. .. -
L > ntrodugtion to
Sta,ndardg) Programming

i

Introduction to
Standard COBOL Programming

FREDRIC STUART

Hofstra University

HARCOURT BRACE JOVANOVICH, INC.

New York Chicago San Francisco Atlanta

To Fleurette

© 1974 by Harcourt Brace Jovanovich, Inc.

All rights reserved. No part of this publication may be
reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopy, recording,
or any information storage or retrieval system, without
permission in writing from the publisher.

ISBN: 0-15-545963-5
Library of Congress Catalog Card Number: 74-12870

Printed in the United States of America

Preface

The primary purpose of this book is to teach the student the rudiments of computer
programming in the COBOL language in the standardized form sanctioned by the American
National Standards Institute (ANSI). However, since many users of the book may find that
the computers at their disposal are equipped with non-standard compilers, paragraphs
entitled “Non-Standard Compilers” explain the most common deviations from ANSI usage.

Program exercises at the end of each chapter afford the student a great deal of practice,
as indispensable here as in any other language course. The student is required to write (and
run) complete programs of increasing complexity. There are thirty exercise programs in all.
Textual material is illustrated with twenty-two complete COBOL programs, which can serve
as models for the exercises. Since COBOL is designed primarily for business data processing
applications, the sample program subject matter has been chosen accordingly: sales tax,
mailing lists, inventory records, payroll, and so forth.

Most important, the student is introduced to COBOL gradually. The first sample and
exercise programs (Chapter 1) do not employ files or input data; they are simple but
complete table-producing programs, much less frightening to a programming novice than the
usual textbook “introductory” samples. The DISPLAY verb is used in Chapter 1 samples and
exercises; ACCEPT is added in Chapter 2 to introduce input-using problems. Organized data
files make their first appearance in Chapter 3; output editing and printer carriage control are
introduced in Chapter 4.

Although some language features have been omitted because of the introductory nature
of the book, the essential language elements are covered. Arithmetic and conditional instruc-
tions, briefly introduced in the early chapters, are examined in detail in Chapters 5 and 6.
PERFORM is presented in Chapter 7 and is combined with OCCURS usage in Chapter 8. The
discussion of subscripting techniques and the input and storage problems associated with
tables is unusually extensive.

Chapter 9 enlarges the focus from language to technique by examining in detail both the
underlying logic and the programming methods for three significant procedures: sorting,
merging, and searching. Chapter 10 explains the use of such special compiler features as the
source program library (COPY verb) and the EXAMINE, SORT, and SEARCH subprograms.

Language format skeletons for all formats discussed in the text are gathered together in
Appendix A as an aid to students in writing programs. Also included in this appendix is a
complete reserved word list.

vi Preface

Appendix B is a detailed comparison of COBOL and FORTRAN intended primarily for
students who have previously had FORTRAN programming experience. Organized by
chapter, it may be treated as a supplementary COBOL-learning device by such “second-
language” students. It may also be of interest, however, to students learning COBOL asa
first programming language.

Appendix C contains running and debugging advice to facilitate independent student
work on the end-of-chapter exercises:

1. A trial data set (Figure 18) is provided for use in testing twenty-six exercise programs.
The ten-card set, which represents a bank’s checking deposit records, may be gang-
punched for distribution to students or, since it is a short data file, left to individual
keypunching.

2. Correct output is given for all thirty exercise programs. Students may verify that their
programs are running correctly by comparing their output to the Appendix C results.
In addition, a glance at the expected output will often clarify exercise instructions.

3. The last section of Appendix C contains general advice on debugging. Together with
explanations given in Chapter 1, this enables students to “debug” their own programs
without “bugging” their instructor.

My thanks to Thomas DeLutis of The Ohio State University for his many helpful
comments and suggestions. Thanks also to Armand DeAmbrosis, Claire Gittleson, Michael
Goldberg, Eugene Ingoglia, Kenneth Nelson, and Charles Sorgie of the Hofstra University
Computing Facility.

