MANAGE-

14

Prepare
unfilled
orders
report,
handle

queries
- 4
4

R A

MENT

l

18

..

STRUCTU
SYSTEMS

Prepare
purchasing
analysis,
handle
queries

RED

PUBLISHERS

D8 | BACK-ORDERS a Enter
publisher
: 4 | Wi changes
— Out-of-stock ’
items
. tools and techniques
L Chris Gane and Trish Sarson
Create Status
h
back order EHanges
or requisition
5 for non-
inventory
items 16 9
! Remainder of shipment ; Sstisfdy Merify P
a;en?jringrs, Details of titles,| shipment Shipment advice
[Back order and pending reqs quantities contents
reqgs for release updat'e :
inventory Details
Deboowbl ¥ of goods
received
Prepaid
orders D12| ACCTS PAYABLE
D2 BOOKS pam, o [
due \
(_JZIO_\ (—25 Invoices
X Prepare
payments Verify _la——————
to invoices
Generate Maintain

confirmation book

details

\ vendors }

Lo

Checks for books supplied

New books, price changes

Structured Systems Analysis:
Tools and Techniques

Chris Gane and Trish Sarson

Prentice-Hall, Inc., Englewood Cliffs, New Jersey 07632

Library of Congress Cataloging in Publication Data

GANE, CHRISTOPHER P
Structured systems analysis.

Includes bibliographical references and index.
1. Electronic data processing. 2. System
analysis. I. Sarson, Trish, joint author.
II. Title.
QA76.G287 1979 001.6°1 78-23173
ISBN 0-13-8545417-2

Editorial/production supervision and interior
design by Marianne Thomma Baltzell

Cover design by George Alon Jaediker

Manufacturing buyer: Gordon Osbourne

© 1979 by Improved System Technologies, Inc., New York, N.Y.

All rights reserved. No part of this book
may be reproduced in any form or by any means
without permission in writing from the publisher.

Printed in the United States of America

109 87 65 43

PRENTICE-HALL INTERNATIONAL, INC., London
PRENTICE-HALL OF AUSTRALIA PTY. LIMITED, Sydney
PRENTICE-HALL OF CANADA, LTD., Toronto
PRENTICE-HALL OF INDIA PRIVATE LIMITED, New Delhi
PRENTICE-HALL OF JAPAN, INC,, Tokyo

PRENTICE-HALL OF SOUTHEAST ASIA PTE. LTD., Singapore
WHITEHALL BOOKS LIMITED, Wellington, New Zealand

10019

Structured Systems Analysis:
Tools and Technigues

PRENTICE-HALL SOFTWARE SERIES
Brian W. Kernighan, Advisor

TP12 8064448
G2

systems analysis:
t00ls and techniques

]
|
|

Preface

We are excited about the techniques described in this book. They are
proving their worth in a troublesome area of data processing: the analysis
and definition of what a new system should do if it is to be of most value
to the people who are paying for it.

The discipline consists of an evolving set of tools and techniques
which have grown out of the success of structured programming and struc-
tured design. The underlying concept is the building of a logical (non-
physical) model of a system, using graphical techniques which enable users,
analysts, and designers to get a clear and common picture of the system
and how its parts fit together to meet the user’s needs. Until the develop-
ment of the structured systems analysis tools, there was no way of showing
the underlying logical functions and requirements of a system; one very
quickly got bogged down in the details of the current or proposed physical
implementation.

The book starts with a discussion of some of the problems we face in
analysis and then reviews the graphical tools and how they fit together to
make a logical model. We then take each tool in turn and treat them in
detail in Chapters 3 through 7, starting with the key tool, the logical data
flow diagram. Since we are using tools which build a logical model, the
approach to system development which results is somewhat different from
traditional approaches; in Chapter 8 we sketch out a structured systems
development methodology which takes advantage of the new tools. This
methodology involves building a system top-down by successive refinement,
first producing an overall system data flow, then developing detailed data
flows, next defining the detail of data structure and process logic, then

xii
Preface

moving into the design of a modular structure, and so on. We analyze top-
down, we design top-down, we develop top-down, we test top-down. Further
we recognize that good development involves iteration; one has to be pre-
pared to refine the logical model and the physical design in the light of
information resulting from the use of an early version of that model or
design.

