Structured COBOL

MIKE MURACH

8061600
T

Structured COBOL

e T R .
L » . Ty

LY

Yn &

1

Mike Murach

KN

E8051605

8

SCIENCE RESEARCH ASSOCIATES, INC.
Chicago, Palo Alto. Toronto. Henley-on-Thames, Sydney. Paris

A Subsidiary of IBM

AN L S

Director/author:
Technical advisor:
Writer/editor:
Writer/programmer:
Book designer:
Production coordinator:
Illustrator:

Acquisition editor:

Project editor:

Mike Murach

Paul Noll

Judy Taylor

Doug Lowe
Michael Rogondino
Debbie Lowe

Steve Ehlers

Phil Gerould

Ron Lewton

We gratefully acknowledge the following for their permission to reprint

the materials listed:

Courtesy of International Business Machines Corporation: figures 1-1,
1-7, 5-17, 10-2, 10-5, 10-7, 10-11, A-1, A-2, and A-3.

Courtesy of The Burroughs Corporation: figure 1-3.

Courtesy of Honeywell Information Systems: figure 1-4.
Courtesy of Control Data Corporation: figure 10-4.

© 1980 Mike Murach & Associates, Inc.
All rights reserved.

Printed in the United States of America.
10 9 87 65 43 21

Library of Congress Cataloging in Publication Data

Murach, Mike.
Structured COBOL.

Includes index.

1. COBOL (Computer program language).

gramming. I. Title.
QA76.73.C25M863 001.6'424
ISBN 0-574-21260-4

2. Structured pro-

79-22329

Structured COBOL

Y WEEY TP, T It s U L R N T T e e T T R PR, ST Lo o LT O el Y 1 SRR L T

Acknowledgment

The following information is reprinted from COBOL Edition 1965, published
by the Conference on Data Systems Languages (CODASYL) and printed by the
U.S. Government Printing Office:

Any organization interested in reproducing the COBOL report and
specifications in whole or in part, using ideas taken from this report as the basis
for an instruction manual or for any other purpose, is free to do so. However,
all such organizations are requested to reproduce this section as part of the in-
troduction to the document. Those using a short passage, as in a book review,
are requested to mention “COBOL" in acknowledgment of the source, but need
not quote this entire section. % Aol

COBOL is an industry language and is not the property_‘g?dny bqr'n’p’mx_‘yor
group of companies, or of any organization or group of'_ogganitatioq's'. Py

No warranty, expressed or implied, is made by any contributor or by%he %
COBOL Committee as to the accuracy and functioning of the prografiming °
system and language. Moreover, no responsibility is assum by agy contributor,”
or by the committee, in connection therewith. - AL . M ¥

Procedures have been established for the maintenance of COBOL.. Inquiries
concerning the procedures for proposing changes should be directed to the Ex-
ecutive Committee of the Conference on Data Systems Languages: ="~ -

The authors and copyright holders of the copyrighted materials €ised herein

FLOW-MATIC (Trademark of Sperry Rand Corporation), Programming
for the Univac (R) I and II, Data Automation Systems copyrighted 1958,
1959, by Sperry Rand Corporation; IBM Commercial Translator Form No.
F28-8013, copyrighted 1959 by IBM; FACT, DSI 27A5260-2760,
copyrighted 1960 by Minneapolis-Honeywell

have specifically authorized the use of this material in whole or in part, in the
COBOL specifications. Such authorization extends to the reproduction and use
of COBOL specifications in programming manuals or similar publications.

oy T

o e

A RN e TR

gl
2

8061605
C

e

Contents

Preface for Instructors

Introduction for Students

PART |

CHAPTER 1
Topic 1
Topic 2
Topic 3
Topic 4

PART Il

CHAPTER 2
Topic 1
Topic 2
Topic 3

CHAPTER 3
Topic 1
Topic 2
Topic 3
Topic 4

CHAPTER 4

Topic 1
Topic 2

Required Background

Preliminary Concepts and Terminology
Introduction to Computers

The Punched Card and Keypunching
Writing a Structured Program in COBOL
Introduction to Operating Systems

COBOL: The Core Content

A Basic Subset of ANS COBOL
COBOL and the Stored Program
Introduction to Structured COBOL
Completing the Basic Subset