Fredric Stuart

Contents

Chapter 1 Computers, Programmers, and Languages 1

A Complete COBOL Program

Equipment, Problems, and Problem Solvers
Computer Speed

Computer Accuracy

Computer Imbecility

Computer Hardware

Computer Software and Compiler Languages
ANSI COBOL

COBOL Coding Forms

COBOL Punctuation and Spacing
Compilation, Execution, Error Messages
Outline of COBOL Program Structure
Sections, Paragraphs, and Sentences

A COBOL Language Notation System
Programming Exercises

Introduction to Data-Item Description
Introduction to Basic Arithmetic
Introduction to Branch Instructions
Introduction to Non-numeric Literals
Introduction to Output

Chapter 2 COBOL Data Organization 23

General Function of the DATA DIVISION
Fields, Records, and Files

Data-Item Description

Level Numbers

Programmer-Supplied Names

FILLER Used as a Data-Name

PICTURE Clauses

The VALUE Clause

COBOL Data Types

Programs Using Input Data

vii

viii

Contents

Chapter 3

Chapter 4

Chapter b

The ACCEPT Verb

Programmer Comments

A Program Using Input Records
Continuation of Non-numeric Literals

Input and Output Files

A Program Using Input/Output Files
The SELECT Sentence

The File Description

OPEN and CLOSE

The READ Sentence

The WRITE Sentence

The MOVE Verb

Data-Name Qualification

Movement of Group Items

MOVE CORRESPONDING
Another Program Using Input/Output Files

Printed Output Problems

The General Problem

Editing Symbols

Zero Suppression

Printed Decimal Points

Comma Insertion

Dollar Signs and Floating Strings

Negative Storage and the Edited Minus Sign
CR and DB Symbols

Plus Signs

The Check Protection Symbot

Insertion of Blanks

Zero Insertion

BLANK WHEN ZERO Clause

Use of Report Items

Handling of Alphanumeric Output
Description of Output Records in WORKING-STORAGE
The WRITE FROM and READ INTO Options
JUSTIFIED RIGHT Clause

Printer Carriage Control

The Carriage Control System

A Report-Printing Program

Arithmetic Operations

COBOL Arithmetic
Numeric Notation

41

57

81

Contents ix

Arithmetic Verbs and Operators
The COMPUTE Sentence and Arithmetic Expressions-
General Verb Formats

Addition

Subtraction

The CORRESPONDING Option
Multiplication

Division

The REMAINDER Option

The ROUNDED Option

The SIZE ERROR Option

An Arithmetic-Oriented Program

Chapter 6 Conditional Instructions 97

Flowcharting

Relation Test

General IF Formats

The ELSE Clause

NEXT SENTENCE

Compound Conditions

Relation Tests Using Non-numeric Values
Sign Test

Condition-Name Test

Class Test

An IF-Oriented Program
DEPENDING ON Option in GO TO

Chapter 7 The PERFORM Sentence; Loops and Routines 119

Simple PERFORM Statement
PERFORM THRU Option
SECTION Names in the PROCEDURE DIVISION
The Three Repetition Options
Placement of PERFORM Routines
Counting through PERFORM Loops
The USAGE Clause

Double Loops

The EXIT Sentence

PERFORM Usage

Updating Problems

Chapter 8 Subscripted Names; The OCCURS Clause 139

Meaning and Purpose of the OCCURS Clause
Subscript Usage
“Table” Input and Storage

X Contents

Chapter 9

Chapter 10

PERFORM/OCCURS Relationship
Table-Input Problems

Use of OCCURS for Group Items
Treatment of Records as Table Values
Manipulation of Table Elements in Storage
Interchange of Values in Storage
Double OCCURS Clauses

Matrix Input and Storage

Matrix Output

A Two-Dimension Problem

Triple OCCURS Clauses

Sorting, Merging, and Searching Procedures

Problem Definitions

A Sorting Method

Sorting Treated as a Modular Routine
Sorting of Complete Records
Alphabetic Sorting

The Updating Problem Again
A Merging Method

The Search Problem
Sequential Search

Binary Search

Update Using Binary Search

Library Statements; Compiler-Supplied Subprograms

The COPY Verb

The EXAMINE Verb

The TALLYING Option
EXAMINE Used for Group Items
The SORT Subprogram

Major and Minor Keys

The Binary Search Subprogram

Appendix A COBOL Language Outline

ANSI COBOL Language Skeleton
Identification Division
Environment Division

Data Division

Procedure Division

Reserved Words

Additional File Description Clauses

155

171

187

Contents Xi

Appendix B COBOL and FORTRAN Languages Compared 199
Appendix C Debugging of Student Exercise Programs 225
General Debugging Advice

Trial Data for Exercise Programs
Sample Output for All Exercise Programs

Index 235

CHAPTER 1

Computers, Programmers,
and Languages

A Complete COBOL Program

With apologies to Pope,! “The proper study of the programmer is the program.”
Since this is so, before we engage in any general discussion of machines or objectives, let us
examine a short, but complete, computer program written in the COBOL language.