We distinguish the work of analysis (defining “what” the system will
do) from the work of design (defining ‘“how’’ it will do it), recognizing that
analysts often do design and designers often do analysis. Part of the value of
structured systems analysis is that it provides the designer with the inputs
needed to define the programs for maximum changeability using structured
design. In Chapter 9, we review the importance of changeability and the
techniques and concepts of structured design, taking a realistic system,
analyzing it, and designing it down to the module level.

Finally, in Chapter 10, we discuss the issues that arise in changing over
to these new techniques from the traditional approaches, with their im-
plications for management control of projects and the benefits that one can
expect.

We have tried to avoid introducing new terms as far as possible; since
the discipline draws on structured design (which has its own vocabulary)
and relational data base theory (which has its own vocabulary), there may
be some unfamiliar terminology. Each such term is explained where it
first appears and is also defined in the Glossary at the end of the text.

We hope you will find these tools and techniques useful whether you
are a systems analyst, or a designer, or a manager, or user of data processing
services. We would like to hear about your experiences in using structured
systems analysis, particularly if you are willing to share those experiences
with others.

We gratefully acknowledge the help of those who have given us permis-
sion to reproduce their copyright material and the contributions made to the
development of these ideas by our former colleagues at Yourdon, Inc., Tom
de Marco, Victor Weinberg, and Ed Yourdon.

CHRIS GANE
TRISH SARSON

Contents

Preface x/

THE NEED FOR BETTER TOOLS 7

1.1 What Goes Wrong in Analysis? 2
1.2 How Much Can We Blame Our Tools? 4

1.2.1 No “model” in DP 4

1.2.2 English narrative is too vague and long-winded 4

1.2.3 Flowcharts do more harm than good 4

1.2.4 We have no systematic way of recording user preferences and

trade-offs, especially in terms of immediate access to data 6

1.3 How Much Does the Functional Specification Matter? 6
References 7

WHAT THE TOOLS ARE AND HOW THEY FIT TOGETHER &8

2.1 First, Draw a Logical Data Flow Diagram 9
2.1.1 Error conditions 11
2.1.2 Alternative physical implementations 12
2.1.3 The general system class 15

2.2 Next, Put the Detail in a Data Dictionary 15

2.3 Define the Logic of the Processes 17

vi
Contents

2.4

2.5

Define the Data Stores: Contents and Immediate Access 18
2.4.1 Are the logical data stores the simplest possible? 19

2.4.2 What immediate accesses will be needed? 20

Using the Tools to Create a Functional Specification 23

Exercises and Discussion Points 24

DRAWING DATA FLOW DIAGRAMS 25

3.1

3.2
3.3
3.4
3.5
3.6

Symbol Conventions 25

3.1.1 External enfity 26

3.1.2 Data flow 27

3.1.3 Process 29

3.1.4 Data store 30

Explosion Conventions 3!

Error and Exception Handling 33

Guidelines for Drawing Data Flow Diagrams 34
Example: Distribution with Inventory 35
Materials Flow and Data Flow 43

References 46
Exercises and Discussion Points 46

BUILDING AND USING A DATA DICTIONARY 48

4.1
4.2

4.3
4.4

4.5
4.6
4.7

Appendix: Commercially Available Data Dictionary Software Packages 75

The Problem of Describing Data 48

What We Might Want to Hold in a Data Dictionary 51
4.2.1 Describing a data element 53

4.2.2 Describing data structures 55

4.2.3 Describing data flows 58

4.2.4 Describing data stores 59

4.2,5 Describing processes 60

4.2.6 Describing external entities 67

4.2.7 Describing glossary entries 61

Manual vs. Automated Data Dictionaries 6.