The Principles of Structured Programming

An Introduction to Structured Programming
Structured Design

Structured Module Documentation

Another Example: Multilevel Report Preparation

Diagnostics and Debugging
Desk Checking and Diagnostics
Testing and Debugging

13

15
16
23
27
36

43

45
46
52
79

111
112
120
137
148

162
163
171

CHAPTER 5
Topic 1
Topic 2
Topic 3

PART il

CHAPTER 6
Topic 1
Topic 2
Topic 3

CHAPTER 7
CHAPTER 8

CHAPTER 9
Topic 1
Topic 2

PART IV

CHAPTER 10
Topic 1
Topic 2
Topic 3
Topic 4

CHAPTER 11
CHAPTER 12
CHAPTER 13

APPENDIXES

Appendix A
Appendix B
Appendix C

INDEX

A Professional Subset of ‘COBOL
COBOL Elements by Division .
Overlap and 1/O-Operations

Repetitive Processing

Advanced COBOL Subjects

Table Handling in COBOL

Handling Single-Level Tables Using Subscripts
Handling Single-Level Tables Using Indexes
Multilevel Tables

Using Subprograms
Using the Source-Statement (COPY) Library

Character Manipulation
The 1968 Character Manipulation Elements
The 1974 Character Manipulation Elements

File Handling in COBOL

Tape and Direct-Access Concepts
Tape Concepts

Direct-Access Concepts

File Organization

Programming Considerations

COBOL for Sequential Files
1974 COBOL for Indexed Files
The COBOL Sort/Merge Feature

Keypunching Procedures
COBOL Reference Summary
Problems for Computer Lab

188
189
211
218

223

225
226
248
264

283
292

300
301
308
321

323
324
328
340
351

357
379
408

443

443
449
467

497

[‘%’?‘ £

The development of
COBOL

8061605

Preface for Instructors

This book is intended for a one- or two-semester (or quarter) course in
COBOL. It presents standard COBOL as described in the 1968 and 1974
standards of the American National Standards Institute. It also presents the
most current techniques of structured program development.

As I'm sure you know, dozens of COBOL books are available for college
and industrial courses. Nevertheless, COBOL instruction is a continual
problem because training requirements for the COBOL programmer are
continually changing. As a result, instructional materials that were accep-
table three years ago are no longer acceptable. To better understand the in-
structional problem (and the need for this book), let me briefly describe the
changing nature of the COBOL environment.

COBOL is one of the oldest programming languages, first introduced in
1959. By the mid-sixties, COBOL had established itself as the most widely
used language for business applications. Before 1968, however, there was no
standard COBOL language. Although all versions of COBOL were based on
the same set of language specifications, there were major COBOL dif-
ferences as you moved from one type of computer to another.

Then, in 1968, the American National Standards Institute (ANSI) ap-
proved a standard COBOL language. Theoretically, this meant that one
standard language could be used on all types of computer systems. In prac-
tice, however, the standards didn’t provide for all of the capabilities that
computer users wanted. As a result, each manufacturer added extensions to
the language that provided the additional capabilities. Furthermore, the
1968 standards allowed these extensions. As long as the rest of the language
conformed to the standards, manufacturers could refer to their versions of
COBOL as standard no matter how many extensions were added. Needless
to say, the end result was that the 1968 COBOL standards did not lead to
widespread standardization of the COBOL language.

In 1974, the American National Standards Institute released a new set
of COBOL standards. These standards deleted some of the 1968 standards,
modified others, and, most important, added most of the capabilities that

w—ﬁ—_—#—'—

j 2 Preface for Instructors
r
1
i
i
|

computer users had wanted in the 1968 standards. COBOL that is based on
the new standards is usually referred to as 1974 ANS COBOL, while 1968
ANS COBOL refers to COBOL that is based on the old standards. In con-
' trast to 1968 ANS COBOL, 1974 ANS COBOL for one computer system is
‘_ usually very similar to that for another computer system. In the best cases,
! you can convert a 1974 ANS COBOL program from one system to another by
?} making only minor changes to the program. On the other hand, extensions to
: the standards are still allowed. So in the worst cases, extensive changes must
be made to an ANS 74 COBOL program to convert it from one system to
another.

