Matrix-Tensor Methods —— in ——— Continuum Mechanics Second Edition S. F. BORG # Matrix-Tensor Methods ## ## Continuum Mechanics Second Edition ### S. F. BORG Professor Emeritus of Civil Engineering Stevens Institute of Technology Hoboken, NJ 07030, USA Published by World Scientific Publishing Co. Pte. Ltd. P O Box 128, Farrer Road, Singapore 9128 USA office: 687 Hartwell Street, Teaneck, NJ 07666 UK office: 73 Lynton Mead, Totteridge, London N20 8DH Library of Congress Cataloging-in-Publication data is available. First printed in 1963 by D. Van Nostrand Company, Inc. #### MAIRIX TENSOR METHODS IN CONTINUUM MECHANICS Copyright © 1990 by World Scientific Publishing Co. Pte. Ltd. All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the Publisher. ISBN 981-02-0166-4 981-02-0167-2 pbk #### PREFACE TO THE FIRST EDITION This book is based on a preprint edition, An Introduction to Matrix-Tensor Methods in Theoretical and Applied Mechanics, which was issued on a more or less interim basis and has been used by the author in at least six of his graduate courses. The present book represents a complete rewriting and bringing up to date of the earlier work, in the light of classroom experience. The purposes of the text are: - 1. To introduce the engineer to the very important (and increasingly important) discipline in applied mathematics—tensor methods. Because the author's classroom experience has convinced him that the engineer can follow tensor theory most easily when it is presented in matrix form, this has been the method used in the text. - To show the fundamental unity of the different fields in continuum mechanics—with the unifying material formed by the matrix-tensor theory. Too often the student loses sight of the real connections between fields that we have artificially decompartmentalized. A truer understanding of the important and basic segment of engineering—mechanics of continua—can be obtained, the author feels, when the various portions of this field are presented as part of the complete fabric. - 3. To present to the engineer modern engineering problems. For this reason, mathematical arguments have been kept to a minimum or avoided entirely where they would tend to add little to the physical understanding of the phenomenon being discussed. However, it should also be emphasized that the book is not to be thought of as nonmathematical. It requires of the student an understanding of differential and integral calculus, vector analysis, complex variable theory, mathematical analysis, and related topics usually considered to be the equipment of the graduate engineer or scientist. The fundamentals of matrix and tensor theory are covered in a form sufficient for the purposes of the text—and for additional advanced use as well. In the first chapter the fundamentals of matrix algebra and calculus are presented, as well as a brief review of vector analysis and the introduc- tory complex variable theory. This coverage, together with the current undergraduate mathematical training of engineers, should be sufficient preparation. Chapter 2 presents the elements of tensor theory. The fundamental nature of the tensor is emphasized: the requirement that it behave in a certain manner under a transformation (rotation) of axes about the origin. The connection between the tensor and the matrix is brought out, and the groundwork in matrix-tensor analysis is laid. Curvilinear coordinates, one of the most useful and important topics in applied mathematics to the engineer, is discussed in Chapter 3. The entire development, presented in matrix-tensor form, leads to expressions which permit one to put all of the equations of mathematical physics in any orthogonal curvilinear form whatever. The remaining chapters indicate the applications of the theory to continuum mechanics—to fluids and to solids. Chapters 4 and 5 give the theory and some applications in the mathematical theory of elasticity. The essential tensors are derived, and their position in the theory is described in detail. Chapter 6 presents a discussion of matrix-tensor methods as they occur in structural engineering. Chapter 7 presents the application of matrix-tensor methods to plate and shell theory; Chapter 8 considers viscous flow phenomena, Chapter 9, plasticity. In all cases, the