascinating account of
his work on Sensorimotor Integration in Robots and Animals: Signals, Geometry and Mechanics; and
Hod Lipson from Cornell University presented surprising and intriguing work on Morphological and
Behavioral Adaptation in Robotics.

Ken Goldberg from the University of California at Berkeley gave a truly amazing banquet presentation
about Earth Art with Robots and Networks. The aquariums surrounding the banquet room at the Georgia
Aquarium provided a perfect setting for the symbiosis of art and science.

For the second year in a row, RSS featured a best student paper award, sponsored by Springer on
behalf of the journal Autonomous Robots. At the area chair meeting, the area chairs had selected the
following three finalists among the many nominees: An Implicit Time-Stepping Method for Multibody
Systems with Intermittent Contact by Nilanjan Chakraborty, Stephen Berard, Srinivas Akella, and Jeff
Trinkle; Dimensionality Reduction Using Automatic Supervision for Vision-based Terrain Learning by
Anelia Angelova, Larry Matthies, Daniel Helmick, and Pietro Perona; and A Fundamental Tradeoff
Between Performance and Sensitivity Within Haptic Rendering by Paul Griffiths, Brent Gillespie, and
Jim Freudenberg. Congratulations to these authors for their outstanding contribution! The best student
paper award went to Nilanjan Chakraborty, Stephen Berard, Srinivas Akella, and Jeff Trinkle from the
Rensselaer Polytechnic Institute.



Three days of technical sessions were followed by four one-day workshops: Robot Manipulation:
Sensing and Adapting to the Real World, organized by Charles Kemp, Aaron Edsinger, Robert Platt,
and Neo Ee Sian; Robotic Sensor Networks: Principles and Practice, organized by Gaurav Sukhatme
and Wolfram Burgard; Algorithmic Equivalences Between Biological and Robotic Swarms, organized by
James McLurkin and Paulina Varshavskaya; and Research in Robots for Education, organized by Doug
Blank, Maria Hybinette, Keith O’Hara, and Daniela Rus. These workshops were complemented by the
tutorial Microsoft Robotics Studio (MSRS): A Technical Introduction, organized by Stewart Tansley and
Joseph Fernando. We would like to thank the organizers of these events.

The success of RSS is fueled by the dedication, enthusiasm, and effort of members of the robotics
community. We express our gratitude to the area chairs, who spent endless hours reading papers, managing
reviews, and debating acceptance decisions; some of them traveled between continents to attend the in-
person area chair meeting: Nancy Amato (Texas A&M University), Darius Burschka (Technical University
Munich), Jaydev P. Desai (University of Maryland, College Park), Dieter Fox (University of Washington),
Hiroshi Ishiguro (University of Osaka), Yokoi Kazuhito (AIST), Yoky Matsuoka (University of Washing-
ton), Brad Nelson (ETH Zurich), Paul Newman (University of Oxford), Allison Okamura (Johns Hopkins
University), Nicholas Roy (MIT), Roland Siegwart (ETH Zurich), Jeff Trinkle (Rensselaer Polytechnic
Institute), Jing Xiao (University of North Carolina Charlotte), and Katsu Yamane (University of Tokyo).
We would also like to thank the approximately 150 program committee members for providing extensive,
detailed, and constructive reviews.

We thank the workshop chair, Udo Frese from the University of Bremen, for orchestrating the workshop
proposal and selection process.

Frank Dellaert and Magnus Egerstedt from Georgia Tech were the local arrangement chairs this year.
They combined Southern hospitality with excellent organization and fabulous venues. Their attention
to detail ensured that the meeting and workshops went smoothly. We would like to especially thank
Teri Russell, Jacque Berry, Vivian Chandler, Katrien Hemelsoet, and Jennifer Beattie for helping with
the organization of poster sessions, the banquet, registration, and many other aspects of the conference,
assisted by a wonderful group of student volunteers.

We thank the researchers from the following Georgia Tech robotics labs for live demonstrations: the
Sting Racing Team (Dave Wooden, Matt Powers), the GRITS Lab (Jean-Pierre de la Croix, Magnus
Egerstedt), the BORG Lab (Roozbeh Mottaghi, Frank Dellaert), and the HumAnSlab (Ayanna Howard).
We also thank Henrik Christensen for the KUKA demo.