Because it takes time to develop new compilers, a few years usually pass
between the time a new set of standards is released and the time compilers
that conform to those standards are available. For instance, IBM didn’t
release a 1974 ANS compiler for its most popular computer, the System/370,
until 1977. And at this writing IBM still hasn’t announced a 1974 ANS
COBOL compiler for its Disk Operating System, which is widely used on
iy small System/360s and System/370s.

After a new COBOL compiler becomes available, it usually takes
| another few years before computer users convert to it. Why? Because it costs
| a lot of money to make the conversion. Programmers have to be taught how
to use the new language. And eventually all programs written in the earlier
version of the language have to be converted to the new language so they will
i compile correctly when they are modified to meet changing business condi-
‘ tions. In general, then, computer users delay the conversion to the new stan-
{ dards until the new compiler gives them some capability that they want but
‘ can’t get through extensions on their current compiler. Because IBM exten-
sions to the 1968 standards gave the System/360 and System/370 user all of
| the significant capabilities provided by the 1974 standards, there is little
It reason for System/360-370 users to want to convert to the new ANS 74 com-
1 piler. As a result, most COBOL programs for the System/360-370 are still be-
ing written in 1968 COBOL. Yet already we're getting rumors about new
standards, perhaps becoming official in 1984.

From an instructor’s point of view, this continual change presents many
problems. In general, a college course should present 1968 COBOL because
that’s the language that a student is most likely to encounter when entering
the business world. On the other hand, most businesses will eventually
switch to 1974 COBOL. So a student should also become familiar with this
version of COBOL.

To complicate the instructor’s problem, new programming techniques
are gaining wide acceptance in industry. In particular, it has become ap-
parent that the techniques of structured programming are replacing the
traditional techniques of program development (including the technique of
flowcharting). In general, this forces the COBOL instructor to include
techniques such as structured design and structured coding within the
COBOL course. And this by itself has destroyed the usefulness of most of the
traditional instructional materials for COBOL courses.

T

e

What this book does This book is designed to teach a novice how to develop structured programs
in COBOL. In terms of COBOL, the only major content omissions are the
report writer and the segmentation modules. However, research has shown
that these modules are used on only a small minority of the COBOL systems
in use today. As a result, we believe that a student who completes this course
will have the qualifications of an entry-level programmer in industry...and
probably much more.

How this book was
developed

Preface for Instructors 3

To handle the problem of what version of COBOL to teach, 1968 or
1974, this book teaches a subset of the two sets of standards that will run on
either a 1968 or 1974 compiler. Whenever language is presented that is only
available under one set of standards, it is clearly identified so the presenta-
tion of both sets of standards shouldn’t be confusing to the students.

Because we feel that it’s impossible to teach students how to code struc-
tured programs without also teaching them how to design structured pro-
grams, this book gives extensive coverage to modern design techniques. In
fact, structured design and documentation are covered in detail in chapter 3,
right after the introductory subset of COBOL is presented. Thereafter,
students should be able to design and code simple programs using structured
techniques. In my opinion, this material on structured design is essential to a
structured COBOL course even though you won’t find this material in most
competing books.

When you read chapter 2, you may be surprised to discover that this
book teaches structured COBOL and only structured COBOL. As a result,
you will find nested IFs and GOTO-less COBOL right from the start.
Although some people don’t think it’s possible to teach a course this way,
we’'ve been doing it for a couple of years. So remember that a student doesn’t
know that it’s supposed to be difficult to code a nested IF. In fact, I think
you’ll find that it’s easier for a student to code a nested IF than it is for him to
code a program on an unstructured basis. In other words, give this approach
a chance; I think you’ll be delighted by the results.

Because this book wasn’t developed in the traditional way, I think you might
be interested in how it was developed. To begin with, a major portion of the
content in this book is taken from two earlier books: (1) Standard COBOL,
Mike Murach, Science Research Associates, 1975, and (2) Structured Pro-
gramming for the COBOL Programmer, Paul Noll, Mike Murach &
Associates, 1977.

