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Preface

The 4th Symposium on Stochastic Algorithms, Foundations and Applications
(SAGA 2007) took place on September 13-14, 2007, in Ziirich (Switzerland).
It offered the opportunity to present original research on the design and anal-
ysis of randomized algorithms, complexity theory of randomized computations,
random combinatorial structures, implementation, experimental evaluation and
real-world application of stochastic algorithms. In particular, the focus of the
SAGA symposia series is on investigating the power of randomization in algo-
rithmics, and on the theory of stochastic processes especially within realistic
scenarios and applications. Thus, the scope of the symposium ranges from the
study of theoretical fundamentals of randomized computation to experimental
algorithmics related to stochastic approaches.

Previous SAGA symposia took place in Berlin (2001), Hatfield (2003), and
Moscow (2005). This year 31 submissions were received, and the program com-
mittee selected 9 submissions for presentation. All papers were evaluated by
at least four members of the program committee, partly with the assistance of
subreferees. We thank the members of the program committee as well as all
subreferees for their thorough and careful work. A special thanks goes to Harry
Buhrman, Martin Dietzfelbinger, Rusins Freivalds, Paul G. Spirakis, and Ar-
avind Srinivasan, who accepted our invitation to give invited talks at SAGA
2007 and so to share their insights on new developments in research areas of key
interest.

September 2007 Juraj Hromkovic
Richard Krélovic
Marc Nunkesser
Peter Widmayer
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On Computation and Communication with
Small Bias

Harry Buhrman

Centrum voor Wiskunde en Informatica (CWI) & University of Amsterdam
The Netherlands

Abstract. Many models in theoretical computer science allow for com-
putations or representations where the answer is only slightly biased in
the right direction. The best-known of these is the complexity class PP,
for “probabilistic polynomial time”. A language is in PP if there is a ran-
domized polynomial-time Turing machine whose acceptance probability
is greater than 1/2 if, and only if, its input is in the language.

Most computational complexity classes have an analogous class in
communication complexity. The class PP in fact has two, a version with
weakly restricted bias called PPcc, and a version with unrestricted bias
called UPPcc. Ever since their introduction by Babai, Frankl, and Simon
in 1986, it has been open whether these classes are the same. We show
that PPcc is strictly included in UPPcc. Our proof combines a query com-
plexity separation due to Beigel with a technique of Razborov that trans-
lates the acceptance probability of quantum protocols to polynomials. We
will discuss some complexity theoretical consequences of this separation.
This presentation is bases on joined work with Nikolay Vereshchagin and
Ronald de Wolf.

J. Hromkovic et al. (Eds.): SAGA 2007, LNCS 4665, p. 1, 2007.
© Springer-Verlag Berlin Heidelberg 2007



Design Strategies for
Minimal Perfect Hash Functions

Martin Dietzfelbinger

Technische Universitdt Ilmenau, 98684 Ilmenau, Germany
martin.dietzfelbinger@tu-ilmenau.de

Abstract. A minimal perfect hash function A for a set S C U of size n
is a function h: U — {0,...,n—1} that is one-to-one on S. The complex-
ity measures of interest are storage space for h, evaluation time (which
should be constant), and construction time. The talk gives an overview
of several recent randomized constructions of minimal perfect hash func-
tions, leading to space-efficient solutions that are fast in practice. A
central issue is a method (“split-and-share”) that makes it possible to
assume that fully random (hash) functions are available.

1 Introduction

In this survey paper we discuss algorithmic techniques that are useful for the
construction of minimal perfect hash functions. We focus on techniques for man-
aging randomness.

We assume a set U = {0,1}" (the “universe”) of “keys” z is given. Assume
that S C U is a (given) set with cardinality n = |S|, and that m > n. A function
h:U — [m] that is one-to-one on S is called a perfect hash function (for S). If in
addition n = m (the smallest possible value), h is called a minimal perfect hash
function (MPHF).!

