e

Brseal

M

TIP3 | 7861742

B4

E7861742

Programs
and
Machines

An Introduction to the Theory of Computation

Richard Bird
Department of Computer Science,
University of Reading

A Wiley-Interscience Publication

JOHN WILEY & SONS
London - New York - Sydney - Toronto

Copyright © 1976, by John Wiley & Sons, Ltd.
All rights reserved.

No part of this book may be reproduced by any means,
nor transmitted, nor translated into a machine language
without the written permission of the publisher.

Library of Congress Cataloging in Publication Data :

Bird, Richard, fl. 1969—
Programs and machines.

(Wiley series in computing)
‘A Wiley—Interscience publication.’
Bibliography: p.
Includes index.
1. Electronic digital computers—Programming.
I. Title.
QA76.6.B57 001.6'42 75-38893

ISBN 0 471 01650 0

Photoset in Great Britain by

Tecnical Filmsetters Europe Limited,

76 Great Bridgewater Street, Manchester M1 5)JY
and printed by The Pitman Press, Bath

Programs
and
Machines

WILEY SERIES IN COMPUTING

Consulting Editor
Professor D. W. Barron, Department of Mathematics, Southampton University

Numerical Control—Mathematics and Applications

P. Bézier
Professeur au Conservatoire National des Arts et Métiers
and
Technological Development Manager, Renault, France

Communication Networks for Computers

D. W. Davies
and
D. L. A. Barber
National Physical Laboratory,
Teddington

Macro Processors
and Techniques for Portable Software

P. J. Brown
University of Kent at Canterbury

A Practical Guide to Algol 68

Frank G. Pagan
The University of Aston in Birmingham

Programs and Machines

Richard Bird
University of Reading

To my wife Norma

and my parents, Kay and Jack

Preface

This book is intended primarily for programmers and computer science students,
either at the undergraduate or first-year graduate level, who desire a self-
contained introduction to the theory of computation. Throughout, I have
attempted to develop the subject from programming concepts, and not as an
abstract mathematical theory. I have assumed that the reader possesses a basic
knowledge of computers and programming languages (hopefully, but not
essentially, including at least one of the Algol variety) and have built upon this
knowledge in the selection and discussion of topics. Naturally there are results of
amathematical nature, but I have tried to present the proofs as simply as possible,
often resorting to proof by example when a rigorous argument would involve too
many tedious details. Mathematically, the book requires no formal background
apart from some elementary algebra and a familiarity with modern mathematical
notation.

The theory of computation has undergone many shifts of emphasis in the last
fifteen years. Generally speaking, the trend has been away from the study of
formal computing devices, and towards a basic understanding of program
structures. This trend is reflected in the present material. Starting off with a
discussion of three basic types of program (Chapter 1), the book covers the
equivalence of programs (Chapter 2), the limitations of programming (Chapters 3
and 4), the correctness of programs (Chapter 5), and the theory and use of
recursion (Chapters 6, 7, and 8). In particular, as the experienced reader will
notice, no mention is made of the theory of automata, finite or otherwise. One
simple reason for this apparently major omission is that automata theory has
already received comprehensive treatment in several excellent existing texts. A
second reason is that I have followed the recommendations of Dana Scott* and
drawn a fundamental distinction between the concepts of program and machine,
a distinction which underlies the whole book. Given this approach, it is
inappropriate to include material from automata theory in which this distinction
is not drawn. In any case, many automata-theoretic results can be reformulated
as results about programs; for instance, Chapter 2 deals essentially with the state
equivalence of finite automata in a different guise.

*Scott, D. (1967) Some definitional suggestions for automata theory. Journal of
Computer and System Sciences 1 (2), 187-212.

A%11

VIII PREFACE

Rather than over-burden the text with extensive attributions, I have included
bibliographic comments and references at the end of the book. Above all, I have
profited from the papers of John McCarthy and Dana Scott on the foundations of
the subject.

This book developed from the courses I have given at the University of London
Institute of Computer Science, the University of British Columbia, and the
University of Reading. It is a pleasure to record my gratitude to Michael Bell,
David Cooper, Peter Landin, Ray Reiter, Richard Rosenberg and David Till
whose comments and suggestions have helped me greatly. Finally, special thanks
go to the ever patient Margaret Lambden who typed the manuscript.