What We Might Want to Get out of a Data Dictionary 63
4.4.1 Ordered listings of all entries or various classes of entry with full

or partial detail 63
4.4.2 Composite reports 63
4.4.3 Cross-referencing ability 63
4.4.4 Finding a name from a description 64
4.4.5 Consistency and completeness checking 65

4.4.6 Generation of machine-readable data definitions 65
4.4.7 Extraction of data dictionary entries from existing programs 66

An Example of an Automated Data Dictionary 67

Cross-Project or Organization-wide Data Dictionaries 72

Data Dictionaries and Distributed Processing 73

References 75
Exercises and Discussion Points 75

vii

5 ANALYZING AND PRESENTING PROCESS LOGIC 76

5.1

5.2
5.3

5.4

The Problems of Expressing Logic 77

5.1.1 Not only but notwithstanding, and/or unlesa
5.1.2 Greater than, less than 78

5.1.3 And/or ambiguity 79

5.1.4 Undefined adjectives &80

5.1.5 Handling combinations of conditions &0
Decision Trees &3

Decision Tables &8

5.3.1 Conditions, actions, and rules &8

5.3.2 Building the rule matrix 90

5.3.3 Indifference 90

5.3.4 Extended entry; the freight rate problem 92
5.3.5 Decision tables vs. decision trees 95

Structured English, Pseudocode, and “Tight English™ 95
5.4.1 The “structures” of structured programming 96
5.4.2 Conventions for structured English 100

5.4.3 Pseudocode 102

5.4.4 Logically “tight English” 104

5.4.5 Pros and cons of the four tools 705

5.4.6 Who does what? 107

References 108
Exercises and Discussion Points 108

6 DEFINING THE CONTENTS OF DATA STORES 770

6.1
6.2
6.3

6.4

6.5

6.6
6.7

What Comes Out Must Go In 170

Simplifying Data Store Contents by Inspection 112

Simplifying Data Store Contents by Normalization 114

6.3.1 The vocabulary of normalization 115

Some Normalized Forms Are Simpler than Others 117

6.4.1 First normal form (INF) 117

6.4.2 Second normal form (2NF) 118

6.4.3 Third normal form (3ANF) 178

Making Relations out of Relations—Projection and Join 119

6.5.1 Projection 121

6.5.2 Join 122

The Importance of Third Normal Form 123

A Practical Example of 3NF 124

6.7.1 Normalization of the CUSTOMERS data store 124

6.7.2 Normalization of the BOOKS data store 127

6.7.3 Normalization of the ACCOUNTS RECEIVABLE data
store 128

6.7.4 Normalization of the INVENTORY data store 129

6.7.5 Putting the relations together 129

References 130
Exercises and Discussion Points 131

viii

7 ANALYZING RESPONSE REQUIREMENTS 732

7.1
7.2

7.3

7.4

7.5

7.6

Describing the Ways Data Are Used 132

Physical Techniques for Immediate Access 134

7.2.1 Indexes 134

7.2.2 Hierarchical records 136

General Inquiry Language Capability 139

Types of Query 141

7.4.1 Entities and attributes 741

7.4.2 Six basic query types 142

7.4.3 Variations on the basic types of queries 145
Finding out What the User’s Needs and Preferences Are 745
7.5.1 Operational access vs. informational access 145
7.5.2 Getting a composite wish list 746

7.5.3 Refining the wish list 750

Security Considerations 152

Appendix: General Inquiry Packages 152
References 153
Exercises and Discussion Points 153

