8th International Conference on Data Engineering

Eighth International Conference on

Data Engineering

February 2-3, 1992

Tempe, Arizona

Sponsored by IEEE Computer Society Technical Committee on Data Engineering

With corporate support by Bull Worldwide Information Systems

IEEE Computer Society Press Los Alamitos, California

Washington • Brussels • Tokyo

The papers in this book comprise the proceedings of the meeting mentioned on the cover and title page. They reflect the authors' opinions and, in the interests of timely dissemination, are published as presented and without change. Their inclusion in this publication does not necessarily constitute endorsement by the editors, the IEEE Computer Society Press, or the Institute of Electrical and Electronics Engineers, Inc.

Published by the IEEE Computer Society Press 10662 Los Vaqueros Circle PO Box 3014 Los Alamitos, CA 90720-1264

© 1992 by the Institute of Electrical and Electronics Engineers, Inc. All rights reserved.

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of US copyright law, for private use of patrons, those articles in this volume that carry a code at the bottom of the first page, provided that the per-copy fee indicated in the code is paid through the Copyright Clearance Center, 27 Congress Street, Salem, MA 01970. Instructors are permitted to photocopy isolated articles, without fee, for non-commercial classroom use. For other copying, reprint, or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, PO Box 1331, Piscataway, NJ 08855-1331.

IEEE Computer Society Press Order Number 2545 Library of Congress Number 91-76564 IEEE Catalog Number 92CH3097-3 ISBN 0-8186-2545-7 (paper) ISBN 0-8186-2546-5 (microfiche) ISBN 0-8186-2547-3 (case)

Additional copies can be ordered from

IEEE Computer Society Press Customer Service Center 10662 Los Vaqueros Circle PO Box 3014 Los Alamitos, CA 90720-1264 IEEE Service Center 445 Hoes Lane PO Box 1331 Piscataway, NJ 08855-1331

IEEE Computer Society 13, avenue de l'Aquilon B-1200 Brussels BELGIUM IEEE Computer Society Ooshima Building 2-19-1 Minami-Aoyama Minato-ku, Tokyo 107 JAPAN

Editorial production: Anne Copeland MacCallum and Lisa O'Conner Cover art: Joe Daigle Studio Productions Printed in the United States of America by Braun-Brumfield, Inc.

THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, INC.

Message from the General Chairperson

I would like to welcome you to Phoenix and the Eighth International Conference on Data Engineering (ICDE-8). ICDE is back in the United States after its first successful overseas conference in 1991 in Kobe, Japan. Given the strategic position that computer technologies play in the Phoenix area, this is a very exciting place to host ICDE-8. We hope that you will find both the tutorials and technical program useful and stimulating, and that you will take advantage of this opportunity to engage in social and technical dialog with your colleagues from other parts of the world. The submissions we received for this conference from so many different countries makes ICDE-8 a truly international conference.

An international conference of this size and diversity requires much effort and coordination from many people and organizations. It is simply impossible to recognize all persons who have contributed their efforts to make ICDE-8 what it is today. Nevertheless, we would like to acknowledge the invaluable support we have received from the following individuals. As General Chairperson, my primary responsibility is coordinating various tasks carried out by other willing and talented volunteers. I would like to take this opportunity to express my sincere appreciation to Dr. Forouzan Golshani, Program Chair; Carol Chapman, his assistant; and his 60-member program committee for doing an excellent job in selecting 69 high-quality papers for presentation at the conference. Forouzan made my job easy. Thanks are due to Tom Howell for arranging excellent tutorials. Special thanks go to Lana Ruch for taking care of local arrangements, to Julie Mumpy for awards, to our publicity chair Mansur Samadzadeh, to our European coordinator, Herbert Weber, and our industry coordinator, Bob Horton, to our registration chair Oris Frieson, to our treasurer Richard Snodgrass, and for publications, Chenho Kung. I would like to express my thanks to the ICDE steering committee for their vote of confidence.

I would also like to express my appreciation to both Professor Stefano Ceri and Dr. Laszlo for accepting our invitation to be the keynote speakers. Both of them are highly active and productive researchers who have made significant contributions to many areas of computer science and engineering.

