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Preface

Biomolecular computing has emerged as an interdisciplinary field that draws on
chemistry, computer science, mathematics, molecular biology, and physics. The
International Meeting on DNA Computing (formerly DNA Based Computers) is
a forum where scientists with different backgrounds, yet sharing common inter-
ests in biomolecular computing and DNA nanotechnology, meet and present their
latest results. Continuing this tradition, the 11th International Meeting on DNA
Computing was held June 6-9, 2005 at the University of Western Ontario in Lon-
don, Ontario, Canada. For the first time, the meeting was organized under the
auspices-of the newly founded International Society for Nanoscale Science, Com-
putation and Engineering (ISNSCE). The DNA11 Program Committee received
79 submissions, of which 23 were presented orally and 47 were presented as posters.
The meeting was attended by 131 registered participants from 15 countries.

The meeting began with tutorials on computer science for life science re-
searchers by Mark Dalcy (University of Western Ontario) and on molecular
biology for computer scientists by Junghuei Chen (University of Delaware). Ned
Seeman (New York University) concluded the first day with a survey on DNA
nanotechnology. The remaining three days included contributed oral and poster
presentations as well as invited lectures by James Gimzewski (University of Cal-
ifornia, Los Angeles) on nanomechanical probes of biosystems, Pehr Harbury
(Stanford University) on DNA display, Eshel Ben-Jacob (Tel Aviv University)
on bacterial intelligence, Erik Klavins (University of Washington) on robotic self-
organization, and Dipankar Sen (Simon Fraser University) on DNA biosensors.

This volume contains 34 papers selected from the contributed oral and poster
presentations. The wide-ranging topics include in vitro and in vivo biomolecular
computation, algorithmic self-assembly, DNA device design, DNA coding theory,
and membrane computing. The style of the contributions varies from theoretical
molecular algorithms and -complexity results, to experimental demonstrations of
DNA computing and nanotechnology, to computational tools for simulation and
design.

We wish to express our gratitude to the Program Committee members and
external reviewers for evaluating-the manuscripts. We also appreciate the efforts
of the International Steering Committee chaired by Grzegorz Rozenberg in pro-
viding intellectual continuity for the meeting series. Profound thanks are due
to Lila Kari, Mark Daley and all the members of the Organizing Committee
for their substantial efforts in preparing for and running the meeting. We are
grateful to all of the organizations that provided financial support for the meet-
ing. Finally, we wish to thank all the members of the research community who
contributed to the vitality of DNA11.

December 2005 Alessandra Carbone
Niles A. Pierce
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Self-correcting Self-assembly: Growth Models
and the Hammersley Process

Yuliy Baryshnikov!, Ed Coffman?, Nadrian Seeman®, and Teddy Yimwadsana?

! Bell Labs, Lucent Technologies, Murray Hill, NJ 07974
- ymb@research.bell-labs.com
2 Department of Electrical Engineering, Columbia University, NY 10027
{egc, teddy}@ee.columbia.edu
3 Chemistry Dept., New York University, New York 10003
ned.seeman@nyu.edu

Abstract. This paper extends the stochastic analysis of self assembly in
DNA-based computation. The new analysis models an error-correcting
technique called pulsing which is analogous to checkpointing in com-
puter operation. The model is couched in terms of the well-known tiling
models of DNA-based computation and focuses on the calculation of
computation times, in particular the times to self assemble rectangular
structures. Explicit asymptotic results are found for small error rates ¢,
and exploit the connection between these times and the classical Ham-
mersley process. Specifically, it is found that the expected number of
pulsing stages needed to complete the self assembly of an N x N square
lattice is asymptotically 2N,/q as N — oo within a suitable scaling.
Simulation studies are presented which yield performance under more
general assumptions.

1 Introduction

In many respects, the current state of DNA-based computing resembles the state
of standard, electronic computing a half century ago: a fascinating prospect is
slow to develop owing to inflexible interfaces and unacceptably low reliability of
the computational processes. We concentrate in this paper on the latter aspect,
specifically addressing the interplay between the reliability and speed of DNA
computing. .

