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PREFACE

In recent years, there has been a renaissance of our forefathers’ do-it-
yourself philosophy. Fortunately, this trend is found in the intellectual
realm, as well as in craftwork. Thousands of persons have learned alge-
bra and calculus by home study of suitable texts.

This book is addressed to these people, with their healthy intellectual
curiosity. It is addressed equally to electronic technicians, and TV and
radio servicemen, who have a practical knowledge of circuits and wish
to acquire understanding.

The book starts with direct current, to introduce the basic concepts
without confusing detail. Networks of resistance are discussed topolog-
ically, in terms of trees, branches, links, and loops. Mesh and nodal
analysis are presented as special cases, for which the network equations
can be written by inspection, in a form that continues to be valid for
the general AC case. This leads into the study of determinants and the
solution of simultaneous equations. Practical solution methods are
emphasized.

The fourth chapter treats of general properties of networks, and their
representation as T-networks, IT-networks, and “black boxes.”

The transition to alternating current problems is made via chapters
on capacitance and inductance, developed from fundamentals. Simple
tuned circuits follow, and lead into the concept of impedance, and its
various representations in terms of phase angles and complex numbers.
The agthgnetic and algebra of complex numbers is treated in detail.

A major chapter on general AC networks elaborates the treatment of
mutual inductance, and clarifies the question of the algebraic sign of
mutual inductance in multi-coil assemblies. The behavior of air-core
and iron-core transformers is thoroughly explained, and various equiva-
lents are analyzed.

Chapter X is devoted to the analysis of specific circuits, such as dou-
ble-tuned interstage, FM discriminator, bridged-T, twin-T, and an RC
ladder used in phase shift oscillators.

Chapter XI discusses impedance matching sections and the various
phenomena associated with matching, mismatching, filtering, and inser-
tion loss.
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The study of diodes as nonlinear elements leads to triodes, and their
linearized approximation in terms of amplification factor and mutual
conductance. Amplifiers are treated as specific circuits involving ther-
mionic tubes and transistors, and finally as general active “black boxes.”
Because the practical limits to amplification depend upon noise, a chapter
is devoted to this subject.

The text concludes with a study of modulation, demodulation, and
distortion, explained in terms of frequency components and Fourier
series. Problems, hints, and answers, close the book.

The basic topological concepts of electric networks in the early chap-
ters follow the philosophy of Professor Ernst Guillemin, who has written
several excellent books for a more advanced audience. All of us who are
interested in either network research or teaching owe a debt of gratitude
to Professor Guillemin for his unceasing output of ideas and enthusiasm.

@ H:PE
Silver Spring, Maryland
September, 1958
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Chapter 1

DIRECT CURRENT

1-1 Voltage. It is a familiar fact of electrostatics that unlike charges
(positive and negative) attract each other. A force must be applied to
move them apart; work must be done against the force that tends to pull
the charges together. This work becomes potential energy associated with
the separated charges, just as the work done in lifting a weight becomes
potential energy.

Consider two conducting bodies, say metal plates, not quite in contact.
Let one plate carry the charge @ and the other, —Q. (These charges can
be obtained by various means. One way is to rub a glass rod with silk, and
then “wipe” the charge off the rod onto the metal plate.) We now sepa-
rate the plates, applying the necessary force by way of insulating handles.
The work we do becomes electrical potential energy, and we say that the
“potential difference” between the plates has increased. Conversely, if
we have charged separated plates, we can let their electrical attraction pull
them together, and do work for us, such as lifting a weight. The total
amount of work they can do, by going completely together, is the potential
energy of the system. For a given separation, this energy is greater, the
greater the charge on the plates. The potential energy per unit of charge
(W/Q) is called the “potential difference,” or p.d., between the plates, and
is measured in volts. The charge @ is measured in coulombs, and the energy
in joules. (The practical unit of charge, the coulomb, is approximately the
charge on 6 X 10 electrons. The joule is more familiar as the watt-second;
1 kilowatt-hour equals 3.6 million joules.)