We are extremely grateful for the generosity of our sponsors. We would like to thank Stewart Tansley
from Microsoft Corporation, Jeff Walz from Google, Rainer Bischoff from Kuka, Paolo Pirjanian from
Evolution Robotics, and Melissa Fearon from Springer for their continued support of RSS. We would also
like to thank the exhibitors from Microsoft Research (Stewart Tansley) and MIT Press (John Costello).

Finally, we would like to thank the members of the robotics community for their contributions. By
submitting their outstanding research and by attending the conference, they provided the most essential
ingredients for a successful scientific meeting. Through their active participation, RSS has become a
forum for intellectual exchange as well as a high-quality robotics conference. The high ratio of attendees
to accepted papers attests to this. We are looking forward to the next event in Zurich, Switzerland, in
June 2008.

Wolfram Burgard, Albert-Ludwigs Universitit Freiburg
Oliver Brock, University of Massachusetts Amherst
Cyrill Stachniss, Albert-Ludwigs Universitéit Freiburg
September 2007
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Semantic Modeling of Places using Objects

Ananth Ranganathan and Frank Dellaert
College of Computing, Georgia Institute of Technology
{ananth, dellaert} @cc.gatech.edu

Abstract— While robot mapping has seen massive strides
recently, higher level abstractions in map representation are
still not widespread. Maps containing semantic concepts such
as objects and labels are essential for many tasks in manmade
environments as well as for human-robot interaction and map
communication. In keeping with this aim, we present a model
for places using objects as the basic unit of representation.
Our model is a 3D extension of the constellation object model,
popular in computer vision, in which the objects are modeled
by their appearance and shape. The 3D location of each object
is maintained in a coordinate frame local to the place. The
individual object models are learned in a supervised manner
using roughly segmented and labeled training images. Stereo
range data is used to compute 3D locations of the objects. We use
the Swendsen-Wang algorithm, a cluster MCMC method, to solve
the correspondence problem between image features and objects
during inference. We provide a technique for building panoramic
place models from multiple views of a location. An algorithm for
place recognition by comparing models is also provided. Results
are presented in the form of place models inferred in an indoor
environment. We envision the use of our place model as a building
block towards a complete object-based semantic mapping system.

I. INTRODUCTION

Robot mapping has in recent years reached a significant
level of maturity, yet the level of abstraction used in robot-
constructed maps has not changed significantly. Simultaneous
Localization and Mapping (SLAM) algorithms now have the
capability to accurately map relatively large environments [8],
[22]. However, grid-based and feature-based maps constructed
using lasers or cameras remain the most common form of rep-
resentation. Yet higher level abstractions and advanced spatial
concepts are crucial if robots are to successfully integrate into
human environments.

We have chosen objects and their location to be the semantic
information in our maps based on the object-centricness of
most man-made environments. People tend to associate places
with their use or, especially in workspaces, by the functionality
provided by objects present there. Common examples are
the use of terms such as “printer room”, “room with the
coffee machine”, and “computer lab”. Even in outdoor spaces,
people often remember locations by distinguishing features
that most often turn out to be objects such as store signs
and billboards [12]. Thus, objects form a natural unit of
representative abstraction for man made spaces. While we
do not claim that representing objects captures all the salient
information in a place of interest, it is an important dimension
that is useful in a wide variety of tasks.

A major concern in constructing maps with objects is
object detection, which has been a major area of research in
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Fig. 1. A generative model for representing places in a mapped
environment. The place label L generates a set of N objects O, each
having a shape S, an appearance A, and a 3D location T". The objects,
transformed to location 7", give rise to 3D feature points uzq. These
features are observed in an image as n features, each with pixel
location u, appearance v, and stereo depth d (shaded variables). The
schematic on the right illustrates this process.

computer vision for a significant period of time. Due to the
difficulty in general purpose object detection, many semantic
mapping algorithms assume object detection as a black box
[5], and so, sidestep a major component of the mapping
problem. However, recent advances in stable feature detection
algorithms have enabled featurebased object detection methods
that have revolutionized the field. In particular, use of SIFT
descriptors [11] along with affine invariant features [13] has
been particularly popular since binaries for detecting these
features are publicly available.

In this paper, we present one of the first instances of seman-
tic mapping in robotics that integrates state-of-the-art object
detection techniques from computer vision. We present a 3D
generative model for representing places using objects and
develop learning and inference algorithms for the construction
of these models. The model for a place is constructed using
images and depth information obtained from a stereo camera.
Our model is a 3D extension of the constellation models
popular in the computer vision literature [4]. In particular, as
illustrated in Figure 1, a place is represented as a set of objects
O with 3D locations T' specified in a local coordinate frame.