arguments and theory are presented from the matrix-tensor point of view, and the similarities (as well as essential differences) between the various fields are constantly brought out. Chapter 10 presents a subject that is based squarely upon the matrixtensor theory and that crosses all the fields considered in the text (and others). A form of dimensional analysis is described that is based upon tensoral invariance arguments, enabling one to give, without derivation, the qualitative form of many of the equations of mathematical physics and hence engineering. A list of references to the standard works in the various fields considered, and to other special reports and books mentioned, is supplied. At the end of each chapter is a problems section. In the author's graduate courses, he found it possible to complete essentially the entire book in a single three-hour-a-week semester. A graduate course in engineering mathematics was a prerequisite for this course. In his senior elective course the author was able to complete Chapters 1 through 4 in a three-hour-a-week semester. As a senior course, it should be possible to present the entire text in two semesters. The author is indebted to Professor Francis Murnaghan whose inspiring lectures at Johns Hopkins University first introduced him to applied matrix-tensor methods. Professor Murnaghan's textbooks have been referred to liberally for basic source material. Several of the treatments presented are those given by Dr. Murnaghan in his lectures. However, in the interests of engineering simplification, the author has taken some liberties in the form of presentation. If there are errors in this material as given here, the fault lies with the author. S. F. Bong 1962 #### PREFACE TO THE SECOND EDITION The second edition generally follows the format and mode of presentation of the first one. Several typographical errors have been corrected and a number of new topics or extensions of the original material have been included in an Appendix following Chapter 10 at the end of the book. The author wishes to express his sincere thanks to his publishers, World Scientific Publishing Co. for reprinting the text and for their continual help and encouragement in seeing the task through to completion. S. F. Borg March 3, 1990 #### CONTENTS | CHAPTER | • | PAGE | |------------|----------------------------------------------------|------| | PREFAC | E TO THE FIRST EDITION | vii | | PREFAC | E TO THE SECOND EDITION | хi | | 1. MATHE | MATICAL PRELIMINARIES | 1 | | | Introduction | 1 | | 1-2 | Definition of a Matrix | 1 | | | Matrix Arithmetic, Algebra, Calculus | 4 | | | Introduction to Vector Analysis | 14 | | | Introduction to Complex Variable Theory | 23 | | | Summary | 32 | | | * | | | 2 TENSOI | RS (OR MATRICES) OF ZERO, FIRST, AND | | | | ND ORDER | 35 | | | Introduction | 35 | | | Zero-order Tensor (Scalar) | 35 | | | First-order Tensor (Vector) | 36 | | | The Tensor | 40 | | | The Inertia Tensor | 47 | | | The Indicial or Subscript Tensor Notation | 56 | | | Summary | 61 | | o cribilit | INDAR COORDINATES | 64 | | | INEAR COORDINATES Introduction | 64 | | | The Rotation Matrix and the Magnification Factors | 65 | | | | 00 | | 3-3 | Coordinates | 74 | | 3-4 | The Derivatives of R in Curvilinear Coordinates | 75 | | 3-5 | Cylindrical Coordinates | 77 | | | Spherical Coordinates | 78 | | | Div \overline{V} in Curvilinear Coordinates | 79 | | 3-8 | The Laplacian f in Curvilinear Coordinates | 80 | | 3-9 | The Second-order Tensor in Curvilinear Coordinates | 81 | | 3-10 | The Divergence of a Tensor | 83 | | 3-11 | Summary | 84 | #### CONTENTS | CF | HAPTER | | PAGE | |------|---------------|----------------------------------------------------|------| | 4 | . INTRO | DUCTION TO THEORY OF ELASTICITY | 88 | | | 4-1 | | 88 | | | 4-1 | 2 The Strain Matrix | 88 | | | 4-3 | The Stress Tensor | 97 | | | 4-4 | The Equations of Static Equilibrium | 101 | | 1 | 4-5 | Derivation of Hooke's Law | 114 | | | 4-6 | The Compatibility Conditions | 119 | | | 4-7 | The Compatibility Equations for Large Strains | 129 | | | 4-8 | Summary | 132 | | | | | | | 5. | APPLIK | CATIONS OF THE THEORY OF ELASTICITY | 140 | | | 5-1 | Introduction | 140 | | | 5-2 | The Tension-Compression Bar in Elasticity | 140 | | | 5-3 | The