University of Reading RICHARD BIRD
March 1975

7861742

Contents

Preface

Chapter 1. Programs and Machines
1.1 Programs
1.2 Machines
1.3 Computations
1.4 Equivalence
1.5 Register machines
1.6 The control machine of a machine
Exercises

Chapter 2. The Equivalence of Programs
2.1 Trace machines
2.2 Strong equivalence of flowcharts
2.3 Strong equivalence of restricted procedures
Exercises

Chapter 3. Algorithms and Universal Machines
3.1 Coding
3.2 The machine NORMA
3.3 The machine TURING
3.4 A universal program
Exercises

Chapter 4. Unsolvable Decision Problems
4.1 More on coding
4.2 The Self-Applicability problem
4.3 Decision problems about programs

4.4 Post Normal Systems and the Post Correspondence

Problem
4.5 An unsolvable equivalence problem
Exercises

Chapter 5. The Correctness of Programs
5.1 Termination, equivalence and correctness
5.2 Notation from the Predicate Calculus
5.3 Proof of partial correctness
5.4 Proof of termination

5.5

Partial correctness of in situ permutation

Exercises

Chapter 6. The Definition of Functions by Recursion

6.1
6.2
6.3
6.4
6.5

Functions

Recursion

Recursive definitions

Rules of evaluation

The translation of programs into recursive
definitions

Exercises

Chapter 7. The Fixed Point Theory of Recursion

7.1
7.2
7.3
7.4
7.3

7.6
1.7

Fixed points

A theory of partial functions

The fixed point theorem

Continuous functionals

Relationship between the two approaches
to recursion

Fixed point induction

Other proof techniques

Exercises

Chapter 8. Applications of the Fixed Point Theory

8.1
8.2
8.3
8.4
8.5
8.6

Preliminaries

Relationship between eaf and eal
Relationship between eal and least fixed point
Two equivalence proofs

Partial correctness of binary search

Partial correctness of in situ permutation.

Bibliographic Remarks

References

Index

CONTENTS

103
107

111
111
114
118
121

132
140

145
145
147
158
167

171
172
177
180

183
183
184
190
194
198
200

205
208
212

Chapter 1

Programs and Machines

We must begin our investigation into the nature of computation by defining
exactly what we mean by a program and a machine. Rather than attempt to
describe any existing programming language or computing machine, of which
there is a great abundance and variety, we shall characterize their essential
features in simple mathematical models. Throughout, we shall treat programs
and machines as distinct but complementary entities, which come together, on an
equal footing, to define computations. As well as being natural, this division
enables us to consider particular aspects of computation, such as the properties of
a certain type of program structure or the capabilities of a certain machine, in
isolation from the rest of the computational process, and so avoid unnecessagy
detail.

1.1 Programs

Speaking generally, a program can be regarded as a structured set of instructions
which enables a machine—human or mechanical—to successively apply certain
basic operations and tests in a strictly deterministic fashion to given initial data,
until the data has been transformed into some desirable form. For the moment we
do not wish to be too concerned with the precise nature of the operations and
tests which constitute instructions, so we shall just give them names. We suppose
the existence of two sets of identifiers

operation identifiers F,G,H,...
test identifiers T.U,V,...

Thus F denotes an operation of some sort, and Tdenotes a test. A test is justan
operation which produces one of two possible truth-values, true or false.

In order that these operations and tests can be carried out in a prescribed
manner, the program has to provide a control structure for its constituent
instructions. This structure determines the flow of the computation. Among the
many examples of such structures in present day programming languages, we
select three representative types for study. These structures lead directly to the
definition of three types of program: flowcharts, while programs, and procedure
definitions. We consider the most important one first.

2 PROGRAMS AND MACHINES

(a) Flowchart programs

Informally, a flowchart program is a geometric diagram made up, according to
certain rules, of the following types of components:

|

OPERATION

True

l False

A simple example of a flowchart program is given in Figure 1.

Figure 1. A flowchart

With the judicious use of labels and jumps, flowchart programs can also be
specified by sets of labelled instructions. Thus Figure 1 can be equally well

PROGRAMS AND MACHINES 3

described by the following set of instructions:

do F then goto 2
if T, then goto / else goto 3
do G then goto 4
if T, then goto 5 else goto /.

ol B

Two assumptions have been made in translating the flowchart into the above
form. Firstly, the computation must begin at label 1, and secondly, the
computation should terminate successfully when an attempt is made to jumptoa
non-existent instruction. This indeed will be the case when we come to define
computations with sets of labelled instructions.