In turn, an object is modeled as having a particular shape
and appearance, and gives rise to features in the image. This
generative model is discussed in detail in Section III below.

The models for the objects are learned in a supervised
manner, as will be developed in Section IV. The shape models
for the objects are learned using stereo range data, while
corresponding appearance models are learned from features
detected on the images. Training data is provided to the
learning algorithm in the form of roughly segmented images
from the robot camera in which objects have been labeled.
While unsupervised learning is preferable from the standpoint
of automation, it requires that the objects to be learned be
prominent in the training images, a condition that is not
satisfied by our training images. Supervised learning results
in more reliable and robust models.

Once the object models have been learned, inference for the
place model is performed at runtime using the Swendsen-Wang
algorithm, a cluster Markov Chain Monte Carlo (MCMC)
technique [1]. Approximate inference through MCMC is re-
quired since finding the correspondence between image fea-
tures and objects is a combinatorial problem. Features in the
test image are connected in a Markov Random Field (MRF)
which promotes clustering based on appearance and locality
in 3D space. Subsequently, we employ the Swendsen-Wang
algorithm to perform sampling-based inference on the MRFE.
Range data and feature appearance provide strong constraints
on the distributions resulting in rapid convergence. The details
are given in Section V.

Finally, the place models can be used to perform place
recognition, for which purpose we provide an algorithm in
Section VI. We also describe a technique to build 360°
panoramic models from multiple views of a place using
relative robot pose.

Experiments are presented on a robot mounted with a
Triclops stereo camera system. We present place models
constructed using a fixed object vocabulary in an indoor
environment to validate our learning and inference algorithms,
in Section VII. We start with related work in the next section.

II. RELATED WORK

The need to include semantic information in robot represen-
tations of the environment has long been recognized [10]. A
number of instances of functional and semantic representations
of space exist in the literature, of which we mention a
few recent examples. [18] builds a map of the environment
consisting of regions and gateways and augments it to include
rectangular objects [17]. Supervised learning of labels on
regions is performed in [16] using cascade detectors to detect
objects of interest. [5] describes a hierarchical representation
that includes objects and semantic labeling of places in a
metric map but assumes the identities of objects to be known.
[14] performs 3D scene interpretation on range data and
computes a map consisting of semantically labeled surfaces.
[24] lays out a detailed program for creating cognitive maps
with objects as the basic unit of representation. However, their
object detection technique uses simple SIFT feature matching

- % .
Fig. 2. Features detected on a typical training image using (a) Harris-
affine corners (b) Canny edges (¢) MSER detector.

which does not scale to larger objects. Our method is more
comprehensive than the above-mentioned techniques since it
incorporates inference for the 3D location, type, and number
of objects in the scene.

More computer vision oriented approaches to the problem
of scene modeling also exist. [7] gives a technique for 3D
scene analysis and represents the analyzed 3D scene as a
semantic net. [23] implements place recognition using features
extracted from an image and uses place context to detect
objects without modeling their location. More similar to our
approach is the one in [20] that creates 3D models of scenes
using the Transformed Dirichlet Process. In contrast to this,
our approach is simpler and more robust as it uses supervised
learning and Swendsen-Wang sampling.

I11. CONSTELLATION MODELS FOR PLACES

We model places using a 3D extension of the popular
constellation model in computer vision. More precisely, we
use the “star” modification of the constellation model [4].
The model represents each place as a set of objects with
3D locations in a local coordinate frame. We assume that
given the origin of this coordinate frame, hereafter called the
base location, the objects are conditionally independent of
each other. While full constellation models can also model
relative locations between objects, the associated increase in
complexity is substantial. More discussion on this subject can
be found in [4].

A graphical representation of the generative place model is
given in Figure 1. The place label L generates a set of objects
O, where the number of objects N is variable. Each object
gives rise to a set of 3D feature points u3, according to a shape
distribution S. Further, the 3D location of the object in local
coordinates is represented using the translation variable T,
which is unique for each object and also depends on the place
label. Finally, the 3D points, transformed in space according to
T, give rise to image features at locations v with appearance v
distributed according to an object specific distribution A. The
3D points also produce range measurements d, obtained using
stereo, corresponding to the observed features.