Bending Problem | 145 | | | 5-4 | Busiletty Dolution for the Deant- | 1.0 | | | | The Bernoulli-Euler Solution | 151 | | | 5-5 | Some Remarks on the Accuracy of the Engineering | 201 | | | | Form of the Flexure Formula | 152 | | | 5-6 | Summary of the Bending Problem Solution | 155 | | | 57 | The Shear Problem and the St. Venant Torsion | | | | | Problem | 155 | | | 5-8 | on oddar Cross Decelor | 167 | | | 5-9 | | 169 | | | 5-10 | Torsion Solutions for Other Cross-Sectional Shapes | 171 | | | 5-11 | Uniqueness of Solution of the Torsion Problem | 172 | | | 5-12 | Summary of the Shear and Torsion Discussion | 174 | | | | | | | 6. | THE DI | EFLECTION TENSOR IN THE THEORY OF | | | | STRU | CTURES | 178 | | | | Introduction | 178 | | | 6-2 | The Deflection of a Plane, Thin Beam Element | 178 | | | 6 - 3 | The Deflection Tensor | 185 | | | 6-4 | The Redundant (Statically Indeterminate) Structure | 188 | | | 6-5 | Some Additional Diagonalization Examples | 190 | | | 6-6 | Summary | 192 | | | | | | | 7. 1 | NTROD | UCTION TO THE THEORY OF PLATES AND | | | vi - | SHELL | S I I I I I I I I I I I I I I I I I I I | 195 | | | 7-1 | Introduction | 195 | | | 7-2 | Basic Relations—Plates Subject to Pure Bending | 195 | | | 7–3 | A Simple Exact Solution for the Thin Plate | 202 | | CF | IAPTER | | PAGE | |-----|---------|-----------------------------------------------------|------| | | 7-4 | Small Deflections of Laterally Loaded Plates | 203 | | | 7-5 | | 208 | | | 7-6 | | | | | | Plate Theory | 213 | | | 7-7 | Laterally Loaded Plate with Large Deflections | 224 | | | 7-8 | | | | | | Theory | 226 | | | 7-9 | Summary | 231 | | | | | | | 8 | . EQUAT | IONS OF VISCOUS FLOW AND INTRODUCTION | | | | | OUNDARY LAYER THEORY | 233 | | | 8-1 | Introduction | 233 | | | 8-2 | The Continuity Equation | 234 | | | 8-3 | | 235 | | | 8-4 | Perfect Fluid Theory | 244 | | | 8-5 | A Simple Application of the Navier-Stokes Equation | 244 | | | 8-6 | Viscous Flow Equations in Cylindrical and Spherical | | | | | Coordinates | 246 | | | 8-7 | The Boundary Layer Problem—Introduction | 252 | | | 8-8 | General Discussion of the Boundary Layer Effect | 252 | | | 8-9 | | | | | | Equations | 254 | | | 8-10 | Summary of the Prandtl-Blasius Boundary Layer | | | | | Solution | 260 | | | S-11 | The Thickness of the Boundary Layer | 261 | | | 8–12 | The General Occurrence of Boundary Layer Type | | | | | Solutions in Applied Mechanics | 264 | | | 8-13 | Summary | 268 | | | | | | | 9. | INTROD | UCTORY THEORY OF PLASTICITY | 272 | | | 9 - 1 | Introduction | 2 | | | 9-2 | Review of Two-dimensional Elasticity Theory | 272 | | | 9 - 3 | The Equations of Plastic Flow | 275 | | | 9-4 | The Technical Theory of Plasticity | 278 | | | 9-5 | A Solution of a Problem in Plastic Flow | 283 | | | 9-6 | Summary | 290 | | | | | | | 10. | | ANALYSIS AS RELATED TO DIMENSIONAL | `_ | | | ANALY | | 293 | | | 10-1 | Introduction | 293 | | | 10-2 | Outline of the Method | 293 | | CO | AT | T | T. | MI | TIC | Ē | |----|-----|----|----|------|-----|---| | | 7.4 | A. | 4. | 1.46 | 2 6 | F | | | 17 | 8 | | |---|----|---|--| | ^ | ۳ | Δ | | | CH/ | APTER | | PAGE | |-----|--------|---------------------------------------------|------| | | 10-3 | Applications to Theory of Plates and Shells | 296 | | | 10-4 | Applications to the Theory of Elasticity | 301 | | | 10-5 | Applications to Capillarity, Membranes, and | | | | | Vibrations | 303 | | | REFERI | ENCES | 306 | | | INDEX | | 309 | | | APPENE | DIX | 314 | ## Chapter 1 #### MATHEMATICAL PRELIMINARIES - 1-1 Introduction. In this chapter a brief treatment of matrix algebra is presented. In addition a discussion is given, in abbreviated form, of vector analysis and complex variable theory. The presentation of the topics in this chapter is utilitarian in form and, insofar as the vector analysis and complex variable portions are concerned, it is more in the nature of a review and refresher of the introductory phases of these subjects. A knowledge of the material presented in this and the next chapter will give an adequate mathematical background for the later portions of the text. - 1-2 Definition of a Matrix. A rectangular array of m rows and n columns of numbers or other quantities is called a matrix. We designate this matrix with a capital letter, as A, and show it in its expanded form as $$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix} \tag{1-1}$$ In the above expression, a_{ij} represents an element of the matrix. Note particularly that the subscripts of the elements carry a position significance. That is, the first subscript represents the row position of the element and the second subscript represents the column position. A matrix is not a determinant. 