The formal definition of the class of flowchart programs is best given by using
this idea of a labelled instruction. We suppose that L is some standard set of label
identifiers (usually, the set of arabic numerals).

A labelled instruction i is a string of symbols of one of the two forms:

I: do F then goto /'
I: if T then goto [’ else goto [”,

where F is an operator identifier, T is a test identifier, and [, I', and !” are label
identifiers in L. The label A(i) of instruction i is the label identifier to the left of
the colon sign in i.

A flowchart program (or more shortly, a flowchart) P is a finite set of labelled
instructions with the property:

forall i, jin P, if A()) = A(j), theni=].

In other words, P is a set of instructions no two of which can have the same label.
In addition, P also specifies a particular label identifier in L. This label is referred
to as the initial label of P.

A terminal label of P is a label | appearing in some instruction of P such that for
no iin P do we have [= A(i). Thus, in the flowchart of Figure 1 represented as a set
of labelled instructions, label 1 is the initial label, and label 5 is the unique
terminal label. By introducing these special labels we can avoid having to specify
explicit start and halt instructions for each program. Notice that the definition of
a flowchart does not absolutely require either the presence of terminal labels, or
the presence of an instruction with the initial label. Indeed, it is possible that P
contains no instructions whatsoever. The sort of computations such programs
carry out will be described in the appropriate place.

Arguably, the sequencing mechanism given by labelled instructions is the most
fundamental type of control structure. It is the basic structure utilized by most
assembly and machine languages, and is incorporated in some way or other in
most ‘high-level’ programming languages. On the other hand, the next control
structure has made its appearance in programming languages only compara-
tively recently.

4 PROGRAMS AND MACHINES

(b) While programs

While programs are based on three sequencing mechanisms which can be
found in a number of present day high-level languages (e.g. ALGOL 68,
PASCAL). They are described as follows:

(i) composition. Suppose that P and Q are two programs. Their composition,
which we write as P; Q, denotes a further program whose effect is to execute P and
Q in the order: P followed by Q. More generally, since composition is clearly
associative, we can write P,; P,;...; P, for the program which executes
P,, P,,..., P, from left to right.

(ii) conditional statements. Suppose that P and Q are two programs. The
statement
(if T then P else Q)

denotes the program which executes P if T is true, or executes Q if T is false.
(iii) while statements. Suppose P is a program. The statement
while T do P

denotes the program which repeatedly tests T and performs P until the result of
testing T yields the value false (if it ever does), in which case the iteration
terminates. The same sequence of operations is carried out by the following
flowchart.

True
[~ = = S
| |
S | P |
| |
L __ J

Since termination can only be caused by returning a value false for the test
identifier, it is convenient to introduce the further statement

until T do P,

whose effect is to repeatedly test T and perform P until the value of T'is true. The
statement until T do P is therefore equivalent to while not-T do P; we prefer,
however, not to introduce negations of basic test identifiers.

In order to define the class of while programs formally, we introduce the idea of
the null program I, which corresponds to the dummy operation ‘do nothing’. It is

PROGRAMS AND MACHINES 5

clear that I acts as an identity element under composition, ie.I; P = P;1 = P for
any program P. The class of while programs is defined recursively according to
the following rules:

1. Each operation identifier standing by itself is a while program; so,
conventionally, is the null program 1.
2. If Wand V are while programs, then so are each of the following:
(2a) V; W,
(2b) (if T then V else W),
(2¢) while T do (V)
(2d) until T do (V)

where in (2b)-(2d), T is an arbitrary test identifier.
Notice that the pairs of brackets which appear in the constructions (2b)-(2d) are
necessary if we wish to be able to unambiguously analyse a while program into its
constituent parts. Otherwise, for example, the program
while T do V; W

would admit two distinct interpretations, corresponding to
while T'do (V); W and while T do (V; W).*

It may appear that nothing much has been gained by considering while
programs. It is easy to see, in an intuitive way, that while programs can be
translated into flowcharts without any loss of information. This remark will be
made more precise later. There are two basic reasons why while programs are still
worth considering. Firstly, the converse of the above remark is false, so that the
class of computations that can be carried out by while programs is a proper

* Occasionally, especially in Chapter 5 onwards, we shall use the Algol symbols begin
and end instead of parentheses to delimit the extent of the while statement. Thus

while T do begin V; W end
is regarded as an alternative way of writing
while T do (V; W).