The shape distribution S and the appearance distribution A
taken together model an object class. In our object models, we
represent the shape of an object using a Gaussian distribution
in 3D, while its appearance is modeled as a multinomial
distribution on vector quantized appearance words.

A. Feature detection and representation

For appearance measurements, we use three complemen-
tary types of features in our work that are subsequently



Fig. 3. An example training image with roughly segmented and
labeled objects, a monitor in cyan and a drawer in brown.

discretized to facilitate learning. Following previous work
[20], we use Harris-affine corners [13], maximally sta-
ble extremal regions [13], and clustered edges obtained
from a Canny edge detector [2]. We used the public im-
plementations of the first two feature detectors available
at http://www.robots.ox.ac.uk/~vgg/research/affine. Figure 2
highlights the complementary characteristics of the detected
features of each type for a sample image. As noted in [20],
edge features are crucial for modeling objects with texture-
less surfaces such as monitors. The features are represented
using SIFT descriptors in a 128 dimensional vector space. We
vector quantize the SIFT descriptors using K-means clustering
to produce a set of appearance “words”. Each feature is
subsequently described by the bin corresponding to its closest
appearance word, and its 2D pixel location in the image.

IV. SUPERVISED LEARNING OF 3D OBJECT MODELS

The individual object models in the object vocabulary of the
robot are learned in a supervised manner. While unsupervised
learning is the sought-after goal in most applications, learning
objects in this manner poses many problems. Firstly, the ob-
jects of interest have to be displayed prominently in the images
with almost no background for reliable unsupervised object
discovery to be possible. Further, currently most unsupervised
object recognition methods rely on some form of “topic”
discovery on the set of training images to learn object models
[19]. In images with varied background, the topic discovered
by the algorithm may not correspond to objects of interest.
Supervised learning sidesteps these issues and is accordingly
more suitable for our application.

Training data is presented to the algorithm in the form of
roughly segmented stereo images along with the associated
stereo range data. Objects in the image are labeled while all
unlabeled regions are assumed to be background. An example
training image is given in Figure 3.

The shape Gaussian for an object is estimated from the
range data labeled as belonging to the object, and the appear-
ance is similarly learned from the features corresponding to
the object. Learning the object models is thus straight-forward.

V. INFERENCE FOR CONSTRUCTING PLACE MODELS

During the testing phase, the robot observes an image along
with associated stereo range information, and has to infer the
label and model for the place, i.e the types of objects and

their 3D locations. We denote the set of appearance and shape
models learned during the training phase as A = {47.,,,} and
S = {S1.n} respectively, where m is the number of objects
in the robot’s vocabulary. The pixel locations of the features
observed in the image are denoted by the set U = {uy., f},
while the corresponding appearance descriptors are written as
V=Avin by being the number of features. The depth from
stereo corresponding to each of these features is represented
as D = {di.p, }. In the interest of brevity, in the following
exposition we will compress the set of measurements to Z =
{U,V, D} whenever possible.

We infer the place model and label in a Bayesian manner by
computing the joint posterior distribution on the place label,
the types of objects, and their locations. This posterior can be
factorized as

p(L,OT|IAS,Z) = pOT|AS2Z)p(LIOT,AS,Z) (1)

where L is the place label, O is the set of object types, and
T is the corresponding 3D locations. Note that the number of
objects at a place, i.e the cardinality of set O, is unknown.

The inference problem can be divided into two parts, namely
place modeling and place recognition, which correspond to the
two terms on the right side of (1) respectively. The modeling
problem consists of inferring the objects and their locations,
while the recognition problem involves finding the label of the
place given the objects and their locations. In this section we
focus on the modeling problem and return to the recognition
problem in the next section.

Since the measurements are in the form of image features,
inference cannot proceed without the correspondence between
features and the object types they are generated from. We
incorporate correspondence by marginalizing over it so that
the model posterior of interest can be written as