1 As a reminder of this, the enclosing More precisely: 1. A determinant is a quantity associated with a square array of nº elements. Thus, is also given by the quantity $a_{11}a_{22}-a_{12}a_{21}$. 2. A matrix need not be square. It is simply a set of $m \times n$ elements in an ordered array. Thus $$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$ does not imply any particular operation need be performed on the elements a_{ij}. Footnote continued on page 2. bars are shown curved as against the ordinary usage of straight bars for the determinant. The number of rows in a matrix need not necessarily be the same as the number of columns. If the number of rows does equal the number of columns then the matrix is a square matrix. A matrix which consists of elements in a single row is sometimes called a row matrix. If the elements are in a single column it is sometimes called a column matrix. No particular distinction, in general, need be made between the one and the other. The elements of a matrix may or may not have any physical significance. For example, the elements may be pure numbers, as $$(6 -3.2 7\frac{1}{2}) (1-2)$$ or the elements may be components of a velocity vector, as $$V = \begin{pmatrix} u \\ v \\ w \end{pmatrix} \tag{1-3}$$ Indeed, they could even be colors, as (red blue green) or animals, as $$\begin{pmatrix} cat \\ dog \\ hare \end{pmatrix}$$ (1-4) or they could be mixtures of any or all of the above. No significance must be attached to the use of a row for the numbers and colors and a column form for the velocity and animals in the above matrices. The elements of a matrix may also be complex quantities, chemical symbols, equations, or, in fact, any quantity whatever. The zero, or null, matrix, 0, has all elements equal to zero. Thus, we have $$0 = (0 \ 0 \ 0) \tag{1-5}$$ or $$0 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \tag{1-6}$$ Foothote continued from page 1. We shall also in the following sections indicate various operations (arithmetic, algebraic, and other) that may, by definition, be performed on and by matrices. ^{3.} We may, however, define the determinant of a square matrix. This is, by definition, the quantity obtained by treating the elements of the matrix as elements of a determinant—the position of the elements being the same in both the matrix and the determinant. or any similar arrangement. Note: the zero matrix may be either a row or column or square matrix, or a general matrix of rectangular form. The unit matrix E_n is an n-by-n-square matrix whose diagonal elements (top left to bottom right) equal unity and whose off-diagonal elements equal zero. That is, in $$E_n$$, $$\begin{cases} a_{ij} = 1 & \text{if } i = j \\ a_{ij} = 0 & \text{if } i \neq j \end{cases}$$ (1-7) and, as an example, $$E_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \tag{1-8}$$ A square matrix is symmetrical if $$a_{ij} = a_{ji} \tag{1-9}$$ An example of a symmetrical matrix is the following: $$\begin{pmatrix} x & e^t & z^2 \\ e^t & yz & 3t \\ z^2 & 3t & 1 \end{pmatrix} \tag{1-10}$$ A square matrix is antisymmetric or skew-symmetric if $$a_{ij} = -a_{ji} \tag{1-11}$$ An example of a skew-symmetric matrix is $$\begin{pmatrix} 0 & -3t \\ 3t & 0 \end{pmatrix} \tag{1-12}$$ Note that in a skew-symmetric matrix the main diagonal (upper left to lower right) elements must be zero, for only then will $a_{ij} = -a_{ji}$ be true for these elements. The *transpose* of a matrix A is shown as A^* and is obtained by interchanging the rows and columns of A. Thus, if $$A = \begin{pmatrix} z & xe^t & 2-y \\ 4 & 3xy & 0 \end{pmatrix} \tag{1-13}$$ then $$A^{\star} = \begin{pmatrix} z & 4 \\ xe^t & 3xy \\ 2-y & 0 \end{pmatrix} \tag{1-14}$$ -2 The foregoing represents the basic definitions or nomenclature in matrix theory. 