The potential energy of our pair of separated plates can be reduced by
letting them get closer together; it will also be reduced if the insulating
handles are imperfect, and some of the charge “leaks” from one plate to the
other, urged to do so by the attractive force between the unlike charges.
In this case, the used-up potential energy shows up as heat (thermal en-
ergy). This will be treated in detail a little later. In either case, loss of

1



2 DIRECT CURRENT

potential energy means a lowering of the p.d. between the plates. Now if
the plates are connected to the terminals of a battery or a generator, the
p.d. will be held constant, even though we have used some energy. The
used energy was, of course, supplied by the battery. But to keep the p.d.
constant, additional separated charge must have been supplied to the
plates. This is obvious when the energy loss was due to charge loss; the
case of energy loss due to motion of the plates will be discussed in a later
chapter (V). Thus the battery or generator has some sort of internal
“force” that tends to push positive charges out one terminal, and negative
out the other, to supply positive and negative charges to the plates.
Such an electrical separating force is called an electromotive force (emf) and
is measured by the potential difference it maintains between the terminals,
hence it is measured in volts. We see, then, that the term “voltage” is
used for both electromotive force (a cause), and potential difference (a
result) even though these quantities are logically different. 1In fact, if we
short-circuit a dry cell by connecting its terminals together with a good
conductor, we do not affect the emf of the cell, but we can no longer have
a p.d. between the terminals. Indeed, after a short while, we will no
longer have a cell!

In problems involving electric currents in equilibrium with their driving
forces, as we are throughout this book, it is best to think of an emf as a
source voltage, and a p.d. as a resulting voltage across any device which is
not a source.

1-2 Current. Ilectrostatics is the study of electricity when the
charges are essentially at rest. Most practical usages of electricity involve
the flow of charges through a conductor, analogous to the flow of water
through a pipe. In the water analog, the flow is measured by the quantity
(gallons) passing a given point in a unit of time (minute). In a river, an
open pipe supplied by nature, this flow of water is called a current, and is
measured in gallons per minute, or millions of gallons per hour, or some
other convenient combination of quantity and time. By analogy, the flow
of electric charge is called electric current, and is measured in coulombs per
second. For convenience, this unit of current has been given a name of its
own: ampere. Thus a current of ten amperes means the flow of ten cou-
lombs of charge each second. (Note that “current’ is the “fow of charge.”
It is logically redundant to say “a current flows through a wire.”)

When the flow of charge is steady, the current is I = Q/t. When the
flow is not steady, the instantaneous current is the instantaneous rate of
charge flow and is given by the time derivative: I = dQ/dt.

Recall the discussion on potential energy (W) and potential difference
(V). Since potential difference is the energy per unit charge, V = W/Q,
we can write W = V@ for the work done by the charge Q in “falling”
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through a potential difference V. When the p.d. is constant, we can dif-
ferentiate with respect to time and find

P =dW/dt = VdQ/dt = VI

since power is the rate of doing work. (Power is measured in watts, or
joules per second.) This equation, P = VI, is one of the basic relations
in the study of electricity.

Another basic relation was discovered by G. S. Ohm in 1827. Ohm
found experimentally that if the voltage across a wire (the engineer’s way
of saying ‘“‘the potential difference between the two ends of a wire”’) was
increased, the current through the wire increased proportionately. That
is, the ratio V/I is constant, for a given piece of wire. This ratio was given
the name resistance (R = V/I) and is measured in volts per ampere. The
unit of resistance, one volt per ampere, has been named the ohm to honor
this pioneer electrician.

Ohm also found that if a second wire, identical with the first, was con-
nected to offer the current an additional path, the current was doubled.
That is, the two wires connected side-by-side, or in parallel, each passed as
much current as the first wire by itself. This implies that the currents in
the alternative paths can be computed independently, and added to find
the total current.

He also found that if the two wires were connected in series (end-to-end)
so that they carried the same current, the necessary voltage was doubled.
That is, the voltage across an end-to-end set of wires is the sum of the in-
dividual voltages. In hindsight, these findings seem obvious, for a four-
foot length of wire is the same thing whether we consider it as one four-foot
length, two two-foot lengths, or four one-foot lengths, etc. Similarly, a fat
wire can be conceived as a bundle of thin wires side-by-side.