POTIAS,Z) = Y pOTIASZMp(IASZ) (2)
II

where II is a discrete correspondence vector that assigns each
image feature to an object type. We call (2) the place posterior.
Since computing the place posterior analytically is in-
tractable, we employ a sampling-based approximation. The
intractability arises from the need to compute the distribution
over correspondences, which is a combinatorial problem. One
technique for overcoming this intractability is using Monte
Carlo EM (MCEM) [21], in which a Monte Carlo estimate
of the distribution over correspondences is used to maximize
the posterior over the other hidden variables iteratively. In our
case, this would involve a maximization over a possibly large
discrete space of object types. Further, multi-modal distribu-
tions in this space cannot be discovered using MCEM, which
only computes the MAP solution. These reasons motivate our
use of Markov Chain Monte Carlo (MCMC) methods for

computing a sampling-based approximation to the posterior.
To compute the distribution over correspondences, we note
that features corresponding to a particular object type occur
in clusters in the image. Hence, appearance and stereo depth
provide important clues to the correspondence of a feature in



Fig. 4. A test image with detected features (toﬁ) and the correspond-
ing MRF of features on which sampling is performed (bottom). Note
that the MRF may be disconnected as shown here.

the sense that if a feature is similar to its neighboring features
with respect to its appearance and 3D location, it is highly
likely that it belongs to the same object type as its neighbors.

We take advantage of this spatially clustered nature of the
correspondences by placing the image features in a Markov
Random Field (MRF). Each feature is connected to its &
closest neighbors in the image, where the neighborhood £ is a
parameter. Larger values of k¥ make large scale correlations
visible while increasing complexity (k = ny gives a fully
connected graph). The value of k depends on the expected
size of the projected objects in the images. Figure 4 shows
the MRF corresponding to features in an image for k = 10.

We define discriminative probabilities, also called edge
compatibilities, on the edges of the MRF. These are defined as
functions of the depth and appearance of the features involved
in the edge, where both functions are the Mahalanobis distance
between the respective feature values. Denoting the functions
on depth and appearance as f; and fg, the discriminative
probability is

pe o< fq(di dj) x fa(vi,vg) A

where

;log fd = (di';ddj )2 and — log fa = (’Ui — ’Uj)ngl(Ui = UJ)
and o4 and . are depth variance and appearance covariance
respectively, that encode the size of objects and their unifor-
mity of appearance.

The overall sampling scheme to compute the posterior
can now be seen to have the following form. We sample
clusters in the MRF according to the edge compatibilities and
subsequently assign an object type to each cluster according
to some prior distribution. The sample configuration is then
evaluated using the measurement likelihoods based on the
learned object models.

We employ a cluster MCMC sampling algorithm to effi-
ciently implement the above scheme. Common MCMC sam-
pling techniques such as Gibbs sampling and Metropolis-
Hastings change the value of only a single node in a sampling
step, so that mixing time for the chain, i.e the expected time to
move between widely differing states, is exponential. Cluster
MCMC methods change the value of multiple nodes at each
sampling step, leading to fast convergence.

A. The Swendsen-Wang algorithm

We now describe the Swendsen-Wang (SW) algorithm,
which we use to compute the place posterior with fast con-
vergence. The SW algorithm has been interpreted in many
ways - as a random cluster model, as an auxiliary sampling
method, and as a graph clustering model using discriminative
edge probabilities [1]. It is in the latter manner that we use
the algorithm.

A sample is produced using the SW algorithm by indepen-
dently sampling the edges of the MRF to obtain connected
components. Consider the graph G = (V, E) of image features,
as defined above, with discriminative probabilities pe, ¢ € E
defined in (3) on the edges. We sample each edge of the
graph independently and turn “on” each edge with proba-
bility pe. Now only considering the edges that are on, we
get a second graph which consists of a number of disjoint
connected components. If the discriminative edge probabilities
encode the local characteristics of the objects effectively, the
connected components will closely correspond to a partition
I1 of the graph into various objects and the background. The
distribution over partitions II is given as
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Samples obtained from a typical image feature graph are
shown in Figure 5.

To sample over correspondence between image features and
object types, we assign an object type to each component
of the partition according to the posterior on object types
p(O,T|A, S, Z,11). Computation of the posterior on object
types involves only the appearance measurements since the
other measurements also depend on the 3D location of the
object T. Applying Bayes Law on the posterior, we get the
distribution on object types as

p(Oc|lA, S, Z,1T) o p(Z|Oc, A, S, I)p(Oc| A, S,II) (5)

where the second term on the right is a prior on object
types that can potentially incorporate information regarding
the size and appearance of the component, and the frequency
with which the object type has been observed in the past.
We employ a uniform prior on object types for simplicity
since the prior is largely overshadowed by the data in this
case. The object type affects only appearance measurements
and so, the measurement likelihood in (5) collapses to just
the conditionally independent appearance likelihoods on the



Fig. 5.