SAMPLE PROGRAM 1-1

IDENTIFICATION DIVISION.

PROGRAM-1D. SALES-TAX.
REMARKS. THIS PROGRAM PRODUCES A TABLE SHOWING SALES

TAX DUE ON AMOUNTS FROM 25 CENTS TO 100
DOLLARS. (BY QUARTER-DOLLAR INCREMENTS) ---
SALES TAX RATE IS SEVEN PERCENT.
ENVIRONMENT DIVISION.
DATA DIVISION,
WORKING-STORAGE SECTION.
77 AMOUNT PICTURE 999V99.
77 TAX PICTURE 9V99.
PROCEDURE DIVISION.
MOVE 0.25 TO AMOUNT.
TAX-COMPUTATION. MULTIPLY AMOUNT BY 0.07 GIVING TAX
ROUNDED.
DISPLAY AMOUNT, " TAX IS ", TAX.
ADD 0.25 TO AMOUNT.
IF AMOUNT IS LESS THAN 100.25 GO TO TAX-COMPUTATION.
STOP RUN.

A computer program is a set of instructions for the computer. The purpose of Sample
Program 1-1 is evident from the programmer’s comments in the REMARKS paragraph,

! Know thyself, presume not God to scan
The proper study of mankind is man.

—Alexander Pope, Essay on Man, 1733.

2 Computers, Programmers, and Languages

which is intended for the reader rather than the computer. While there is some degree of
clutter caused by ritual terminology requirements in the first part of the program, you
should be able to follow everything beneath “PROCEDURE DIVISION” without too much
difficulty. The output produced by the program begins

00025 TAX IS 002
00050 TAX IS 004
00075 TAX IS 005
00100 TAX IS 007
etc.

and ends

09975 TAX IS 698
10000 TAX IS 700

Not very neat in terms of dollar signs, decimal points, and leading zeroes—but these problems
are deferred until Chapter 4.

Equipment, Problems, and Problem Solvers

We are going to avoid technical questions on the electronic basis of computer
performance, but it seems reasonable at least to ask: What is a computer expected to do
for the user? For what kinds of problems is the computer really superior to other forms of
equipment?

One answer to these questions is suggested by Sample Program 1-1: The computer is
most useful for problems that require repetition of procedures. If, for example, we were
interested only in the sales tax (at 7 percent) for an amount of exactly $37.65, it would
hardly be worthwhile to go through the steps of writing a program, keypunching the written
instructions, and running the program. The electric (or electronic) calculator would serve us
better. In fact, even pencil-and-paper computafion would be quicker than the computer
solution.

In the area of business data processing, it would not be worthwhile to use the computer
to figure one man’s pay. But since the general method, once written as a computer program,
may be used for unlimited numbers of pay records, computer execution of payroll
computation is efficient. We shall see that all useful computer programs contain one or more
program loops—sequences of instructions for which the programmer arranges repetitive
execution. Such a loop is present in Sample Program 1-1, beginning and ending with the
name “TAX-COMPUTATION.”

We find ourselves, in the discussion above, emphasizing speed of execution. Certainly the
most frequent response to the question “What is the advantage of the electronic computer
over prior devices?” would be, “It is faster.” But consider an analogy that has been quoted
frequently by computer people (authorship unknown):

A human being is a slow, error-prone genius.
A computer is a fast, accurate moron.

There are three parts to this comparison—speed, accuracy, and mental ability—and each is
important (particularly the last, as we shall shortly emphasize).

Computer Accuracy 3

Computer Speed

As to speed, computer performance has been improved so rapidly that any precise
quotation will always be proved an underestimate by next year. Let us simply summarize by
saying that arithmetic operation times are now measured in microseconds (millionths of a
second), or even nanoseconds (billionths of a second). I have just used a stopwatch to
measure my solution time on an electronic calculator for

3827 X 4122 = 15,774,894

It took me five seconds; during this interval a modern computer could have performed well
over a million such multiplications!

In terms of business data processing applications, these speeds permit execution in
minutes of jobs formerly requiring hours or days with accounting machinery (e.g., large
payrolls, inventory updates, etc.).