1-3 Matrix Arithmetic, Algebra, and Calculus. Up to this point we have defined, in some detail, exactly what a matrix is and we have discussed some special matrices. If matrices are to be useful in engineering or physical applications, then they must behave in certain set ways when subjected to particular conditions. In our work in engineering and science we are primarily concerned with quantitative relations, and therefore we shall be most interested in the behavior of matrices in arithmetical and related mathematical operations. Matrices will be of use to us if, and only if, the theory of matrices can be developed along logical mathematical lines. The simplest mathematical operations are those of arithmetic—equality, addition, subtraction, multiplication, and division. We discuss these first. Two matrices A and B are equal only if each has the same number of rows and the same number of columns and if corresponding elements are equal. Thus, given $$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix} \tag{1-15}$$ $$B = \begin{pmatrix} b_{11} & b_{13} & b_{13} \\ b_{21} & b_{22} & b_{23} \end{pmatrix} \tag{1-16}$$ then if $$a_{ij} = b_{ij} \tag{1-17}$$ it follows $$A = B \tag{1-18}$$ Thus, the simple algebraic equations $$a = p + 2u$$ $$b = q + 7v$$ $$c = r + 1.6w$$ $$d = s + 17x$$ (1-19) may be given in matrix form as $$\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} p+2u & q+7v \\ r+1.6w & s+17x \end{pmatrix}$$ (1-20) We define the sum of two matrices A and B only if A and B have the same number of rows and of columns. The sum A+B is then a matrix C of the same number of rows as A (and B) and the same number of columns as A (and B) and with $$c_{ij} = a_{ij} + b_{ij} \tag{1-21}$$ For example, the algebraic equations $$c_{11} = a_{11} + b_{11}$$ $$c_{12} = a_{12} + b_{12}$$ $$c_{21} = a_{21} + b_{21}$$ $$c_{22} = a_{22} + b_{22}$$ $$(1-22)$$ are equivalent2 to $$\begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} + \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}$$ (1-23) It may be shown (the student should verify this and the following statement for typical matrices) that the sum of two matrices is commutative. That is, $$A + B = B + A \tag{1-24}$$ Also, it may be shown that the addition of matrices is associative. That is, $$(A+B)+C = A+(B+C) (1-25)$$ The difference of two matrices A and B is defined similarly. Thus, $$C = A - B \tag{1-26}$$ with $$c_{ij} = a_{ij} - b_{ij} \tag{1-27}$$ We may define multiplication of a matrix A by a scalar k as follows: the elements of kA are given by ka_{ij} , so that, for example, if $$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \tag{1-28}$$ then $$kA = \begin{pmatrix} ka_{11} & ka_{12} \\ ka_{21} & ka_{22} \end{pmatrix} \tag{1-29}$$ a Alternatively, this may be expressed in the following essentially equivalent form: $$\begin{pmatrix} c_{11} \\ c_{12} \\ c_{21} \\ c_{22} \end{pmatrix} = \begin{pmatrix} a_{11} \\ a_{12} \\ a_{21} \\ a_{22} \end{pmatrix} + \begin{pmatrix} b_{11} \\ b_{12} \\ b_{21} \\ b_{22} \end{pmatrix}$$ in which the positional significance of the subscripts has been waived. Note that this is consistent with the usual notation $$kA = \underbrace{A + A + \dots + A}_{k \text{ times}} \tag{1-30}$$ An important property of square matrices which follows directly from the law of addition and subtraction is the following: Any square matrix may be given as the sum of a symmetrical and antisymmetrical matrix. For, if A is a square matrix, then obviously $$A = \frac{A + A^*}{2} + \frac{A - A^*}{2} \tag{1-31}$$ The first term on the right is a symmetrical matrix and the second term is an antisymmetrical matrix. This may be verified for a 2×2 matrix as follows: If $$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \tag{1-32}$$ then $$A^{\star} = \begin{pmatrix} a_{11} & a_{21} \\ a_{12} & a_{22} \end{pmatrix} \tag{1-33}$$ so that $$\frac{A+A^{*}}{2} = \begin{pmatrix} a_{11} & \frac{a_{12}+a_{21}}{2} \\ \frac{a_{21}+a_{12}}{2} & a_{22} \end{pmatrix}$$ (1-34) and $$\frac{A - A^{\star}}{2} = \begin{pmatrix} 0 & \frac{a_{12} - a_{21}}{2} \\ \frac{a_{21} - a_{12}}{2} & 0 \end{pmatrix}$$ (1-35) A very important operation in matrix arithmetic is the *product* of two matrices. The previous operations are not too different from the more familiar ones of elementary arithmetic. The product operation, however, is quite different.