Special mention must be made to Bull Worldwide Information Systems; without their generosity, the conference would not be as successful as we expect. Finally, I would like to thank all the attendees of ICDE-8, and hope that you will find time to enjoy both the conference and the city of Phoenix to the utmost extent.

Nick Cercone General Chairperson Vancouver, 1992

Message from the Program Chairperson

First and foremost, I would like to acknowledge the generous financial support that Bull Worldwide Information Systems has provided to this conference. I would also like to thank numerous employees of Bull for their assistance in various capacities. Several other companies, including American Express, Honeywell and Intel, have made valuable contributions to the organization of this event.

Following the tradition of previous meetings, this eighth occurrence of IEEE International Conference on Data Engineering begins with a keynote address from Dr. Laszlo Beladey, a leader for many years in various R & D centers. Dr. Stefano Ceri, known for his numerous achievements in the database field, will deliver the other keynote address.

During the planning phase, our hope was to make this conference a meeting place for industry, academia and research centers. Thus, the theme of technology transfer seemed appropriate. As a first step, we organized a plenary session with a highly qualified panel of experts, each representing a particular segment of the computer science community in general and databases in particular.

The number of papers submitted to the 1992 conference was consistent with the figures from previous years. Each submission was reviewed by at least three referees. When there was no consensus, as many as five people read the paper to determine its acceptability. A total of 213 papers were submitted, out of which 69 were selected for inclusion in the proceedings. This represents an acceptable rate of less than one third. In addition, two panel proposals were accepted for inclusion in the program.

On behalf of the Program Vice Chairs, members of the program committee, and the entire Phoenix crew, I welcome you to Phoenix and hope that you will enjoy this conference.

Forouzan Golshani Program Chairperson

ICDE-8 Committee Members

General Chairperson:

Nick J. Cercone Simon Fraser University, Canada

Program Chairperson:

Forouzan Golshani Arizona State University

Program Vice-Chairpersons:

Francois Bry ECRC, Germany

Ahmed Elmagarmid Purdue University

Koichi Furukawa ICOT, Japan

Yao-Nan Lien
AT&T Bell Laboratories

Witold Litwin
University of Paris, France

M. Tamer Ozsu
University of Alberta/GTE Labs

D. Scott Parker UCLA

Tony Pizzarello
Bull Information Systems

Marek Rusinkiewicz University of Houston

Gunter Schlageter Fern University, Germany

Susan D. Urban
Arizona State University

Kyu-Young Whang Korea Advanced Institute of Science and Technology, Korea

Tutorials Chair: Tom Howell Bull Information Systems

Local Arrangements: Lana Ruch

American Express

Awards:
Julie Mumpy
Bull Information Systems

Treasurer: Richard Snodgrass University of Arizona

Publications: Chenho Kung University of Texas at Arlington

European Coordinator: Herbert Weber Dortmund University, Germany

Industrial Coordinator: Bob Horton Honeywell Publicity: Mansur Samadzadeh Oklahoma State University

Registration: Oris Friesen Bull Information Systems

Steering Committee: C.V. Ramamoorthy University of California, Berkeley

P. Bruce Berra
Syracuse University

Benjamin W. Wah
University of Illinois

John Carlis
University of Minnesota

Joseph E. Urban Arizona State University

Tadao Ichikawa Hiroshima University, Japan

ICDE-8 Program Committee Members

Divy Agrawal
Elisa Bertino
Alejandro Buchmann
Sharma Chakravarthy
Arbee Chen
Suzanne Dietrich
Weimin Du
Ramiz Elmasri
Oris Friesen
Arif Ghafoor
William I. Grosky
Jiawei Han
Ki-Joon Han
A.R. Hurson
Keith Jeffrey

Genevieve Jomier

Larry Kerschberg
Wolfgang Klas
Ramamohanarao Kotagiri
Vijay Kumar
James Larson
Dik Lee
Gerard Levy
Leszek Lilien
Akifumi Makinouchi
Rainer Manthey
Dennis McLeod
Nobyuyoshi Miyazaki
Marguerite Murphy
Erich J. Neuhold
Shojiro Nishio