While DNA-based computational devices are known to be extremely energy
efficient, their reliability is seen as a major obstacle to becoming a viable com-
puting environment. As DNA based computing becomes more fully developed,
the speed of self assembly will become a crucial factor; but as of now, little is
known concerning the fundamental question of computation times. We empha-
size the intrinsic connection between the two problems of reliability and speed.
because of the unavoidable trade-off that exists between them. A clear under-
standing of the limitations of self-assembly reliability and speed, specifically that
of DNA-based computing, and the interplay between these properties, will be
paramount in determining the full potential of the paradigm. Our past work,

A. Carbone and N.A. Pierce (Eds.): DNA11, LNCS 3892, pp. 1-11, 2006.
© Springer-Verlag Berlin Heidelberg 2006



2 Y. Baryshnikov et al.

briefly reviewed later, analyzed for a given function the time required to deter-
mine its value on given inputs, and therefore established theoretical limits on the
performance of DNA-based computers. In the simplest instance, the analysis of
computation times has surprising connections with interacting particle systems
and variational problems, as shown in [1], and as further developed here. The
critical new dimension of this paper is that of error correction; the new contri-
butions lie in (a) a novel approach to dramatic improvements in the reliability
of computations and (b) in the analysis of the inevitable performance losses of
reliable computations.

The early theoretical work on DNA-based computation focused chiefly on
various measures of complexity, in particular, program-size and time complex-
ity [2,3,4]. However, Adleman et al [2,5] also investigated interesting combinato-
rial questions such as the minimum number of tile types needed for universality,
and stochastic optimization questions such as the choice of concentrations that
leads to minimum expected assembly times. Apart from these works, the math-
ematical foundations of computational speed in a stochastic context appear to
be restricted to the work of Adleman et al [6] and Baryshnikov et al [1,7.8,9].
The former work studies random self assembly in one dimension. In a problem
called n—linear polymerization, elementary particles or monomers combine to
form progressively larger polymers. The research of Baryshnikov. et al [8] on
linear self assembly has resulted in exact results for dimer self assembly, which
reduces to an interesting maximal matching problem.

Any implementation of DNA computing is constrained fundamentally by the
fact that all basic interactions have known and fixed energy thresholds, and
these thresholds are much lower than those in electronic devices. This means
that any realistic computational device based on organic structures like DNA
is forced to operate at signal-to-noise ratios several orders of magnitude lower
than those in electronic computing. Therefore, error correction at the compu-
tation stage becomes a necessity. Not surprisingly, recent research on error cor-
rection has concentrated on approaches that are analogous, at some level, to
the repetition coding of information theory, or the concurrent execution of the
same computational algorithm with subsequent comparison of results. Note also
that biological computations achieve redundancy at little or no extra cost, as
by the inherent virtues of the process, many copies of it are run independently.
The work within this circle of ideas will be reviewed shortly. However, in our
view, the notion of pulsing should be introduced into this paradigm, a concept
analogous to checkpointing in computer operation®. In our context, described in
more detail below, the temperature (or some other parameter) of a self assembly
process is pulsed periodically, a method in wide use to grow crystals; the pulse
effectively rescues the most recent fault-free state (the current state if there have
been no errors since the previous pulse). Clearly, the cost of washing out defec-
tive subassemblies must be balanced by a higher speed of these checkpointed
computations.

! Checkpointing techniques have been in use since the early days of computing; see,
e.g.. [10].
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npul input

~—— output

input

Fig. 1. The set of four tiles on the left implements the operation &. A tile glues to other
tiles only if their corner labels match. On the right, operation 0 & 1 = 1 is performed.
The input tiles are preassembled and the correct output tile simply attaches itself to
the pattern, effectively obtaining the value of the output bit.

Formally, the now standard tiling system introduced and validated as a univer-
sal computational framework in [11,12] will be our abstract model, and follows
the adaptation to elementary logic units of DNA computing described by Win-
free and Rothemund [13,3]. The tile is modeled as shown in Figure 1 as a marked
or labeled square. Briefly, in the simplest version, the label values are 0 or 1,
and they break down into two input labels on one edge and two output lalels
on the opposite edge. As illustrated in Figure 1. a computational step consists
of one tile bonding to others according to given rules that match input labels of
one tile to the output labels of one or two adjacent tiles. Successive bonding of
tiles in a self assembly process performs a computation.