The MPHF problem for a given S C U is to construct a data structure Dy,
that allows us to evaluate h(x) for given & € U, where h is a MPHF for S. The
parameters of interest are the storage space for D; and the evaluation time of
h, which should be constant. Clearly, such a data structure Dy, can be used to
devise a (static) dictionary that for each key x € S stores x and some data item
d, in an array of size n, with constant retrieval time.

In the past decades, the MPHF problem has been studied thoroughly. For a
detailed survey of the developments up to 1997 see the comprehensive study [9].
To put the results into perspective, one should notice the fundamental space
lower bound of nloge + logw — O(logn) bits?, valid as soon as w > (2 +
¢)logn, proved by Fredman and Komlés [18]. This bound is essentially tight:
Mehlhorn [23, Sect. II1.2.3, Thm. 8] gave a construction of a MPHF that takes
nlog e+ logw + O(logn) bits of space (but has a vast evaluation time). In order
not to have to worry about the influence of the size 2" of U too much, unless

' [m] denotes the set {0,...,m — 1}.
2 All logarithms in this paper are to the base 2. Note that loge ~ 1.443 . ..

J. Hromkovic et al. (Eds.): SAGA 2007, LNCS 4665, pp. 2-17, 2007.
© Springer-Verlag Berlin Heidelberg 2007



Design Strategies for Minimal Perfect Hash Functions 3

noted otherwise, we will assume in the following that n > w > (2+¢)logn, and
subsume the term logw in the space bounds in terms O(logn) and larger.

1.1 Space-Optimal, Time-Efficient Constructions

The (information-)theoretical background settled, the question is how close to
the bound n log e+log w one can get if one insists on constant evaluation time. In
the seminal paper [19] Fredman, Komlés, and Szemerédi constructed a dictionary
with constant lookup time, which can be used to obtain a MPHF data structure
with constant evaluation time and space O(nlogn) bits. Based on [19], Schmidt
and Siegel [28] gave a construction for MPHF with constant evaluation time
and space O(n) bits (optimal up to a constant factor). Finally, Hagerup and
Tholey [20] described a method that in expected linear time constructs a data
structure Dj, with n 4 logw + o(n + logw) bits, for evaluating a MPHF A in
constant time. This is space-optimal up to an additive term. It seems hard,
though, to turn the last two constructions into data structures that are space
efficient and practically time efficient at the same time for realistic values of n.

1.2 Practical Solutions

In a different line of development, methods for constructing MPHF were studied
that emphasized the evaluation time and simple construction methods over opti-
mality of space. Two different lines (a “graph/hypergraph-based approach” and
a method called “hash-and-displace”) in principle led to constructions of very
simple structures that offered constant evaluation time and a space requirement,
that was dominated by a table of ©(n) elements of [n] = {0,...,n — 1}, which
means ©(nlogn) bits. Very recently, refinements of these methods were proposed
that lead to a space requirement of O(nloglogn) bits (and constant evaluation
time) [11,32]. Only in 2007, Botelho, Pagh, and Ziviani [5] managed to devise
a construction for a MPHF that is simple and time-efficient, and gets by with
O(n) bits of storage space, with a constant factor that is only a small factor
away from the information theory minimum loge &~ 1.44. Crucial steps in this
development will be described in some detail in the rest of this paper.

1.3 Randomness Assumptions

Given a universe U of keys, a hash function is just any function h:U — [m).
Most constructions of MPHF involve several hash functions, which must behave
randomly in some way or the other. There are two essentially different ways to
approach the issue of the hash functions:

The “full randomness” assumption: One assumes that a sequence hg, hi,... of
hash functions is available, so that evaluating h;(x) takes constant time, no
storage space is needed for these functions, and such that h;(z), x € S, i > 0,
are fully random values (uniform in [m], independent). The analysis of several
MPHF algorithms is based on this assumption (e. g., [8,22,7,4]).

Randomization: “Universal hashing” was introduced by Carter and Wegman [6]
in 1979. One uses a whole set (“class”) H of hash functions and chooses one such
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function from H at random whenever necessary. Normally, some parameters of
a function with a fixed structure are chosen at random. Storing the function
means storing the parameters; the analysis is carried out on the basis of the
probability space induced by the random choice of the function. Some classical
MPFH algorithm use this approach (e. g., [28,25,20]).