Maria Orlowska

Sylvia Osborn
Jon F. Parks
Sakti Pramanik
Raghu Ramakrishnan
Krithi Ramamritham
David Reiner
Felix Saltor
Amit Sheth
L. Tanca
Shalom Tsur
Patrick Valduriez
Gerhard Weikum
James Wheeldreyer
Kazumasa Yokota
Phillip Yu

ICDE-8 Referees

Amr El Abbadi Serge Abiteboul Seth Abraham D. Agrawal Ishfaq Ahmad Romas Aleliunas Eric Amiel

Jean-Marc Andreoli Constantin Arapis P. Aristides William Armstrong

Hideki Asoh G. Barbian K. Barkel Ken Barker Raj Kumar Batra Petra Bayer

Aime Bayle
W. Benn
F.A. Berkel
T. Berkel
Eliza Bertino
Bharat Bhargava

Alan Bier
Jose A. Blakeley
Alan Blei
C. Bosch
M.W. Bright
D.P. Bradshaw
Omran Bukhres

Frank Calliss Michael Carey Qiming Chen T.S. Chen Kam-Hei Cheng Y.H. Chin

Jan Chomicki

Panos K. Chrysanthis Andrea Clematis Enrique Cortes-Rello

Peter Creasy
Bogdan Czejdo
Peter Dadam
Asit Dan

Ajoy Kumar Datta Danco Davcev Andrew Davison Umeshwar Dayal Lois Delcambre Klaus Dittrich
G. Dong
Weimin Du
Christoph Eick
Margaret Eich

Nevenka Dimitrova

Margaret Eich
H.-D. Enrich
P. Fankhauser
Abdel Farrag
J. Feldkamp
Mariagrazia Fugni

Tetsuya Furukawa Ghassan Z. Gadah

S. Gala S. Garg

Dimitrios Georgakopoulos

A. Geppert
Uwe Geuder
Vittoria Gianuzzi
Alan Goerner
James E. Gray
Mingsen Guo
Ki-Joon Han
Brian Hansche
Lilian Harada
Theo Harder
J.A. Harland
John V. Harrison
Christoff Hasse

Sandra Heiler Mary Lou Hines Ki-Hyung Hong Eui Kyeong Hong Ryosuke Hotaka Yong Hu Jan-Nong Huang

Abdelsalam Heddaya

Stephen Huang Yannis E. Ioannidis L. Iowin Sushil Jajodia

Jing Jing
A. Johnsey
D. Jonscher
Bellosto Marie Jose
Yahiko Kambayashi
Hyunchul Kang

G. Karabatis
Anton Karadimce

Kazuhiko Kato
Hirofumi Katsuno
Kyoji Kawagoe
Thomas F. Keefe
David Kemp
G. Kiernan
Hyoung-Joo Kim
Jeonghee Kim
Jin-Ho Kim
Kyung-Chang Kim
Myung-Joon Kim

S. Kirn Yasushi Kiyoki H. Knolle R. Krieger Eva Kuhn C.H. Kung

T.V. Lakshman

Jean-Marie Larcheveque

Paul Larson
Tim Leask
C. Lee
K.C. Lee
Sang Ho Lee
Alexandre Lefebvre

Fred Lewis
Thomas Little
Ling Liu
M.L. Lo
Darrell Long
Wei Lu
David E. Maier
Roberto Maiocchi
Frank Manola
A. Mansfield
R. Manthey
James Marland
M. Marmann

Yoshifumi Masunaga S. Mazumdar

Claudia Bauzer Medeiros

Rajiv Mehrotra Alberto Mendelzon A. Merchant R. Meyer Tatsuo Minohara D. Mishra

Daniel P. Miranker

Referees (Continued)