Extension of the above experiments and logic showed that the resistance
of a conductor is proportional to its length, and inversely proportional to
its cross-sectional area, R o« I/A. The constant of proportionality (p)
that makes this relation an equation, R = pl/A, is a characteristic of the
material of which the conductor is made, and is called the resistivity. The
resistivity of a material varies with temperature, but is independent of the
shape and size of the conductor. Since p = RA /I, its unit is (ohms) times
(square centimeters) divided by (centimeters), which simplifies to (ohms)
times (centimeters), or ohm-cm. For good conductors, such as the metals,
the resistivity is only a few millionths of an ohm-cm, so is commonly listed
in handbooks in microhm-cm.

The combination of the power equation (P = VI) and Ohm’s law
(V' = RI) yields by algebraic substitution, P = I?R = V?/R as alternate
ways of computing power.
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Ezxample.

An electric lamp that draws 100 watts at 120 volts has a resistance
R = V?/P = 144 ohms, and draws a current of I = V/R = 0.833 ampere,
or I = P/V = 0.833 ampere.

1-3 Resistors in Combination. A brief digression on “things” and
“representation” of things is in order at this point. We have seen that
resistance is an abstraction; it is the ratio of a voltage to a current. A
“device” which is used because it has resistance, is called a resistor. The
schematic symbol —"WW— used in wiring diagrams represents a resistor,
and connecting lines represent actual wires. In this case the diagram is a
conventional “picture” of an actual assembly of concrete ‘“things,” such
as resistors and batteries. On the other hand circust diagrams also rep-
resent abstractions, such as combinations of voltage and resistance. Real
resistors can overheat, or burn up, or have peculiar unexpected properties,

Fia. 1.1. Fie. 1.2. Fic. 1.3.

whereas the abstract resistance of a theoretical diagram is a well-behaved
mathematical quantity. The circuit diagrams, or networks, in textbooks
represent abstract concepts of resistance, voltage, etc. Circuit theory is
an intriguing mathematical game, whose answers are always perfect. If
the idealized “mathematical circuit” turns out to be a reasonable represen-
tation of the properties of a real device, then the answers of the game will
also be a reasonable approximation to what the real device will do.

The mathematics of circuit theory is perfect and exact; the engineer’s
big problem is to make sure that his mathematical model truly represents
the device he is building. Stray wiring capacitance, lead inductance, and
leaky insulation do not show on a wiring diagram, but must be included in
an abstract circuit diagram if the engineer wants his analysis to give him
good results. For example, Fig. 1.1 as a wiring diagram represents a re-
sistor connected across a battery. Every practical man knows that a
battery cannot deliver an infinite current; if the resistance is made too
small, the voltage across it will not be V, but will be less. For our pur-
poses, however, Fig. 1.1 is an abstract diagram, and the voltage across the
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resistance is V no matter how much current is drawn. For ‘“reasonable”
currents, the two interpretations of the figure are equivalent. For “large”
currents, we shall see later that the voltage symbol — |— by itself is not
sufficient to represent a real battery. In fact, a real battery has internal
resistance, it behaves like a series combination of a perfect battery and a
resistor, as in Fig. 1.2. This representation would never be used in a wer-
ing diagram, for some technician would be sure to follow it literally and
install a resistor 7!

Ohm’s law tells what happens when a single resistor is connected across
a voltage source, as in Fig. 1.1: I = V/R. How do we find the current
when two known resistors appear in series across a voltage, as in Fig. 1.3?
If R, and R, were pipes carrying water, we would not hesitate to say that
the same water flows through both pipes; i.e., they carry the same current.
In the electrical case, this conclusion is still true. The argument by anal-
ogy does not prove the electrical case, it merely suggests it. The proof,
however, follows the same lines for both water and electric charge. We
assume that water cannot suddenly appear or disappear; it must all be
accounted for. If the flow through R is different from that through R,
it can be due only to a leak at the connection, hence a third “pipe’” should
appear in the diagram. Similarly, electric charge is conserved, and cannot
appear, disappear, or pile up at a connection. A current can split at a
“fork in the road,” but where there is only one path, as in Fig. 1.3, the cur-
rent must be the same at all points in the circuit.