Below, we will explain in detail how in the context of the MPHF problem
one may quite easily work around the randomness issue by using very simple
universal hash classes. To be concrete, we describe two such classes here. We
identify U = {0, 1}* with [2¥].

Definition 1. A set H of functions from U to [m] is called 1-universal if for
each pair of different x,y € U and for h chosen at random from H we have

Pr(h(z) = h(y)) < l

There are many constructions of 1-universal classes. One is particularly simple
(see [6]): Assume p is a prime number larger than 2, and m < 2%. For a,b € [p]
define hy p(x) = ((az +b) mod p) mod m, and let H,,, = {hqop | a € [p]—{0},b €
[p]}. Choosing/storing a hash function from H,, amounts to choosing/storing
the coefficients a and b (not much more than 2w bits).

Definition 2. Let k > 2. A set H of functions from U to [m] is called k-wise
independent if for each sequence (x1,...,xy) of different elements of U and for
h chosen at random from H we have that the values h(xy),..., h(zy) are fully
random in [m]* and each value h(z) is [approzimately] uniformly distributed in
[m].

The simplest way of obtaining a k-wise independent class is by using polynomials.
Let p > 2% be a prime number as before, and let m!'*t® < 2% for some € > 0.
The set HE, of all functions of the form

h(z) = ((ag_12" ' + - + a1z + ag) mod p) mod m, ax_1,...,a9 € (p]

(polynomials over the field Z, of degree smaller than k, projected into [m]), is
k-wise independent. Choosing/storing a hash function amounts from this class
amounts to choosing/storing the coefficients (ax_1,...,ap). For details see, e. g.,
[15,12]. The evaluation time is ©(k). For more sophisticated hash function con-
structions see e. g. [29,14,30].

2 Split-and-Share for MPHF's

Let S C U be fixed, n = |S|. For a hash function h: S — [m| and i € [m] let
Si = {x € S| h(z) = i}, and let n; = |S;|. It is a common idea, used many
times before in the context of perfect hashing constructions (e. g. in [19,20,10]),
to construct separate and disjoint data structures for the “chunks” S;.

The new twist is to “share randomness” among the chunks S;, as follows.
(The approach was sketched, for different applications, in [17,16].) In the static
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setting, with S given, this works as follows: Choose h, and calculate the sets
S; = {x € S| h(z) = i} and their sizes n;, repeating if necessary until the
sizes are suitable. Then devise one data structure that for each ¢ provides one or
several hash functions that behave fully randomly on S;. Each S; may own some
component of this data structure but one essential part (usually a big table of
random words) is used (“shared”) by all S;’s.

We describe the approach in more detail. First, we “split”, and make sure that
none of the chunks is too large. The proof of the following lemma is standard.

Lemma 1. If m > 2n%? and h:U — [m] is chosen at random from a 4-
universal class H = H2,, then Pr(max{|S;| |0 <i<m} > /n) < 1.

Proof. The probability that |S;| > v/n is bounded by

Pr(<|51'|) > (\/ﬁ» SED) _ @/ent 1

pit < =4
4 . () () e

for n large enough; hence Pr(3i: |S;] > /n) < 2n%/3/(8n2/3) = 1.
Given S, we fix m = 2n%/3 and repeatedly choose h from H2 until an h with
max{|S;| | 0 < i < m} < y/n is found. We fix this function h and call it h° from
here on; thus also the S; and the n; are fixed. With a; = ZO<j<1', n; we can allocate
indices in the interval [a;, a;+1 — 1] as possible hash values for keys in S;.