8.1
8.2

8.3

8.4

8.5

8.6

USING THE TOOLS: A STRUCTURED METHODOLOGY 754

The Initial Study 154

The Detailed Study 157

8.2.1 Defining in more detail who the users of a new system would
be 158

8.2.2 Building a logical model of the current system 159

8.2.3 Refining the estimates of IRACIS 160

Defining a ‘“Menu” of Alternatives 162

8.3.1 Deriving objectives for the new system from the limitations of
the current system 62

8.3.2 Developing a logical model of the new system 164

8.3.3 Producing tentative alternative physical designs 164

Using the “Menu” To Get Commitment from User Decision-

makers 168

Refining the Physical Design of the New System 769

8.5.1 Refining the logical model 169

8.5.2 Designing the physical data base 170

8.5.3 Deriving the hierarchy of modular functions that will be
programmed 170

8.5.4 Defining the new clerical tasks that will interface with the new
system 170

8.5.5 A note on estimating 171

Later Phases of the Project 174

References 174
Exercises and Discussion Points 175

9 DERIVING A STRUCTURED DESIGN FROM THE LOGICAL MODEL 776

10

9.1

9.2

9.3
9.4

9.5

The Objectives of Design 177

9.1.1 Performance considerations 177

9.1.2 Control considerations 81

9.1.3 Changeability considerations 182

Structured Design for Changeability 184

9.2.1 What makes for a changeable system? 184

9.2.2 Deriving a changeable system from the data flow diagram 186
9.2.3 Module coupling 189

9.2.4 Well-formed modules: cohesiveness, cohesion, binding 791
9.2.5 Scope of effect/scope of control problems 193

The Trade-off Between Changeability and Performance 195

An Example of Structured Design 197

9.4.1 The boundaries of the design 198

9.4.2 Physical file design considerations 199

9.4.3 Locating the central transform of the data flow diagram 206
9.4.4 Refining the design from the top down 207

Top-down Development 213

9.5.1 Possible top-down versions of the CBM system 215

9.5.2 Why develop top-down? 217

9.5.3 The role of the analyst 218

9.5.4 Summary 221

References 221
Exercises and Discussion Points 222

INTRODUCING STRUCTURED SYSTEMS ANALYSIS INTO YOUR
ORGANIZATION 223

10.1

10.2

Steps in Implementation of Structured Systems Analysis 223

10.1.1 Reviewing the ground rules for conducting projects 223

10.1.2 Establishing standards and procedures for the use of the data
dictionary and other software 226

10.1.3 Training analysts in the use of the tools and techniques 226

10.1.4 Orienting users to the new approaches 227

Benefits and Problems 228

10.2.1 Benefits from using structured systems analysis 228

10.2.2 Potential problems 230

References 231

Glossary 233

Index 239

The Need
for Better Tools

In many ways, systems analysis is the toughest part of the development
of a data processing system. It’s not simply the technical difficulty of the
work, though many projects demand that the analyst have deep knowledge
of current DP technology. It’s not simply the political difficulties that arise,
especially in larger projects-where the new system will serve several, possibly
conflicting, interest groups. It’s not simply the communication problems
that arise in any situation where people of different backgrounds, with dif-
ferent views of the world and different vocabularies, have to work together.
It’s the compounding of these difficulties that makes systems analysis so
hard and demanding: the fact that the analyst must play the middleman
between the user community—those who have a gut-feel for their problems
but find it hard to explain them and are vague about what computers can do
to help—and the programming community—those who are anxious that the
organization have a sharp data processing function but do not have the in-
formation to know what is best for the business. The analyst must make a
match between what is currently possible in our onrushing technology
(minis, micros, distributed processing, data base, data communications) and
what is worth doing for the business, as run by the people in it.

Making the match in a way which is acceptable to all parties and will
stand the test of time is the hardest part of the effort; if it is done well, then
no matter how difficult the design and programming, the system which is
built will serve the needs of the business. If it is done poorly, then no matter
how excellent the implementation, the system will not be what the organiza-
tion needs, and the costs will outweigh the benefits. In making that match,
we need all the help we can get. This book presents some tools which have
proved helpful.