Beyond this, a team of people worked on the development of this book. I
was responsible for the organization of the book and the coordination of the
team; I also did some of the writing. Paul Noll, a software specialist and in-
dependent consultant in industry, was the technical advisor. Judy Taylor did
most of the rewriting and new writing that was required...a major effort.
And Doug Lowe did some of the writing; he also wrote all of the programs
that are used in this book based on the programming standards supplied by
Paul Noll.

Because of this team approach, I think this book has some strengths that
aren’t found in competing products. First, because the educational approach
used in this book is adapted from Standard COBOL, I'm confident that the
book will be effective in terms of instruction. Standard COBOL has been
used by thousands of students in more than 200 colleges and universities in
the last few years. It has also been used in dozens of businesses for inhouse
training; and it has been used by thousands of professionals for self-
instruction. As a result, the method of instruction used in this book has been
proven effective many times over.

Second, because the structured programming content is taken from
Paul’s book, Structured Programming for the COBOL Programmer, you can
be sure that the techniques presented in this book are effective. Paul’s struc-
tured programming book is currently is use in hundreds of businesses for in-
house training. And many companies have adopted its principles as their
standard for program development. In short, though there is considerable

S i a0 sty Lo

Sl s _aad s Shen e o B e el il b Sundh L e i o Sl alil |

4 Preface for Instructors

Some features of the book

Table 1

The organization of

debate about which are the best methods for implementing structured pro-
gramming, the methods presented here are widely accepted.

Finally, because Paul was responsible for the technical excellence of this
product, I'm confident that it is without equal in this respect. Paul has been
responsible for the training of 150 programmers at Pacific Telephone in San
Francisco; he was once the assistant manager of the COBOL group within
GUIDE (an association of large IBM users); and in my opinion, he is one of
the top COBOL experts in the country. To the benefit of this book, Paul has
taken pains to see that the COBOL presented here is not only accurate, but
that it also represents the practices that are currently in use in the best
COBOL shops in America. As a result, if you compare the programs in this
book with those taken from any competing book or course, I think you’ll find
a significant difference in program quality.

Modular organization An important feature of this book is its organiza-
tion, sometimes referred to as modular organization. In particular, the book
is organized as indicated by table 1. This means that you can continue with
any other part (or module) in the book after you cover the first two parts. If,
for example, you want to cover file handling before table handling, you can
skip to chapter 10 immediately after chapter 5. Note also that the design of
part IIT is random. This means that the chapters in this part don’t have to be
studied in sequence. In short, your course can be teacher-directed or
student-directed, but it will not be textbook-directed.

In addition to the teaching flexibility, there is an important educational
reason for modular organization: it forces an author to present the essence,
or core content, of the subject in just a few chapters early in the book. This in
turn means that early in the course the student is shown the important rela-
tionships between the elements of the subject. Because one of the major
problems of learning is the failure to see these relationships, the emphasis on
core content makes learning more effective.

I might add that although many books are advertised as modular, few
actually are. In most cases, a few alternative paths through the books are
given to support the claim of modularity, but these seem to be afterthoughts
rather than an integral part of the book’s design. To be truly modular, I
think the essence of the subject must be presented early in the course; and all
subsequent modules must require only this core content as a prerequisite.

Educational approach In general, there are two basic approaches to
teaching the COBOL language. The first teaches the COBOL elements
separately until a great deal of detail has been covered; at that point, a few
of these elements are combined in a complete program. A book like this is
easy to identify since each early chapter covers a COBOL division: Iden-
tification, Environment, Data, and Procedure. Using this approach, the first

the book complete program commonly isn’t presented until well into the book.
Part Chapters Title Prerequisite Design
Parts
| 1 Required Background — Sequential
I 2-5 COBOL: The Core Content | Sequential
1l 6-9 Advanced COBOL Subjects |, I Random
v 10-13 File Handling in COBOL 1,1l Sequential

Preface for Instructors 5

The problem with this parts-to-the-whole method is twofold. First, a
student doesn’t have the perspective to appreciate the relationships between
the parts until becoming familiar with a complete program. As a result, the
student learns the parts through memory rather than through an underlying
structure or concept. Second, this method is impractical in classroom
teaching. Normally, it takes several weeks before a student has learned
enough of the parts to be able to write a complete program. In the mean-
time, motivation dwindles, and what should be an exciting problem-solving
class becomes a frustrating struggle to learn the massive amount of detail
associated with the language. If the assignment of computer laboratory time
is a fixed number of hours per week, the instructor usually must create sup-
plementary material so students can run programs, or segments of programs,
in the early weeks of the course.