Takao Miura Nobuyoshi Miyazaki

B. Monkeberg
Yukihiro Morita
Kunihiko Moriya
D. Morley
Louse Moser
Eliot Moss
Jim Mullen

Eisuke Muroga Peter Muth Jacques Noye A. Ohori Natsuki Oka

Ryuichi Oka Toni Ordi Seog Park

Young-Chul Park Bill Perrizo Randal Peters Niki Pissinou

Calton Pu Bhaskar Purimetla

Ghassan Z. Qadah Abbas Rafii Thomas C. Rakow David Reiner

C. Rich Jim Richardson Ri Hotaka

Tore Risch
Wagner Roland
P. Sander

Ludger Schaefers A. Scherer

Donovan Schneider

M. Scholl G. Scholz F.A. Schreiber J.W. Schultz Hirohisa Seki Timos Sellis Arunabha Sen

Hans Sfreibel

Dennis Shasha Wen-Gong Shieh Xiaojun Shen D. Sherman Phillip Sheu Kohji Shibano Chia-Shiang Shik Shinji Shimozyo Toramatsu Shintani

Andrea Sikeler Mukesh Singhal H.W. Six Sang H. Son E.A. Sonenberg

S.M. Sripada Michael Stonebraker

W. Stucky Tzong-An Su V.S. Subrahmanian V. Sugumaran

Junping Sun
Kazem Taghva
Toshihisa Takagi
Makoto Takeyama
Milinda Tambe
Katsumi Tanaka

Takehisa Tanaka

Yuzuru Tanaka

Ernest Teniente James Thom Gomer Thomas Jesper L. Traff Markus Tresch Wei-Tek Tsai Volker Turau A. Tzreili Haruyasu Ueda E.A. Unger

Vibhavasu Vuppala Chen-Wan Wang Shigeru Watari Horst F. Wedde Erhard Welker John A. Wertz K.Y. Whang J.K. Wight W. Wilkes Andreas Wolf M.H. Wong Gene Wuu S. Xavier Shi-Nine Yang Kazumasa Yokota

Masatoshi Yoshikawa

Li Yu

Takashi Yukawa
P. Zabback
Carlo Zaniolo
Aidong Zhang
Jianhua Zhu

Jong P. Yoon

Gerhard Zimmerman

Justin Zobel

M. Ziane

Table of Contents

Message from the General Chair
Tuesday, December 4, 1992 Plenary Session
Keynote Address: The Interdisciplinary Future: The (Data) Engineering Point of View is Not Enough L.A. Belady
Track A
Algorithms I Chair: L. Lilien
A Spanning Tree Transitive Closure Algorithm
I/O-Efficiency of Shortest Path Algorithms: An Analysis
Parallel Algorithms for Executing Join on Cube-Connected Multicomputers
Algorithms II Chair: M.C. Murphy
Probabilistic Diagnosis of Hot Spots
An Efficient Object-based Algorithm for Spatial Searching, Insertion, and Deletion
Hot-Spot Based Composition Algorithm
Performance Techniques Chair: S. Osborn
Scheduling and Processor Allocation for the Execution of Multi-Join Queries
The Design and Implementation of a Parallel Join Algorithm for Nested Relations on Shared-Memory Multiprocessors
V. Deshpande and P.Å. Larson MoBiLe Files and Efficient Processing of Path Queries on Scientific Data
S. Shekhar and T.A. Yang

Track B

Knowledge Based Systems

Chair: M. Samadzadeh
A Performance Comparison of the Rete and TREAT Algorithms for Testing Database Rule Conditions 8 YW. Wang and E.N. Hanson
Object-Oriented Modeling and Design of Coupled Knowledge-base/Database Systems 9
ORL. Sheng and CP. Wei Distributed Rule Processing in Active Databases
IM. Hsu, M. Singhal, and M.T. Liu
Object Orlented Databases
Chair: P. Gargiulo
Exploring Semantics in Aggregation Hierarchies for Object-Oriented Databases
An Object-Oriented Model for Capturing Data Semantics
Dynamic Self-Configuring Methods for Graphical Presentation of ODBMS Objects
Panel
Research Directions in Image Database Management
Track C
Database Tools
Chair: G. Occhini
An Extensible Object-Oriented Database Testbed
On Interoperability for KBMS Applications — The Horizontal Integration Task
Database Structure and Discovery Tools for Integrated Circuit Reliability Evaluation 16 P. Mauri
Data Integrity Chair: A. Sheth
Database Recovery Using Redundant Disk Arrays
A.N. Mourad, W.K. Fuchs, and D.G. Saab Semantically Consistent Schedules for Efficient and Concurrent B-Tree Restructuring
Using Coding to Support Data Resiliency in Distributed Systems