1.1 What Goes Wrong in Analysis?

The problems that the analyst faces are intertwined; that’s one reason
they are tough problems. We can distinguish five aspects which are worth
commenting on:

Problem 1. The analyst finds it hard to learn enough about the business
to see the system requirements through the user’s eyes. (When we use the
term business, by the way, we mean the enterprise of any organization,
whether profit-making or not.) Again, and again, we hear it said, “We built a
technically excellent system, but it wasn’t what the users wanted.” Why
should this be? Why can’t the analyst simply study the business and gather
enough facts to specify the right system? At the heart of this problem is the
fact that many user managers are ‘‘doers” rather than ‘‘explainers.” They
acquire and handle the information they need on an intuitive basis, without
thinking in terms of information flow or decision logic. This is natural; one
becomes a manager by making the right decision and doing a superior job,
not necessarily by explaining how the job is done and how the decisions are
made. But it means that the analyst has no right to expect a lucid explana-
tion of the system requirements from the users; he has to help them work out
their needs. At the same time, analysts do not have the gift of telepathy;
they do not know what they have not been told. This painful fact shows up
particularly in terms of the relative importance that users give to various
features of the system. Suppose a particular manager wants a cash report
each morning. Which is more important, that he have it by 8:30 even if there
are some items not yet resolved, or that he have it accurate to the penny
even if it takes until 11 a.m. some days? The manager knows very well and
might say, “Heck, any dummy who knows anything about the business
would know that!”” But getting that level of intuitive feel for the trade-offs
in the business is tough.

Problem 2. People in the user community do not yet know enough
about data processing to know what is feasible and what isn’t. The propa-
ganda about computers has, in general, not left people with any specific or
accurate ideas about what they can or can’t do. Many people have no idea of
the capability of an on-line CRT; why should they? The technology is still
too young for people to have the background knowledge and exposure
which would enable them to imagine the way a new system would affect
them. The popular media haven’t helped; the image of computers is either
one of expensive and senseless mistakes or one of science fiction where
boxes with a mind of their own take over the world.

Compare this situation with people’s ideas about, say, the construction
industry. Even though a businessman may never have commissioned a fac-
tory before, he has been in and out of factories all his working life and has
formed a whole background which enables him to make sense of the things
his architect will say to him. Then again, one factory is much like another;
at least they will have much more in common than, say, a batch system and
an on-line system. Our problems in data processing are much worse than
those of the construction industry, not least because we have had no way to
make a model of what we are going to build. In a construction or engineering

3

Section 1.1

What Goes Wrong in
Analysis?

project of any size, the architect will discuss the requirements of his clients
and then produce a model of what the finished structure will look like.
Everyone who has an interest can look at the model, relate it to their previ-
ous experience with such structures, and form a clear idea of what they will
be getting for their money. The tools of structured systems analysis enable
us to produce a pictorial model of a system which can play much the same
role as the model of a building or oil refinery.

Problem 3. The analyst can quickly get overwhelmed with detail,
both the detail of the business and the technical detail of the new system.
A large part of the time in the analysis phase of the project is spent in ac-
quiring detailed information about the current situation, the clerical pro-
cedures, the input documents, the reports produced and required, the
policies in effect, and the myriad of facts which are thrown up by such a
complex thing as a real business. Unless there is some scheme or structure to
organize these details, the analyst (or even a whole team of analysts) can
become overloaded with facts and paper. The details are needed and must
be available when required, but the analyst must have tools to control the
detail, or he will find he ‘‘can’t see the forest for the trees.” Part of the value
of a top-down approach, as we shall see, is that it enables one to look at the
big picture and then home in on the detail of each piece as and when
required.

Problem 4. The document setting out the details of a new system
(which may be called variously the system specification, or general design,
or functional specification, or some equivalent name) effectively forms a
contract between the user department and the systems development group,
yet it is frequently impossible for the users to understand because of its
sheer bulk and the technical concepts built into it. It somewhat resembles
an old-style insurance policy; the things that are really going to matter in
the end are buried in the fine print. Users often make a valiant effort to
master these documents and end up mentally shrugging their shoulders and
signing off, saying to themselves, “Well, I guess these computer people know
what they’re doing.” Only when the finished system is delivered do they
have something which they can understand and react to, and, of course,
by then it’s too late.