Once we have found MPHFs h;, one for each S;, we may let

h(z) = a; + hi(z) for i = h%(x), (1)

thus obtaining an MPHF for all of S. Below, we will describe several methods for
building such a MPHF A;. For this, it is most convenient to have at our disposal
one or several hash functions that behave fully randomly (on each S; separately).
To make this concrete, let K > 1 be some constant, and let L = K logn. We
will argue that when considering S; we may assume that we have a source of
L fully random hash functions hy,...,hy from U to {0, 1}’C for some k we may
choose, which can be evalutated in (small) constant time. The data structure
that provides the random elements used in these functions will be shared among
the different h;.
Let H, denote an arbitrary 1-universal class of functions from U to [r].

Lemma 2. Let r = 2n3/4. For an arbitrary given S’ C U with n/ = |S'| < \/n
we may in expected time O(|S’|) find two hash functions ho,h1 from H, such
that for any two tables Ty[0..r — 1] and T1[0..r — 1], each containing r random
elements from {0,1}*, we have that W' (z) = Tolho(x)] & Ti[hi(x)] defines a
function ' : U — {0,1}* that is fully random on S’. (& denotes bitwise XOR.)

Proof. Assume hg, h; are chosen at random from H,.. We call a pair hg, hy good
if for each z € S’ there is some ¢ € {0,1} such that h;(z) # h;(y) for all
y € §'—{x}. For each € S’, the probability that Jyo € S’ —{z}: ho(z) = ho(yo)
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and Jy; € S' — {z}: hi(x) = hi(y1) is smaller than (y/n/r)? < 1/(4y/n). This
implies that the probability that (hg, k1) is not good is bounded by % We keep
choosing hi, hy from H, until a good pair is found — the expected number
of trials is smaller than %. Checking one pair hy, hy takes time O(|S’|) when
utilizing an auxiliary array of size r. Once a good pair h;, ho has been fixed, for
a key x € S’ either table position Ty[ho(z)] or table position T [h;(x)] appears
in the calculation of A(z) but of no other key y € S’. Since this entry is fully
random, and because {0, 1}* with @ is a group, h(z) is random and independent
of the other hash values h(y), y € S’ — {z}.

From here, we proceed as follows: For each 7, 0 < i < m, we choose hash functions
h{y, hi that are as required in Lemma 2 for S’ = S;. The descriptions of these
2m hash functions as well as the sizes n; and the offsets a; can be stored in (an
array that takes) space O(m) = O(n®/*) (words of length O(w)).

Now we describe the “shared” part of the data structure: Recall that L =
Klogn. For each j € [L] we initialize arrays T o[0..r — 1] and T} 1[0..r — 1] with
random words from {0, 1}¥. We let

h,j-(a:) = Tjolh(x)] ® Tj1[Ri(z)], forx € U,0< j < L,0<i<m.

Since h, hY satisfy the condition in Lemma 2, for each fixed i we have that the
values h; j(z),x € S;,j € [L], are fully random. The overall data structure takes
up space 2n*/4 . L words from {0, 1}* plus O(n?/3) words of size log |U], for the
description of the hj), hi. We will see below that with high probability these hash
functions will be sufficient for constructing a MPHF h; for S;, for all i € [m]. If
that construction is not successful, we start all over, with new random entries
in the arrays 7o and 7} ; .

From here on we assume that we have a fixed set S’ of size n’ < \/n and a
supply of L = K logn fully random hash functions hyg, ..., h;_; with constant
evaluation time and range {0, 1}* (identified with [2¥]).

Goal: Build a MPHF for S’ that has constant evaluation time and requires little
storage space (beyond the functions hg,...,hr—1). In the rest of the paper we
discuss various strategies for achieving this.

3 Hash-and-Displace Approach

In this section, we discuss an approach to obtaining a MPHF by splitting S’
into buckets, hashing the buckets into the common range [n’] and adjusting by
offsets.

3.1 Pure Hash-and-Displace

Pagh [25] introduced the following approach for constructing a minimal perfect
hash function for a set S’: Choose hash functions f:U — [n'] and g:U — [m/].
The set [m'] x [n] may be thought of as an array A with entry at (i, j) equal to 1
if (f(z),g(z)) = 1 for some x € S, and 0 otherwise. Let B; = {z € S’ | g(z) = i},