Interoperability Chair: G. Jomier
A Periodic Deadlock Detection and Resolution Algorithm with a New Graph Model for Sequential Transaction Processing
Wednesday, December 5, 1992
Plenary Panel Session Technologe Transfer Moderator: A. Pizzarello Panelists: J. Browne, M. Diethelm, and R. Stanley
Track A
Replicated Data Management
A Fault-Tolerant Algorithms for Replicated Data Management
Performance Analysis Chair: A.L.P. Chen
Parallel GRACE Hash Join on Shared-Everything Multiprocessor: Implementation and Performance Evaluation on Symmetry S81
Storage Management Chair: N. Bourbakis
Distance Associated Join Indices for Spatial Range Search

Track B

Logic and Databases Chair: S. Dietrich
Query Optimization for KBMSs: Temporal, Syntactic, and Semantic Transformations
EQL2: An Object-Oriented SQL with F-Logic Semantics
Relational Databases with Exclusive Disjunctions
Object Management and Versioning Chair: D. Carver
Data Hiding and Security in Object-Oriented Databases
Mapping a Version Model to a Complex-Object Data Model
W. Kajer and H. Schoning Optimal Versioning of Object Classes
Deductive Databases Chair: K. Ramamritham
On Semantic Query Optimization in Deductive Databases
Chain-Split Evaluation in Deductive Databases
A Model for Optimizing Deductive and Object-Oriented DB Requests
Track C
Query Processing Chair: D. Davcev
Processing Hierarchical Queries in Heterogeneous Environment
How to Extend a Conventional Optimizer to Handle One-and-Two-Sided Outerjoin
Processing Real-Time, Non-Aggregate Queries with Time-Constraints in CASE-DB
Relational Database Techniques Chair: E. Neuhold
Deleted Tuples are Useful when Updating Through Universal Scheme Interfaces
A Relation Merging Technique for Relational Databases
A Keying Method for a Nested Relational Database Management System

	Panel
	Object-Oriented Models for Heterogeneous Multidatabase Management Systems Moderator: M.C. Shan
	Panelists: H. Schek, W. Litwin, P. Drew, B. Kent, and M. Ketabchi
	Utilization of External Foreign Computation Services
	Object-Oriented Models for Heterogeneous Multidatabase Management Systems
	Thursday, December 6, 1992
	Plenary Session A Declarative Approach to Active Databases
	Track A
	Transaction Processing Chair: B. Czejdo
	Effect of System Dynamics on Coupling Architectures for Transaction Processing
	Concurrency Control Chair: M. Eich
•	Quorum-oriented Multicast Protocols for Data Replication
	Locking Protocols Chair: G. Levy
	Thrashing in Two-Phase Locking Revisited
	On Mixing Queries and Transactions via Multiversion Locking

Track B

Integrity Constraints Chair: R. Brice		à
A Run-Time Execution Model for Referential Into B.M. Horowitz	egrity Maintenance	
History-less Checking of Dynamic Integrity Cons	traints	557
The Implementation and Evaluation of Integrity North in an Object-Oriented Database		565
Temporal Databases Chair: D. Cohen		
Partitioning of Time Index for Optimal Disks R. Elmasri, M. Jaseemuddin, and V. Kourd	amajian	
A Uniform Model for Temporal Object-Oriented G.T.J. Wuu and U. Dayal		
Temporal Specialization		594
Track C		
Query Management Chair: S. Tsur		
An Exploratory Study of Ad Hoc Query Languag J.E. Bell and L.A. Rowe	es to Databases	606
Imprecise and Uncertain Information in Database S.K. Lee	s: An Evidential Approach	614
Knowledge Mining by Imprecise Querying: A Claracter T.M. Anwar, H.W. Beck, and S.B. Navathe		622
Database Modeling and Design Chair: S. Pramanik		
Maintenance of Materialized Views of Sampling F. Olken and D. Rotem	Queries	632
Logical Database Design with Inclusion Depende	ncies	642
TW. Ling and C.H. Goh An Abstraction Mechanism for Modeling Genera R. Gupta and G. Hall	tion	650
Author Index		659