Problem 5. If the specification document can be written in such a way
as to make sense to users, it may not be very useful to the physical designers
and programmers who have to build the system. Often a considerable
amount of reanalysis goes on, essentially duplicafing the work that the
analyst has done but redefining data and process logic in terms which the
programmers can use. Even if the analyst has a technical background and so
writes the specification with an eye to the subsequent ease of programming,
he may end up limiting the programmer’s freedom of action to implement
the system in the best way. The physical design of the files, programs, and
input/output methods should be done by someone with up-to-date technical
knowledge, based on an understanding of the complete logical requirements
of the system. To begin to specify physical design before the logical model

4

Chapter 1
The Need for Better Tools

of the system has been built is to be “‘prematurely phys1ca and too often
results in an inferior design.

1.2 How Much Can We Blame Our Tools?

1.2.1 No “model”

indp

Even with the best possible analytical tools, some of the problems
just discussed will always be with us. No analytical tool will enable analysts
to know what is in a user’s mind without being told, for instance. Nonethe-
less, it is the theme of this book that the problems of analysis can be signifi-
cantly eased with the logical tools we describe, and we identify four
limitations of our present analytical tools.

We have no way of showing a vivid tangible model of the system to
users. It’s hard for users to imagine what the new system is going to do for
them until it is actually in operation, by which time it’s usually too late.
“How do I know what [want till I see what I get?” is the disguised cry of
many users. The pictorial tools in this book give the user a better “model”
of the system than was possible until now.

1.2.2 English narrative is too vague and long-winded

Since we have had no way of showing a tangible model, we have had to
do the next best thing, which is to use English narrative to describe the
proposed system. Can you imagine spending five years’ salary on a custom-
built house on the basis of an exhaustive narrative description of how the
house will be built? No pictures, no plans, no visits o a similar house—just
the 150-page narrative. “The living room, which faces south-southeast, will
be 27' X 16’ at its greatest width, with the western half taking a trapezoidal
form, the west wall being 13'4” long (abutting the northern portion of the
east wall of the kitchen). ...”

Having spent the money on the basis of the narrative and not being
shown anything until the house is finished, would you be surprised if you
were disappointed when you moved in? Is it surprising that users are dis-
appointed with systems when they get them?

If you use English to describe a complex systemn (or building), the
result takes up so much space that it’s hard for the reader to grasp how the
parts fit together. Worse than that, as we shall see in Chapter 5, English has
some built-in problems that make it very difficult to use where precision is
needed.

1.2.3 Flowcharts do more harm than good

If we can’t make a model and English is too vague and wordy, then
what about a picture? Unfortunately, up to now the only picture we have
had for a system has been the flowchart. Though one flowchart can be worth

5

Section 1.2

How Much Can We Blame
Our Tools?

a thousand words, it traps the analyst into a commitment; to use the stan-
dard flowchart symbols (see Fig. 1.1) means inevitably that the analyst
must commit to a physical implementation of the new system. The very act
of drawing a flowchart means that a decision must be made as to whether
the input will be on cards or through a CRT, which files will be on tape and
which on disk, which programs will produce output, and so on. Yet these
decisions are the essence of the designer’s job. Once the analyst has drawn a
systems flowchart, what is left for the designer to do? The designer has a
choice between accepting the analyst’s physical design and dealing with the
details of program and file structure or (as too often happens) going back
to the written specification and producing a new design from that. Neither
course is satisfactory. In Fred Brooks’ words,

The manual (specification) must not only describe everything the user does
see, including all interfaces; it must also refrain from describing what the user
does not see. That is the implementer’s business, and there his freedom must be
unconstrained. The architect (analyst) must always be prepared to show an
implementation for any feature he describes, but must not attempt to dictate
the implementation. [1.1]

If the analyst and designer are the same person, drawing the flowchart
must be recognized as an act of design, not of analysis. There is a great
temptation to sketch a physical design of the new system before one has a
full understanding of all the logical requirements; this is what is meant by
being *‘prematurely physical.”

CRT

Process display

Data
communication
link

Document

{usually output)
\/_‘ Sorting
——————

Decision

Punched card

Random-
access storage
(usually disk)

Magnetic tape

Figure 1.1 Conventional flowchart symbols (from {BM flowcharting template
X20-8020)