Now by Ohm’s law, the voltage across R, is

V1 = I Rl
and that across R; is
Vo= IR,

where the same symbol I appears in each equation, because it represents
the same current in both cases. The total voltage, or p.d., between the
upper terminal of R, and the lower terminal of R, is the sum

V=Vi4+V,=IR:+ Ry)
as is suggested by our old friend, the water flow analog, with p.d. analogous
to water pressure. Since V = IR, it is apparent that the net resistance of
the series combination is

R =R, + R,
This result can be deduced rigorously by appealing to the conservation of
energy. The power dissipated in the resistances is
P1=12R1, P2=IZR2
and the total power supplied by the voltage source is therefore
P =P, + P, =1*R: + R,) = I’R
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The argument applies to any number of resistances in series:
R=R +Rs+ R;---

Similarly, if we connect two resistances in
parallel, i.e., across the same voltage, as in Fig.
1.4, the respective currents are

Il = V/R] and ]2 = V/Rz
Our fundamental hypothesis on the conser-
vation of charge requires the total current to
be
1 1

I=11+Iz=V<E+E)=V/R

so that the total current is the same as would be drawn by a single resist-

ance R computed from
1_1
R R

Fia. 1.4.

1
+E, or it =

Example.
Two resistances of 50 ohms and 100 ohms yield a serzes resistance of 150
ohms; and a parallel resistance of 333 ohms.
Again, our formula can be extended to any number of resistances in
parallel:
1 1 il il
E R B R
For more than two resistances in parallel, the simplest computation is to
use the equation as shown: add the reciprocals of the resistances, and take
the reciprocal of the sum, i.e.,

The formula corresponding to RiR»/(R: + R:) is not convenient for more
than two resistances.
Example.
The parallel combination of 6, 4, 3, and 2 ohms has the resistance R given
by
3 4 6 15
Tttt TR

1 1 1 1)
“etat3ta=
so that R = 12/15 = 0.8 ohm.

A series-parallel combination, such as shown in Fig. 1.5, requires a piece-

meal analysis using both formulas. The series combination of 10 and 20

=
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4000 ohms
180 — 5
20 ohms volts
100 —— 15 5000 ohms
volts T ohms
10 ohms
77/
Fre: 1.5. Fig. 1.6.

is 30 ohms; this 30 ohms in parallel with 15 ohms vields a net resistance of
30 X 15/45 = 10 ohms. The battery current is therefore 10 amperes, of
which 100/15 = 62 is in the 15-ohm branch, and the remaining 3% is in the
30-ohm branch. This 3% amperes produces a voltage drop (p.d.) of 662 volts
across the 20-ohm resistance, and 33% volts across the 10 ohms. Note that
the 10-20 series combination divides the supply voltage in that ratio.

This voltage-dividing property of resistors in series is often used in radio
receivers, where there is a supply of, say, 180 volts for the plate of a tube
and, say, 100 volts is wanted for the screen grid. If we connect a voltage
divider as in Fig. 1.6, we will have 100 volts across the lower resistor, or
between point S and ground. The 100 volts at S is, however, the no-load,
or open-circuit voltage (OCV). If the screen draws, say, 4 ma (0.004 am-
pere) at 100 volts, the extra 4-ma current through 4000 ohms would produce
an additional voltage drop of 16 volts. Instead of 100 volts at S, we would
have only 84 volts; but at 84 volts the screen would draw less than 4 ma.
If we know the screen current at 84 volts, we can recompute the actual
voltage at S; repeating this procedure would give a set of successive approx-
imations that would finally steady down to the correct answer—but what
a lot of work! In any case,~we don’t really want to know what voltage will
appear at S; we want to know what resistances to use in the voltage divider
so that we will have 100 volts at S, with a current drain of 4 ma.

Since 4 ma at 100 volts represents a load of 25,000 ohms, our complete
circuit is as in Fig. 1.7. If we wish to keep R, = 5000, the total current
1s 100/5000 + 0.004, or 24 ma. This current must produce an 80-volt
drop across R, or R, = 80/0.024 = 3333% ohms.

25000
Shms }IOO volts

180 —
volts o

Fie. 1.7.
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Problem.