Currently, in a typical implementation of this scheme, the tiles are DNA-based
molecular structures moving randomly, in solution, and capable of functioning
independently and in parallel in a self assembly process. This process results
in a crystal-like construct modeled as a two dimensional array whose allowable
structural variations correspond to the possible results of a given computation.
We emphasize the contrast with classical computing paradigms: the random
phenomena of self assembly create a randomness in the time required to perform
a given computation. ~ ‘

2 Growth Models

The tiling self assemblies of the last section are growth processes. Through the
abstraction described next, the times to grow constructs or patterns can be
related to classical theories of particle processes; growth in the latter processes
is again subject to rules analogous to those governing the self assembly process
of the previous section. An initial set of tiles (the input) is placed along the
coordinate axes, and growth proceeds outward in the positive quadrant; the
placement of a new tile is allowed only if there are already tiles to the left and
below the new tile’s position which match labels as before. The left-and-below
constraint is equivalent to requiring a newly added tile to bond at both of its
input labels. The completion of the computation occurs at the attachment of the
upper-right corner tile which can happen only after all other tiles are in place.
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The fundamental quantity of interest is the computation time, or equivalently,
the time until the final square (represented by the upper right corner square in
position (M, N)) is in place. Let T;; be the time it takes for a tile to land
at position (7, j) once the conditions are favorable; that is, once both positions
(1,7 — 1) and (¢ — 1,7) are tiled. In a reference theory for self assembly, it is
natural to take the T; ;s as independent exponential random variables with unit
means. Let C; ; be the time until the square (4, j) becomes occupied, so that the
random completion time of interest is given by Cas .

On discovering the isomorphic relationship between the self assembly process
and the totally asymmetric simple exclusion process (TASEP), Baryshnikov ct
al [1] exploited the results on TASEP behavior in the hydrodynamic limit to
show that, as N, M grow to infinity such that M /N tends to a positive constant,
one has [14, p. 412]

Cuv/(VM +VN)? ~ 1, (1)

a formula quantifying the degree of parallelism in the computation. One can
generalize this formula to schemes where the tiles can depart as well (like the
schemes described in [15]) with the rates of departures p < 1, and also to more
general shapes D than mere squares. In this model, growth is clearly not mono-
tonic, but still can be mapped to a generalization of TASEP for which similar
results are known. Baryshnikov et al [1] proved the following: ‘

Theorem 1. The time Exp,, required to complete computation on a DNA com-
puter of shape ND with tiles arriving at rate 1 and departing at rate p is given

by ,
. — 1 dg dn
1 ! = S \| =+ 5 .
Jim AT Exp T psgp/( P dz) dz (2)

3 Error Correction

Since the early days of computing, various methods have been used to deal with
crror prone computers, parity checking being a standard one. Checkpointing
was a popular method implemented in operating systems, and it is still being
used today in high-performance systems. This method creates milestones, or
checkpoints, at different locations in the process. All the required information is
stored at a checkpoint so that the process can restart from that location without
having to perform the work done before that checkpoint. Typically -a control
mechanism periodically creates checkpoints. When the controlled process fails,
it is rolled back to the most recent checkpoint and resumes from that location.

Current developments in tile self-assembly resemble developments in the early
computing cra, after a Hegelian development cycle. We expect the checkpointing
method, being a simple but elegant error-correction technique to become a viable
tool in the area, at least until a dramatic change in the underlying chemical
technology takes place. The narrow question we address below is how to apply
it to DNA tile self-assembly. We briefly review the literature before turning to
our new approach.
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Alternative approaches. The two most frequent errors in DNA self-assembly are
growth errors and nucleation errors. Growth errors occur when a wrong type of
tile, an error tile, attaches to the lattice: a sublattice that forms with the error tile
at its origin will then be corrupt. A nucleation error occurs when only one side
of a tile attaches to the lattice, and hence at a wrong position. Thermodynamic
controls that slow down growth can be introduced to help ensure the relatively
early separation of error tiles.

A tile can also be designed to have its own error-correction capability, or
a new type of tile that assists the self-assembly process in lowering error rate
can be introduced. Several methods for this have been proposed. For example,
Winfree and Bekbolatov's Proofreading Tile Set [15] shows that the error rate
can be reduced significantly by creating an original Wang Tile using four or nine
smaller. tiles (2 x 2 or 3 x 3) in order to ensure that the small incorrect tiles
will fall off before they are assembled to form an mcorrect Wang tile. Chen and
Goel's Snake Tile Set [16] improves the Proofreading Tile Set by ensuring that
the smaller tiles can be assembled only in certain directions.

Reif et al [17] use pads to perform error checking when a new tile is attached
to the lattice. Each pad acts as a kind of adhesive, connecting two Wang tiles
together, whereas in the original approach the Wang tiles attach to each other.
This method allows for redundancy: a single pad mismatch between a tile and
its immediate neighbor forces at least one {further pad mismatch between a pair
of adjacent tiles. This padding method can be extended further to increase the
level of redundancy.