The second approach to the teaching of COBOL is used in this book.
After some background material in chapter 1 (some of which may be
review), topic 2 of chapter 2 presents a complete program including card in-
put, printer output, data movement, editing, arithmetic, and logic. As soon
as this basic program is understood, students can begin to write significant
programs of their own. Before chapter 2 is completed, though, one refine-
ment of this first program and one additional program are presented, so
three complete programs are shown in chapter 2. By this time, a full subset
of the language has been presented, and a student is ready for independent
work in a computer lab.

After the COBOL subset of chapter 2, chapter 3 shows a student how to
design and document a program on a structured basis as preparation for
structured coding. As I mentioned earlier, you can’t teach structured
COBOL without teaching structured design, but most competing books
don’t teach design. When students complete this chapter, they are ready to
attack a wide range of programming problems.

To complete the core content of part II, chapter 4 provides a definitive
presentation on correcting diagnostics, preparing test data, and debugging
programs. Since these skills are essential to COBOL programming and to
successful lab work, it is surprising that they are treated so lightly in most
other texts. Then, chapter 5 presents a collection of elements and techniques
that makes the book truly modular.

Once students have completed part II—in particular, chapters 2, 3, and
4—the major part of your job is done. When students understand the struc-
ture of the language and the related skills for design, documentation,
testing, and debugging, it becomes easy for them to learn other COBOL
elements and techniques. They become part of a pattern. If students can see
how an element or technique relates to the whole task of programming,
mastering the material is a manageable task.

Apparatus by topic Because learning depends on what a student does, not
on what he or she sees or hears, each topic is followed by terminology lists,
behavioral objectives, and, whenever relevant, problems and solutions.
After reading a topic, the student should scan the terminology list to check
comprehension. If the words are understood, the student can proceed. If
there is not a clear understanding, applicable sections should be reread or
the term noted so its meaning can be questioned in class. In any case, the list
is for use as a quick review; the student shouldn’t be expected to actually
define the words.

6 Preface for Instructors

W gy

e o gt et o T Lol e s o i b Ml L L

Aangn o saio Lo

The behavioral objectives describe the activities a student should be able
to do upon completion of a topic. Since this book deals with programming,
the primary objectives have to do with solving various types of programming
problems using COBOL. In addition, there are objectives dealing with
related skills such as developing a structure chart, using pseudocode, and
describing a type of file organization. The intent of the objectives is to give
the student a clear picture of his or her learning goals. Although some
students will ignore the objectives, others will be more efficient learners
because of them.

Although many instructors feel that preparing and using objectives is
busywork, I prefer to see them in all textbooks. At the least, preparing objec-
tives forces this author to focus more clearly on what he is trying to ac-
complish. Otherwise, he all too often concerns himself with writing a
definitive work rather than concentrating on the goals of education.

At any rate, I believe objectives can contribute heavily to the success of

- a course. If students are convinced that the objective lists describe all ac-

tivities they will be expected to perform, their learning will become much
more directed. In every class I've taught, I have found students who
wouldn’t rest until they felt they could satisfy all the course objectives. On
the other hand, there are some who won't believe you are telling them all
that will be required, so it is important to refer to the objectives as you
review a topic in class. If the objectives are prominent in all classroom activi-
ty, I am convinced that teaching has a great likelihood of success.

Since it is unlikely that two people will agree on a list of objectives for a
course, you will probably want to modify those given. The objective lists,
then, are only a starting point. However, if only those given are fulfilled, I
would say that you have taught a highly successful course.

When the objectives deal with problem solving, they are followed by
problems and solutions that provide practice in the skills described by the
objectives. As much as possible, these problems are designed to show how the
elements and techniques presented in the text are used in a different context.
There are no multiple-choice, true/false, matching, or fill-in questions,
because these have nothing to do with the important objectives of a pro-
gramming course.