Leave R, at 4000 ohms, and compute the approximate value of R,. (An-
swer: 6250)

Let us now investigate the general behavior of a voltage divider (Fig. 1.8)
by using algebra (instead of arithmetic, which is used for particular situ-
ations). Let the load resistance be R;, the voltage across the load, V7,
and the current through the load, I;,. We are interested in the way the

T N
U

Vo e ¥
R #Ry

Fia. 1.9.

output voltage varies with load. Since all current must be accounted for,
wehavel =1, = I, + I,. We have also
Vo = I.R; = LR,
V=V.,+ LR,
These last two equations give
L=V —-V.)/R and I,=V./R,

which, substituted into the first equation, yields
|4 1 1 R, + R,
== — 0y = VL(E-FE) = VLW
and, finally,
_ R vV — RiR,y
"R+ R, Ry + R
But this last equation also describes the behavior of the circuit of Fig. 1.9,
and furthermore, the voltage V, of Fig. 1.9 is the OCV of the original volt-
age divider! The implication of this result is, that if we have two boxes
containing the alternate arrangements of Fig. 1.10, there is no external ex-
periment that can distinguish one box from the other.

The OCV is obviously the same for the two boxes. The short-cireuit
currents are readily computed to be the same, also.

Is =V/Ry,=V,/R

For the purposes of circuit theory, then, the two boxes are externally equiv-

Ve I,
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alent; as wiring diagrams they would differ, for one battery would run down
without a load. Even with a perfect battery, the boxes are not internally
equivalent, for the total power dissipation differs. But to all external ap-
pearances, the boxes behave identically.

Fie. 1.10.

This example is a particular illustration of Thevenin’s theorem. The
general case will be discussed in later chapters.

The power delivered to a load by a voltage divider exhibits an interesting
property. The load current is

I.=V,/(Ry+ Ry)
so the load power is

P = ILZRL = V02RL/(R0 + RL)2

The load power goes to zero as R goes to zero, by virtue of the Ry, in the
numerator. As R increases without limit, the power again goes to zero
by virtue of the square in the denominator. The value of R, for maximum
power can be found by differentiation. Now

dP (Ro + RL) — 2R;,

B = 2
iR, = " (R + Ro)?

which vanishes, indicating the maximum of P, when R, = R,, and giving

Pmax = V02/4R0

This maximum power is called the “available power.” Note that it is
obtained by matching resistances, i.e., by making the load resistance equal
to the ¢nternal resistance of the source.
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All real sources (batteries, generators, amplifiers, etc.) are imperfect—
they have internal resistance and are equivalent to the “black box” of
Fig. 1.10b. In the ideal case of linear behavior, the internal resistance is
constant (independent of current) and can be found experimentally as the
ratio: (open-circuit voltage) + (short-circuit current).

1-4 Graphical Description of Source and Load. Let us recon-
sider our previous problem of a load R, connected across the source Fig.
1.10b. We shall take the output voltage (V) and current (I) as variables
for description of the source and load behavior. For any current I the
output, or terminal voltage, is

V=V,— Rl (1-1)
whereas the load resistance specifies the relation
V =R.I (1-2)

These equations must both be satisfied, and by the same pair of values V, I.

The solution of these simultaneous equations can be found by substituting
one in the other, yielding

I =V,/(R+ Ry) (1-3)

V = V,RL/(Ro + Ry) (1-4)

This problem can also be solved graphically. Equation (1-1) says that

the allowable pairs of V, I are represented by the points of the straight line

of Fig. 1.11. The line is constructed by connecting its extreme points:

(a) open-circuit voltage and zero current and (b) zero voltage and short-
circuit current. The slope of the line is —R,. Since Fig. 1.11 shows the

o

oN

slope =+ A,

slope=— A,

0 I 17V, /R, I
Brg. A4 Fia. 1.12.

terminal voltage for a specified current, or vice versa, it is a graphical de-
scription of the electrical properties of the source. The load can similarly
be described by plotting Eq. (1-2); superposing the load and source lines on
the same graph gives Fig. 1.12; the intersection satisfies both equations and
is the point specified by Egs. (1-3) and (1-4).