Samples from the SW algorithm for the MRF corresponding to Figure 4, obtained by independently sampling the MRF edges

according to edge compatibilities. Each connected component is colored differently and the edges that are turned “off” are shown in gray.
The SW algorithm works by assigning an object label to each connected component and subsequently scoring the sample based on the
learned object models. In practice, most components get labeled as background.

Algorithm 1 The Swendsen-Wang algorithm for sampling from the
place posterior

1) Start with a valid initial configuration (IT,O) and repeat for
each sample

2) Sample the graph G according to the discriminative edge
probabilities (3) to obtain a new partition IT’

3) For each set in the partition ¢ € II', assign the object type by
sampling from p(O.|Z,11") as given by (5)

4) Accept the sample according to the acceptance ratio computed
using (7)

features that are evaluated using the multinomial appearance
distribution for the object type

’H,f
p(Z|0c, A,8.1) = ] p(v]0e, A, 8,10) (6)
=1
The sample thus generated, consisting of a graph partition
and object type assignments to each component in the parti-
tion, is accepted based on the Metropolis-Hastings acceptance
ratio [6], given as

[loem p(Ty|0p, A, S, Z,1T)

o -1 =
i ) [Len p(TecOc, A, S, Z,T0)

(7)

min | 1,

The acceptance ratio (7) can be understood by considering
the factorization of the place posterior (2) as

P(OcTe|AS,ZIT) = p(Oc|AS,ZM)p(Te|A,S,ZI1,0.) (8)

and noting that only the second term is involved in the
acceptance ratio since the first term, the posterior on object
types, has been used in the proposal distribution for the sample
above. The acceptance ratio also makes the assumption that
the partition components are independent of each other. Note
that common factors in the calculation of the acceptance ratio
can be omitted to improve efficiency. A summary of the SW
algorithm for sampling from the place posterior is given in
Algorithm 1.

B. Computing the target distribution

Computing the acceptance ratio (7), involves evaluating the
posterior on object locations given a partition of the feature
graph. The location posterior, which is the second term on the

Fig. 6. An illustration of the use of scale to obtain a prior on object
location. (a) The scale of the projection in the image gives a good
estimate of location if the size of the object in 3D is known. (b) The
projection of a 3D object model (shown as a Gaussian ellipsoid) is
a 2D covariance, the size of which is used to estimate the object’s
location. Images taken from [9].

right in (8), can be factorized into a prior on object locations
and the stereo depth likelihood using Bayes law

P(Te)AS,ZI1,0:) o« p(D|S,IL,0:,Te)p(Te|S,UJILO.)  (9)

where appearance measurements have been neglected since
they are assumed independent of the location of the object.
The prior on object locations p(7¢|S, U, 11, O.) incorporates
the 2D pixel locations of the features in the graph compo-
nent and is evaluated using projection geometry. The graph
component is a projection of the object ellipsoid in space and
the scale of the projection thus gives an estimate of the 3D
object location. Assuming a linear camera projection model,
the mean location of the object is projected onto the mean
of the feature locations. Analogously, the covariance of the
feature locations is a projection of the 3D covariance of the
object shape model, which is known. Hence, a proposed 3D
location for the object can be evaluated through the norm-
1 error between the predicted 2D feature location covariance
and the actual covariance. Our use of scale to estimate location
in this manner is illustrated in Figure 6. If the observed 2D
covariance is 3, the 3D object shape covariance is X, and the
Jacobian of the camera projection matrix at T is represented

as P, the object location prior can be written as
log p(Te|S,U,II,O¢) o — Hzf - PEOPTH (10)

In practice, the location distribution (9) displays a peaked
nature, so that its evaluation is approximated by a maximum



Algorithm 2 Inference algorithm for constructing the place model

For each image I and stereo depth map D obtained at a landmark
location, do

1) Detect features using the 3 types of feature detectors on the
image 1.