Algorithms I

Chair: Leszek Lilien

A SPANNING TREE TRANSITIVE CLOSURE ALGORITHM

Shaul Dar * †

H. V. Jagadish

† University of Wisconsin Madison, Wisconsin AT&T Bell Laboratories
 Murray Hill, New Jersey

ABSTRACT

We present a new transitive closure algorithm that maintains a spanning tree of successors for each node rather than a simple successor list. This spanning tree structure promotes "sharing" of information across multiple nodes and hence leads to more efficient algorithms. We suggest an effective relational implementation of the spanning tree storage structure, and show how blocking can be applied to reduce the I/O cost of the algorithm. The algorithm can handle path problems in addition to simple transitive closure. The algorithm not only establishes the fact that two nodes are connected but also implicitly records one path between the two. For extremal path problems, the algorithm can record the best path between every pair of nodes.

We describe how the spanning tree storage structure can be updated incrementally in response to changes in the underlying graph. We also demonstrate how compression techniques can be applied in conjunction with the closure computation.

1. INTRODUCTION

Transitive closure is regarded as an important functionality of future database systems [1, 10, 16, 22], and considerable research has been devoted to devising algorithms for computing the transitive closure of a database relation [3, 4, 7, 13, 14, 19, 20, 25, 26].

All of the algorithms mentioned above use the set of successors of a node as the basic unit of storage and manipulation. In this paper we explore the benefits of maintaining structure in the successor list. We show that by keeping a successor spanning tree for each node, rather than a flat list, we can promote sharing of partial successor lists, and reduce the I/O cost of the algorithm, especially when there are many alternative paths between nodes in the graph. The spanning tree structure can be utilized for the computation of path problems, as well as reachability, and can make effective use of selection conditions specified in the query. An important advantage of this structure is that it stores a path from the root node to every node reachable from that root node. For extremal path problems, such as shortest path, the best path between the root node and its successors can be recorded. Another important advantage of the successor spanning tree structure is that it lends itself to incremental updates, in response to node and edge additions and deletions.

The rest of the paper is organized as follows. In Section 2, we briefly review some current techniques for computing transitive closure. In Section 3 we present the new algorithm

using successor spanning trees to compute reachability in a directed acyclic graph. We suggest an efficient relational implementation for the successor spanning tree structure, and show how blocking can be applied to reduce the I/O cost of the algorithm. We also demonstrate that the algorithm can utilize selections effectively. In section 4 we present a modification of the basic algorithm for path computations, and a variation of this algorithm that can be used to record extremal path information. In Section 5 we study the performance of the spanning tree transitive closure algorithm both analytically and through simulation. In Section 6 we discuss how the spanning tree storage structure can be updated incrementally, and describe a compression scheme that can be used to minimize the cost of storing the computed transitive closure. We conclude the presentation in Section 7.

2. BACKGROUND

Let G be a directed graph with n nodes and e edges. We denote the transitive closure of G by G^* . We say that node j is a successor of node i if $\langle i,j \rangle \in G^*$. We call j an immediate successor of i if $\langle i,j \rangle \in G$. Given the set of immediate successors for each node in G, we wish to construct the complete successor set for each of these nodes. Two important families of algorithms to construct these successor sets are based on the matrix and graph representations of G^{1} .

2.1 Matrix-Based Algorithms

Given an $n \times n$ adjacency matrix of elements a_{ij} , with a_{ij} being 1 if there is an arc from node i to node j, and 0 otherwise, the Warshall algorithm [27] computes the transitive closure of the given graph as follows:

$$\forall \forall \forall \text{ process } a_{ij}$$

"Processing" of an element a_{ij} involves examining whether a_{ij} is 1, and if it is, then making every successor of j a successor of i. Thus, the Warshall algorithm computes closure by "processing" every element of the matrix exactly once, column by column from left to right, and from top to bottom within a column. In [4] the processing order was modified to promote "blocking", that is, the processing of a block of successor lists at one time,

2

There is also a family of iterative algorithms that has been studied extensively [7,13,26]. We do not discuss these here since they are not relevant to the spanning tree algorithm.