Chen et al’s Invadable Tile Set [18] applies the invading capability of the
DNA strand to emulate the invasion of a tile. In this model, the tiles are de-
signed so that the correct tile can invade any incorrect tile during the lattice
growth process. Fujibayashi and Murata’s Layered Tile Model [19] significantly
reduces the error rate by using two layers of tiles: the Wang tile layer and the
protective tile layer. The protective layer does not allow tiles to attach to the lat-
tice incorrectly. When the attachment is correct, the protective tile releases the
rule tile, to which the next tile attaches itself. As one must expect, all methods
have one or more shortcomings or costs associated with them, such as prolonged
self-assembly times, enlarged lattices, potential instabilities, and failure to deal
effectively with both error types.

Modeling checkpointing in DNA self-assembly. We now return to periodic tem-
perature pulsing, whereby pulses remove the defective parts of a crystal; in par-
ticular, the hydrogen bonds between improperly attached DNA tiles are broken
so that defective substructures can separate from the lattice, thus restarting
growth at an earlier fault-free structure. Parameters other than temperature
can also be considered in the pulsing approach. Pulsing applied to the DNA tile
self-assembly model removes the incorrectly attached tiles from the assembly at
a higher rate than the correct ones. More targeted pulsing systems can employ
enzymatic or conformational ways to shift the binding energy.

In our model of self-assembly with checkpointing, we consider a lattice of
size N x N. (While our results are valid for general shapes, the square lattice
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Profile of the lattice before and after a pulse

| T after puising — —
o b Y before pulsing -———---

y-axis of the latiice

40 60 80 100 120 140
x-axis of the latiice

(a) Ta tb) Ly

Fig. 2. (a) - the profile of DNA tile self-assembly process before and after a pulse. (b)
the relationship between the number of layers and the longest increasing subsequence
for a Poisson Point Process on the plane. Crystal size: 500 x 500.

helps focus discussion.) We study the standard growth process described earlier,
with the modification that there are two competing populations of tiles to be
attached, correct tiles and erroneous tiles. With an appropriate rescaling, the
waiting time until a tile attaches at a vacant position is taken to be exponential
with mean 1 (all attachment times are independent). Attached tiles are erroneous
with probability q.

We call an error tile that attaches to a valid structure a seed error tile. Any
tile attached to the northeast of the seed error tile is automatically an error tile
as it participates in an incorrect computation. (Sce Figure 2(a)). In our initial
analysis we assume that a pulse succeeds in washing out all defective regions of
the structure. (See Figure 2(a).) ‘

A growth stage consists of a growth period of duration P between consec-
utive pulses. At the end of one such stage, the locations of the seed error
tiles define the boundary of the lattice for the next growth period, on which
more tiles will be attached. A growth layer is the region of tiles that attach to
the lattice during one growth step. The number of stages required to complete
the N x N lattice is the number of pulses or layers required to complete the
lattice.

The profiles at the beginning of each growth stage (which we will call the
rectified profiles, as they are the result of the removal of all erroncous tiles,
including the seed tiles) form a Markov process which is clearly significantly more
complicated than the growth process without pulsing. Moreover, it is easily seen
that these processes cannot be mapped onto 1-dimensional particle processes
with local interaction. Hence to evaluate performance, we are forced to resort to
asymptotic analysis and simulation studies.

There are several remarks we can make before starting our analysis. Denote
the pulsing times by ¢; < t2 < ..., and the corresponding rectified profiles, that
is the profiles after pulses, by S;. Clearly, these profiles, from one to the next,
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are nondecreasing. In fact, one can describe the evolutions of these profiles using
the growth models as in Section 2: the only modification is that if the tile (k,1)
is an error seed, then the completion time for this tile becomes

Cry = min{t; > max(Ck_1,,Cr-1)}.

Using this nondecreasing property, and the standard (in the analysis of algo-
rithms) “principle of deferred decisions”, it is not difficult to verify that the
collection of the seed error tiles over all growth process, form an independent
g-Bernoulli sample from the N x N lattice points.

Small q asymptotics. When ¢ is small, the sample from the planar domain N x N,
each dimension rescaled by /g (so that the expected number of seed error tiles
in any part of the domain of unit area is 1), approaches, in distribution. the
Poisson sample. )

The number of pulses required to complete a crystal can be approximated
using Hammersley's Process. In our version of this process. we have an underlying
Poisson process-in two dimensions with samples {2 taken from the square S =
[0,a] x [0,a], with a = \/gN.