2) Create an MRF using the edge potentials as defined in (3)

3) Sample over partitions of the graph using the Swendsen-Wang
algorithm 1 and obtain the posterior (8) over object types and
their locations

4) The posterior on object types and locations is the required
place model

a priori (MAP) estimate. This also saves us from sampling
over a large continuous space. The maximum of the posterior
defined in (9) is obtained by performing a line search along
the projection ray of the mean of the feature locations of the
graph component. The map value for the object location, 77,
is given as

TF = argmax p(D|S,U,IL,Oc, Te)p(Te|S, U, 11, 0cX11)
T.
We compute the individual stereo depth likelihoods by
marginalizing over the “true” depth of the feature as measured

along the projection ray

p(D|S,I1,0.,T}) |S,U.,OC,TC*)(12)

HL

where u; is the true depth measured as d; by the stereo. The
stereo measurement model p(d; |“3d) is modeled as a Gaussian
distribution that is learned from measurements obtained in a
scenario where ground-truth is known.

The prior on true depth p(uéd|S,U7 Oe, T¥) is obtained as
a 1D marginal along the projection ray of the object shape
model, i.e it is the Gaussian on the projection ray induced
by its intersection with the object. This is necessitated by the
fact that each feature in the graph component picks its own
true depth based on its projection ray. Since both the depth
likelihood and true depth prior are Gaussian, the integral in
(12) can be computed analytically.

We now have all the pieces to compute the target dis-
tribution (8) and the acceptance ratio (7) in the Swendsen-
Wang Algorithm 1. Appearance and stereo depth likelihoods
are computed using equations (6) and (12) respectively, while
a MAP estimate of the object locations is given by (11). A
summary of the inference algorithm is given in Algorithm 2.

(di ]ugd)P

C. Extension to panoramic models

The algorithm discussed thus far computes the place model
for a single image but cannot find a 360° model for a place
unless a panoramic image is used. To overcome this limitation,
we propose a simple extension of the algorithm.

We compute the panoramic model of a place from multiple
images by “chaining” the models from the individual images
using odometry information. For example, the robot is made to
spin around at the place of interest to capture multiple images.
We designate robot pose corresponding to the first of these

images as the base location for the model and marginalize out
the poses corresponding to all the other images to create a
combined model from all the images.

Denoting the measurements from each of the n images of
a place as Z1, Zs, ..., Zn, and the corresponding detected ob-
jects and locations by Oy, ...,On and T1,..., Ty respectively,
the panoramic model of the place is computed as

p(O-lel:n70") = [1'1 p(Ol:n»Tl:n,‘thn -,afl:n)p(wl:n‘a”)
n

p(01»T1 |Z1)

H/

where z; is the pose correspondmg to the ith image, o;_1is the
odometry between poses z;_1 and x;, and o' = 01,1 is the
set of all odometry. =1 is assumed to be the origin as it is the
base location and the pose distribution p(z;|0; 1) is evaluated
using the odometry model. Note that (13) uses the fact that
the (O;,T;) are conditionally independent of each other given
the robot pose.

Il

(O; T1Z17$1)p(1‘7|01 1) (13)

V1. PLACE RECOGNITION

Place recognition involves finding the distribution on place
labels given the detected objects and their locations, i.e.
finding the recognition posterior p(L|O,T, A, S, Z) from (1).
While robust techniques for place recognition using feature
matching are well-known [15], [3], the detected objects can
be effectively used to localize the robot, and can be expected to
improve place recognition as they provide higher-level distin-
guishing information. We now give a technique to accomplish
this. Applying Bayes law to the recognition posterior from (1)

p(LIOT\AS,Z) o p(O|L,AS,Z)p(T|L,0,.AS,Z)p(L) (14)

If the sequence of labels observed in the past is available,
a Dirichlet label prior p(L) is suitable. We assume that such
history is unavailable and so use a uniform label distribution.

The object likelihood p(O|L, A,S,Z) is evaluated as the
distance between the observed discrete distribution on object
types and prediction assuming the label L. Denoting the object
type distribution corresponding to L as Oy, the likelihood is

1()gp(O|L’A~,S7Z) = A”O_OLHZ

The location likelihood p(T|L,0,A,S, Z) is computed by
minimizing the distance between corresponding objects in T'
and the model for the place label L. Nearest neighbor (NN)
correspondence is used for this purpose. However, since the
robot is unlikely to be in exactly the same location even if
it visits the same place, we also optimize over a 2D rigid
transformation that determines the current pose of the robot
in the local coordinates of the place model for the label L

p(T|L,0AS.Z) = [ p(TILO.ASZXr)p(Xr) (15)

where X, for which we use a flat Gaussian prior, is the
location of the robot in the coordinates of the base location of
the place L. In practice, we iterate between optimizing for X
given object correspondence and finding NN correspondence