When V consists of a single operation identifier F we shall sometimes omit parentheses, i..
we write

while T do F

instead of while T do (F). Furthermore, we shall sometimes employ the Algol syntax

if T then F
and if T then begin V; W end

as alternatives for

(if T then F else I)
and (if T then V:Welse I)

respectively.

6 PROGRAMS AND MACHINES

subclass of the computations defined by flowcharts. Secondly, writing while
programs is often easier and leads to a more compact and elegant program than
writing down sets of labelled instructions or drawing flowcharts.

(c¢) Procedure programs

The final type of control mechanism is found, in one form or another, in every
high-level programming language which allows recursive subroutines to be
defined. First, we need another set of identifiers, called procedure identifiers, which
are denoted by R, R,,... etc.

A procedure program has the form

E where R, is E{, R, is E,,...,R, is E,,

where R,, R,,... R, are procedure identifiers, and E, E,, ... E, are expressions. E
is referred to as the initial expression, and E; as the defining expression for R;.
Expressions are defined recursively according to the following rules:

1. Each procedure identifier (from the set {R;, R,, ... R,}), and each operation
identifier, standing by itself, is an expression. So, by convention, is the
special null expression, denoted by 1.

2 If D and E are expressions, then so are each of the following:
(2a) D;E,
(2b) (if T then D else E),
where T is an arbitrary test identifier.

Thus, for example, the following is a procedure program:

Ri; R, where
R, is F; (if T then R, else G; R;),
R, is (if T then I else F; R)).

Notice the important condition that the procedure identifiers which occur in the
expressions E,E,,...,E, must be among the set {R,R;,...R,}, ie. every
procedure identifier appearing in the program must have an associated
definition.

The computation of a procedure program consists in evaluating the expression
E using the given definitions. Every procedure identifier appearing in E is
replaced at the appropriate time by its defining expression, and the evaluation
continues until E has been transformed into the null expression I. The formal
definition of this process is given later.

So far we have defined three types of program which model some of the features
of real programming languages in a simple and straightforward manner.
However, by themselves, these programs are quite unable to describe com-
putations. Programs need to be supplemented with the meaning of the various test
and operation identifiers occurring in them. This is exactly what the concept of a
machine accomplishes, and this we turn to next.

PROGRAMS AND MACHINES 7

1.2 Machines

The task of a machine is to supply all the information that is missing from a
program in order that computations can be described. First, a machine has to
supply the meanings of the operation and test identifiers. Logically, each
operation identifier must denote a transformation on the memory structure of the
machine, and each test identifier must denote some truth function. In addition, a
machine has to describe how to get information into and out of this memory
structure, which amounts to providing input and output functions.

Formally, a machine M consists of the specification of the following sets and
functions:
(a) an input set X,
(b) a memory set V,
(c) an output set Y,
(d) an input function I: X - V
(e) an output function Oy: V> Y,
(f) for each operation identifier F, a function Fy: V-V
(g) for each test identifier T, a function Ty,: V — {true, false}.
By a function in (d)—(g), we mean a total function, i.e. a function that is defined
for every element in its domain.

As a simple example, consider the machine M defined by taking
(a) X = Z (the set of all integers, positive and negative).
(b) V=2 x Z,
(c) Y=2Z
(d) Iy:Z - Z x Z, defined by I(x) = (x,0)
(€) Oy:Z x Z— Z, defined by Oyl(x,y) =y,
() Fy:Z x Z > Z x Z,defined by Fy(x,y) = (x — 1,)

Gu:Z x Z— Z x Z, defined by Gy(x,y) = (x,y + 1)
(g) Ty:Z x Z — {true, false} defined by Ty (x, y) = true,if x =0

= false, otherwise.

When defining machines, we shall be free to choose the operation and test
identifiers in such a way as to suggest the nature of their associated functions. For
the above example, we can regard the memory set as consisting of two registers A
and B. Each operation and test acts on one or other of these registers. Moreover,
the nature of these operations is captured by the following alternative names for
F, G and T:

for F, A:=A -1
for G, B:=B + 1
for T, A=0.