For cach z = (x,y) € S let n(z) be the length of the longest monotone
subsequence in §2 between (0,0) and z, that is the maximal length ¢ of a chain
of points (z1,y1) < (z2,92) < ... < (wp,yr) < (z,y), where (u,v) < (¢',v)
iff w < v’ and v < v'. See Figure 2(b): The right-hand picture shows layers of
points in {2 which can be reached via monotone paths in 2 of length 0 (these
are the points adjoining a coordinate axis), 1 (next layer) and so on. A longest
path connecting the origin and the point (a,a) is shown as well.

The problem of finding this length is closely related to the famous problem
of finding the longest increasing subsequence in a random permutation (Ulam’s
problem). It turns out that the expected value E¢ ~ 2a, as a — oo, see, e.g., [20].

This implies immediately information about the asymptotic scaling of the
number L,, of pulses necessary to achieve a correct assembly when the interpulse
time P is large compared to ¢~ /2. In the limit of small ¢ and large N, this yields
a very precise description of this number. Indeed, we have

Theorem 2. The following assertions hold:

1. For any given sample of seed error tiles, L, is at least the length of the
longest increasing subsequence in the sample.

2. If gP? — oo, then for samples of seed error tiles, Ly is asymptotically the
length of a longest increasing subsequence.

3. If N,qP* — oc, and q — 0, then L, grows as

Ll’ S 2;\/7\/5

Sketch of the proof. The first assertion follows immediately from the fact
that along any increasing sequence of seed error tiles, the higher error tile is
corrected by a pulse coming later than the pulse correcting the previous error
tile. Further, the second assertion follows from the fact that if the time P is
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large enough, the rectified profiles S; coincide with the layers of points reached
by the increasing subsequences in {2 having constant length (this can be proved
by induction). The last assertion is simply the limit corresponding to the Poisson
approximation introduced earlier.

Remarks.

1. Using this result, we can adjust the value of P so as to obtain an estimate
of the minimal time required to complete the lattice for any given N, ¢, and
average time ps taken by a pulse to remove error tiles. More details can be
found in [21].

2. The Layered Tile Set [19] can be seen as a variant of our method where
P is 1 time unit. When the value of P is very small, the total number of
pulses becomes very large because the process pulses once per time unit. As
a result, when the value of P is small, the completion time for the formation
of the crystal is inversely large. Furthermore, in the case of a high pg, a very
low value of P will not be suitable for the process because of the length of
time required during the checkpointing process. Therefore, if P is adjusted
appropriately, our checkpointing method will be better than the Layered
Tile Set technique.

3. The total growth time in the model is the sum of the interpulse time (plus
a constant pulse setup time) times the number of pulses. In the regime
described in part 3 of of Theorem 2, this gives the growth rate \/gPN,
which can be arbitrarily close to the obvious lower bound 2(N).

Simulation analysis. The total crystal completion time, C, consists of the to-
tal time required by tile attachment. C4, pulsing setup time and the pulsing
overhead, C,. Our simulations determine the effect of P and ¢ on C'y and C,,.
The simulation of a 500 x 500 lattice yielded C'4 and C, for various I” and g.
The total pulsing overhead time, C}, is given by C}, = psL,, (recall that p; is the
average time taken by a pulse to remove all erroneous tiles).

Our self assembly simulations created more than a million tiles. Developing
the simulator was a challenge in itself, given current limits on computer memory.
We designed our simulator so that it contains only the information of the crystal,
which for our purposes will suffice without having to assign memory space for
each tile. Implementation details can be found in [21].

Figure 3 shows the effects of P and ¢ on the performance of self-assembly with
pulsing. Since the total time C' required to complete the crystal is C}, + Ca, we
see that C' in general has an optimal point for given p.

For example, Figure 4(a) shows the total-time surface plot as a function of
(P,q). For simplicity, we assume that the time required for each pulse, ps, is
linearly proportional to the growth time, p, = 0.2P 4 2, to show how ps can
affect the total time, C. For a given value of ¢, there is an optimal P that
minimizes the total time to complete the self-assembly. Figure 4(b) shows the
total time for different values of P with the error probability ¢ = 0.05. The
figure shows that one obtains the highest over-all lattice growth rate when P is
approximately 9 time units.