So there is immediacy to the problem-solving activity, solutions are
given after problems. This has the advantage of letting students know when
they are right, and just as important, letting them realize when they are
wrong. For those students who wouldn’t otherwise know how to begin solv-
ing a problem, the solutions are an essential part of the learning process.
Although compiling and testing programs on a computer system has the
same effect as doing the problems and checking the solutions, studying the
solutions of a professional can correct many false notions and bad habits
before problems are actually tried on a computer system. The expense of
computer time makes this a practical consideration.

What about students who don’t actually do the problems but look im-
mediately to the solutions? The experience is still valuable. Although the best
way to learn is to do the problems and compare the answers with the solu-
tions provided, it may not be the most efficient way—particularly for the
brightest students or for those with extensive experience in another
language. In the interest of expediency, then, a student may read a problem,
conceive a solution, and compare it with the one given. The important thing
is that COBOL be viewed in the context of its application. Looking at the
problems in this way, they can be seen simply as a means of presenting addi-
tional COBOL applications. _

Conclusion

Preface for Instructors 7

Lab problems Appendix C presents a progression of programming prob-
lems. Since they include test data listings, they are ideal for lab, although
they can also be used for classroom exercises or tests. If a student can write
and debug programs for all types of problems given, I feel sure that he or she
is well qualified to become an entry-level programmer in industry.

DOS and OS reference manuals Because this book is intended to teach
American National Standard COBOL, it does not give the detailed specifica-
tions required by any actual compiler. From a practical point of view, then,
you will have to present some of the details demanded by your system. At the
Jeast, you will have to show your students how to use your system’s job-
control language to compile and test programs. In addition, you will prob-
ably have to show them how to create program and system names that are
acceptable for your system.

If you are using a System/360 or 370 running under DOS or OS, two
reference manuals are available with this text: one for DOS users, one for OS
users. These manuals present all of the reference material your students will
need for running programs on your system. They are designed specifically
for use with this textbook, and they include material on creating system
names, COMP-3 usage, job-control language, and so on. If you use these
manuals, you won't need to supplement this book with IBM manuals,
although it won’t hurt to keep a set available for lab sessions.

Instructor’s guide An Instructor’s Guide is available with the text. Among
other things, it contains pretests for chapters that might have been covered
by a prerequisite course, posttests for critical chapters, test answers, solu-
tions for selected lab problems, and masters for preparing overhead projec-
tor foils. Be sure to obtain a copy of the Guide because it can save you many
hours of preparation time.

In this book, we have tried to do something that I don’t think has been done
effectively before in a college text. That is, we have tried to integrate the
teaching of structured design and coding with the teaching of COBOL.
Although we have used this approach with programmer trainees for a couple
of years now, I think this is the first book that uses this approach at the col-
lege level. If you try this approach, I think you'll be delighted by the results.

In addition, I hope that this text will help to provide some new solutions
for old teaching problems. In particular, I'm thinking about the range of ap-
titudes you often encounter in a programming course. For instance, some
students will grasp the material by reading the text only, some will require
minor assistance in addition to the text, some will require extensive help, and
some just shouldn’t be taking a programming course.

Because this text gets into the problem-solving aspects of COBOL in
chapters 2 and 3, the aptitudes of your students should be apparent to you
early in the course, in time for effective counseling. Then, the brightest
students can be assigned independent work because the educational ap-
proach used in this book has already proven itself to be effective for indepen-
dent study. In the meantime, the marginal students can be given full
assistance and supervision. If there’s such a thing as a class that has no
marginal students, I believe the entire class can be taught through indepen-
dent study with minor assistance and supervision from the instructor.

Lo gL utialoh L e

8 Preface for Instructors

Each time we develop a new product, we try to improve the technical
content as well as the educational effectiveness. And we will keep trying to
improve. That’s why I welcome your comments, criticisms, suggestions, or
questions. Please write if you have anything you want to say about this book.

Mike Murach

Mike Murach & Associates, Inc.
4222 W. Alamos, Suite 101
Fresno, CA 93711

Introduction for Students

COBOL, which stands for COmmon Business Oriented Language, is the
most widely used programming language for business applications. It can be
used on most business computers, so COBOL programmers can use their
skills on many different makes of computers. At present, there are well over
100,000 COBOL programmers working in industry. And each year,
thousands of new COBOL programmers are trained. If there is one pro-
gramming language the business student should become familiar with, it is
COBOL.