Computer Accuracy

The error-prone nature of human beings is easy to demonstrate; give ten people
electronic calculators, have each work on the same problem requiring about three minutes of
computations, and you are likely to have at least three different final answers. When
calculating equipment requiring human data entry (i.e., key-pushing) is used in offices, it is
common practice to have every calculation performed twice, by different operators.

Computer accuracy, on the other hand, is impressive—indeed, nearly flawless. Mechanical
and electronic difficulties rarely lead to incorrect output; they are almost invariably
diagnosed and signalled by the computer. Furthermore, both the likelihood of human error
and the cost of such error are reduced when computers are used.

A computer program that has performed successfully once may be depended upon to do
so over and over again. The error-prone human’s work of planning the exact sequence of
operations required to solve a problem (e.g., to produce a payroll from pay records) need
not be repeated; and the possibility of incorrect execution of the sequence is eliminated.

Furthermore, the computer provides a permanent record of the input data used and the
sequence of operations performed (program listing). In contrast, if an electric calculator
operator Keys in a number incorrectly or depresses the wrong operation button, no evidence
of the mistake (or its location in the procedure) is left behind.

We have said also that the cost of human error is reduced when computers are used.
Murphy’s Law, which antedates Parkinson’s Law and the Peter Principle, says,

“If anything can go wrong, it will.”
A computer corollary states,
“There is at least one error in every program.”
You will see, however, that such errors are more easily detected and corrected than mistakes

made by calculator operators. Many programmer errors (in language syntax) are successfully
diagnosed by the computer (actually, by the compiler program, discussed below) and may

4 Computers, Programmers, and Languages

be corrected by altering one or two punched cards. Furthermore, the kind of human over-
sight that frequently requires complete reworking of lengthy procedures (“My God, we
forgot to change the tax rates!”) is far less costly when a few minutes of computer rerun,
rather than hours or days of human computational labor, are required. (Logical errors
committed by the programmer can, however, be quite costly in commercial data processing
applications.)

Computer Imbecility

Human beings are geniuses and computers are morons, says the third part of the
comparison. This is why the art of programming is at the heart of successful computer
operations. A program is a step-by-step sequence of instructions that the computer is to
follow. The computer can and will do nothing except what has been explicitly called for. In
most instances it will follow its program blindly, regardless of what kinds of logical disasters
may occur on the way. A logical error by the programmer (for example, calling for multipli-
cation by 7 to compute a 7 percent sales tax) will induce the computer to produce wrong
answers with its customary great speed and “‘accuracy.”

Newspaper stories and accounting department excuses that cite “computer error” are
really shifting the blame unfairly. The “error” has always actually been committed by a
human being, usually the programmer (but sometimes an operator). When a genius commands
a moron, it is ignoble to pin the mistakes on the moron.

Computer Hardware

Every computer system has three essential kinds of component equipment: a
central processing unit, input devices, and output devices.

Figure 1 A Central Processing Unit
{CPU)

{Courtesy of Sperry Univac, a divi-
sion of Sperry Rand Corporation}

Computer Software and Computer Languages 5

The central processing unit (“CPU”’; see Figure 1) contains the primary storage areas (the
main “memory””), in which both instructions and data relating to a specific job reside when
that job is being executed. This unit houses the essential control circuitry and usually also
has an external control panel (with switches and lights) and a console typewriter, both of
which serve as low-volume input/output devices for the system operator.

Two common input/output devices are the card reader (input only; Figure 2) and the
high-speed printer (output only; Figure 3). The smallest computer systems are frequently
restricted to these two units. The card reader may be accompanied by a card punch, which
serves as an output device.

Two other media of great importance for high-volume input/output operations are
magnetic tapes and magnetic disks. These each serve as both input and output medium and
also provide significant secondary storage areas. That is, programs and data stored on tapes
and disks are accessible to the CPU, which transfers them to its primary storage area as
needed.

Magnetic tape is handled by units called tape drives (Figure 4), using reels on which the
tape is wound like motion-picture film. Access to material on tapes is sequential—that is, to
reach information in the middle of a tape it is necessary to wind through the first part of the
tape. By contrast, disks are direct access media; any part of the magnetic disk may be
reached with approximately equal speed. Each disk drive (Figure 5) contains one or more
spindles on which are stacked several platters resembling large phonograph records.