Today, there are two basic versions of COBOL. One is based on stan-
dards provided by the American National Standards Institute (ANSI) in
1968. COBOL that conforms to these standards is called 1968 ANS COBOL,
or just 1968 COBOL. The second version of COBOL is based on a revised set
of ANSI standards that were released in 1974. COBOL that conforms to
these standards is called 1974 ANS COBOL, or just 1974 COBOL. With few
exceptions, the COBOL that is used today is based on either 1968 or 1974
ANSI standards.

This book teaches you how to develop COBOL programs in either 1968
or 1974 COBOL. When you finish this course, then, you will have the skills
necessary for programming any computer system that uses COBOL. From a
practical point of view, however, each computer system is likely to have
some non-standard peculiarities. So you will usually have to learn these
variations as you miove from one computer system to another.

Before you begin to use this book, there are several things you ought to
know about it:

1. This book is designed so the chapters don’t have to be read in sequence.
In brief, after you complete the first five chapters, you can skip to any of the
other parts of the book. And you can skip to any chapter in part III without
reading the chapters that precede it in that part. So don’t worry if your in-
structor assigns chapters in an unusual way; the book is designed to be used
that way.

If you are studying this book on your own, I recommend reading it in
the standard book sequence, from chapter 1 to chapter 13. But don’t feel

9

10 Introduction for Students

that you should rigidly adhere to this sequence. Whenever your interest in a
subject is aroused, read the appropriate chapter. There is no greater
assurance that learning will take place than to study a subject in search of an
answer.

2. At the end of each topic or chapter are lists consisting of the new terms
encountered. The intent is not that you be able to define these words but
that you feel you understand them. After you read a topic, glance at the list
and note any word whose meaning is unclear to you. Then reread the related
material. Once the terms are fixed in your mind, continue on.

3. Following the terminology lists for each topic or chapter are one or more
behavioral objectives. They describe the activities (behavior) that you should
be able to perform upon completion of a topic or chapter. The theory is that
you will be a more effective learner if you know in advance what you are ex-
pected to do and what you will be tested on. This contrasts the traditional
course in which the student is forced to guess what he will be tested on.

In general, behavioral objectives can be classified as (1) knowledge ob-
jectives and (2) application objectives. A knowledge objective requires you to
list, identify, describe, or explain aspects of a subject. For example, the first
objective in chapter 1 is to be able to list the components of a typical com-
puter system. Once you are told or have read what these components are,
you should have no trouble fulfilling this objective. Although other
knowledge objectives will be more involved and more difficult than this one,
given the objective and a source of knowledge, you should be able to perform
the activity described.

Since COBOL programming is concerned entirely with problem solv-
ing, the primary objectives of this book are application objectives—those
that require you to apply knowledge to problems. In general, knowledge ob-
jectives are given only when they are a prerequisite for applying some aspect
of COBOL. If only one objective were given for this entire book, it would be
something like this: Given a business programming problem, solve it in
COBOL.

4. Following the behavioral objectives are one or more problems for each
application objective. These are intended to get you involved. There is much
truth in the maxim: I hear and I forget; I see and I remember; I do and I
understand. If there is one message coming from research in education, it is
that meaningful learning depends on what the learner does—not on what is
seen, heard, or read.

Because the intent of this book is to teach COBOL programming, the
problems, for the most part, ask you to apply COBOL to significant
programming tasks. There are no fill-in answers, no multiple-choice ques-
tions, and no true/false statements because these types of activity have
nothing to do with writing COBOL programs. As much as possible, the
problems are intended to stimulate the kind of thinking that would be
necessary if you were actually performing the job of a programmer. Because
the problems often require you to apply COBOL to situations that go beyond
the applications presented in the topics themselves, I hope that at times you
will experience the joy of discovery and receive the reward of deeper under-
standing.

Solutions are presented immediately after the problems. This lets you
confirm that you are right when you are right, but it also lets you learn from
being wrong. By checking the solution when you finish a problem, you can
discover when you are wrong and correct false notions before they become
habits.