Input and output equipment may also include optical scanning devices, remote terminals,
and graphic plotters. However, COBOL programs are usually concerned principally with
cards, printer, tapes, and disks.

Computer Software and Computer Languages

All of this sophisticated “hardware” must be directed by written programs, the
“software’ provided by both the manufacturer and the local programmers. The ultimate

Figure 2 (left) A Card Reacer (Courtesy of IBM Corporation)
Figure 3 .(right) A High-Speed Printer (Courtesy of Sperry Univac, a division of Sperry Rand
Corporation)

6 Computers, Programmers, and Languages

Figure 4 (left) A Magnetic Tape Unit (Courtesy of IBM Corporation)
Figure 5 (right) Magnetic Disk Drives (Courtesy of Sperry Univac, a division of Sperry Rand
Corporation)

form of any program is actually a strange dialect called machine language, which is the only
set of instructions directly executable by the computer. A sequence of machine language
instructions looks like this (UNIVAC System 70/7):

48 00
4C 00
40 00
D2 01
48 00
4E 00
F3 17
96 FO

23C0
23C2
2310
2310
2310
2028
3002
3003

2310

2028

This contains operation codes and primary storage addresses, which are commonly expressed
in the hexadecimal number system.

This sort of language is (1) rather difficult for programmers to write and/or read and
(2) usually unique to the computer make and model being used. In the 1950s, the usefulness
of electronic computers was greatly enhanced by the development of compiler languages,
such as FORTRAN and ALGOL, followed in 1960 by COBOL.%2 A compiler language is
problem-oriented in form, as opposed to machine-oriented. It is designed to make programs
easy to write and read, by allowing the programmer to use combinations of English language
and simple (decimal system) arithmetic notation. For example, all eight machine language
statements shown above are generated by writing in COBOL merely

2COBOL was originated by a committee formed in 1959 (several years after FORTRAN, developed
at IBM, had become widely used for “scientific” applications programming), which included government
and industry computer users, manufacturers, and university representatives. The earliest version of the
language, designed for business applications, became available in 1960.

COBOL Coding Forms 7

MULTIPLY 3 BY 4 GIVING ANSWER.

Instructions written in compiler language comprise a source program, which must be
translated into an object program in the computer’s machine language prior to execution.
The translation is accomplished by a compiler program provided by the computer
manufacturer.?

As we have seen, during the translation process each of the programmer’s source state-
ments may produce many machine-language instructions. However, the programmer need
not be concerned with the details of movement of data into and out of registers, recording
of numeric storage addresses, conversion from decimal to other number systems, and so
forth. He is free to concentrate on the logic of his own problem.

A compiler program attends to these details as it translates the source language, which is
standardized, into a form acceptable to the particular computer being programmed. In order
to make their machines accessible to programmers in many fields and thereby increase their
marketability, computer manufacturers generally provide compiler programs for a number
of the more common compiler languages for each model of computer. Thus, a typical
“software” package includes compiler programs for FORTRAN (“FORmula TRANslation™),
COBOL (“COmmon Business Oriented Language””), RPG (“Report Program Generator™),
BASIC (a remote terminal language), and perhaps others as well.

ANSI COBOL

The American National Standards Institute (Formerly American Standards
Association) has coordinated efforts to standardize several of the leading compiler languages.
In this text we shall follow the language rules of ANSI COBOL. In the few instances in
which manufacturer-supplied compiler programs tend to depart from this standard, we shall
point out the essential differences so that you may adjust your programs if necessary.

COBOL Coding Forms

This hardware/software discussion has taken us away from our principal concern:
writing programs in the COBOL language. In case you have forgotten what a COBOL program
looks like since Sample Program 1-1, let’s tackle another problem.

To help its field staff compute premium payments, an insurance company requires a
table showing, for each number of days from 1 to 365, what proportion of the year has
elapsed, to the nearest hundredth. A program designed to produce the table appears in
Figure 6.

The general form of this program is close to that of Sample Program 1-1; in fact, you will
note that six identical statements appear in both programs. Before discussing general COBOL

3This discussion skips an intermediate type of programming language, the assembler languages.
Assemblers substitute mnemonic symbols for the digital operation codes and storage addresses used in
machine languages. Though the substitution of alphabetic codes simplifies life somewhat for the
programmer, the required translation to machine language is usually on a one-to-one basis. Thus, for
example, eight assembler language statements would probably be required to duplicate the sequence
shown on page 6.

