

Teaching Science for All Children

Second Edition

Ralph Martin Ohio University

Colleen Sexton Ohio University

Kay Wagner with

Jack Gerlovich

Allyn and Bacon **Toronto**

London

Sydney

Tokyo

Singapore

Senior Vice President and Editor-in-Chief, Education: Nancy Forsyth Series Editor: Frances Helland Editorial Assistant: Kate Wagstaffe Senior Marketing Manager: Kathy Hunter Cover Administrator: Linda Knowles Composition Buyer: Linda Cox Manufacturing Buyer: Megan Cochran Production Coordinator: Deborah Brown Editorial-Production Service: Anne Rebecca Starr Text Designer: Glenna Collett Photo Director: Susan Duane

The material in this book is based upon work supported by the National Science Foundation under grant number 91-47392. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the Foundation.

Copyright © 1997, 1994 by Allyn and Bacon A Viacom Company 160 Gould Street Needham Heights, Massachusetts 02194 Internet: www.abacon.com America Online: Keyword:college online

All rights reserved. No part of the material protected by this copyright notice may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without the written permission of the copyright owner.

Library of Congress Cataloging-in-Publication Data

Teaching science for all children / Ralph Martin . . .(et al.) 2nd ed.

p. cm. Includes bibliographical references and index. ISBN 0-205-19585-7

1. Science—Study and teaching. 2. Science—Study and teaching (Elementary) 3. Activity programs in education. I. Martin, Ralph E., 1951-

Q181.T3534 1996 372.3'5044-dc20

96-19152 CIP

Photo Credits

Will Hart: pp. 2, 34, 66, 140, 293, 376; Robert Harbison: pp. 11, 49; Courtesy of William E. Mills: pp. 15, 19, 25, 39, 41, 71, 79, 85, 93, 95, 106, 116, 124, 138, 156, 162, 196, 204, 211, 213, 216, 236, 240, 260, 264, 271, 280, 283, 286, 288, 298, 325, 330, 377, 382, 386, 390, 397; Will Faller: pp. 102, 372; Dave Shaefer/Picture Cube: p. 112; Michael Dwyer/Stock Boston: p. 190; Gale Zucker/Stock Boston: p. 198; Courtesy of H. L. Bouton Co., Inc.: p. 205; Courtesy of Boekel Industries, Inc.: p. 206 (top); Courtesy of Eagle Manufacturing Company: p. 206 (bottom); Courtesy of Lab Safety Supply: p. 207 (top); Courtesy of Amerex: p. 207 (bottom); Courtesy of Sellstrom Manufacturing Co.: p. 208: Brian Smith: pp. 244, 276, 302, 336; Jim Pickerell: pp. 342, 351, 361; Stephen Marks: p. 358.

Printed in the United States of America 10 9 8 7 6 5 4 01 00 99 98

DEDICATIONS

Experience and time tend to heighten appreciation for the support, advice, and guidance offered to a developing youngster by benevolent adults. Three people have been most significant in my life and I choose to dedicate my part of this edition to them. Out of respect, Raymond Russell will always remain "Mr. Russell" to me. He was more than just a teacher and coach, and he made the first discovery. I am just now rediscovering his lessons. John Schoby, businessman, would never believe all that he taught me about fairness, compassion, forgiveness, consistency, tenacity, and the fruits of hard labor. Dr. Mary Jo Henning made the later discovery. Were it not for her patience, wisdom, and encouragement, I would not have been able to identify new opportunities, nor would I have dared to experiment with new possibilities. I am grateful to have walked in their shadows.

r.m.

To my former teachers who exemplified effective teaching and inspired me to follow in their footsteps.

C.S.

To my mentor and friend. Ditto.

k.w.

To the Elementary Science Methods students at Drake University who have been, and continue to be, inspirations for my science activity ideas, as well as enthusiastic supporters of hands-on, and often electronically delivered, quality science teaching.

j.g.

Preface

Learners may believe what they see, but they actually understand what they do. This second edition of Teaching Science for All Children extends our belief beyond the successful features of the original textbook. Understanding is easy to describe in theoretical terms but difficult to achieve with the limits and daily pressures of the classroom. The popular concept-turned-slogan of "hands-on learning" is often supported by teachers but misunderstood or misused. It is important that the children's hands stimulate their senses but perhaps more important that children's minds be strongly connected to what their hands do. Hands-on, minds-on learning can be effective, but only if both occur. This edition helps users learn how to ensure that what children's senses "see" helps them create understanding from what they do. This book expands our original constructivist approach to help you to help students make important learning connections by stimulating and guiding their thinking.

Our mission as science teachers is to find effective ways to help learners construct their own understanding by connecting their many ideas into a fabric of concepts, attitudes, and skills that carries meaning for them personally and academically. Additional goals of this mission are to fulfill the National Science Education Standards (NSES). This edition has been rewritten to apply those content standards in many ways in order to stimulate an awareness in learners of the history and nature of science, to develop skills in using science inquiry processes, and to bring about an understanding of the complex interrelationships among science, technology, and society.

The philosophy that guides our book is one of promoting the concept of *whole science* by making certain that the ideas, skills, and attitudes of science all are included in the experiences that teachers offer learners.

Whole science is based on the constructivist belief that knowledge exists only in the minds of learners and that they must create those understandings from their own experiences. This approach was developed in the preservice teachers' courses at our universities several years ago, and the methods were refined and expanded with recent funding from the National Science Foundation during the Lead Teacher Project at Ohio University. The project involved dozens of practicing elementary, middle school, and special education teachers who taught science. The lead teachers tested in their own classrooms and helped to improve the ideas and activities that are included in this book. As leaders in science education reform, they shared these same ideas and methods with hundreds of other teachers. All of the ideas, methods, and activities have been tested extensively; they can and do work if you are willing to accept as evidence significant gains in pupil science achievement, skills, and attitudes.

We have constructed our book to help you connect the important parts of science, first by helping you to understand the holistic nature of science teaching and later by helping you to develop your own impression about how learners construct their understanding. The science goals, planning techniques, and teaching approaches provided in our book support this conception of constructivism. Dorothy Gabel, editor of the Handbook of Research on Science Teaching and Learning (Macmillan, 1994), recently identified the most promising and effective researchbased teaching strategies and practices for science. Our textbook has incorporated those strategies and practices into its chapters and science lessons. For example, in this edition you learn how to use wait-time and the strategies of a learning cycle and cooperative learning. Analogies are used within chapters to assist

conceptual understanding, and the tool of concept mapping is illustrated and used as a lesson design, teaching, and assessment tool. Teaching for conceptual understanding is emphasized throughout, and problem solving is a common technique emphasized in the assessment tools for our science lessons. Science-technology-society is included in each lesson, and the technique of using discrepant events is featured as a special teaching method. Real-life situations and uses are emphasized where they logically fit within lessons.

Each chapter begins with a *scenario*, a story that sets a visual context for the chapter's message. The scenarios, all factual, help to create a vicarious experience through a short story related to the chapter. This experience should give you an advanced *organizer* (a mental framework) for understanding parts of the chapter that may be new or difficult to you. We hope these features will help you to construct your own understanding of the material in our book.

Within each chapter we have added visual aids figures, tables, exhibits, and photographs—to reinforce the ideas presented. Sometimes we include relevant exercises that you might want to try. The feature What Research Says supplements the chapters with a brief authoritative report taken from the recent research. Another feature we have added is Teachers on Science Teaching. These supplements are written by teachers to give an applied view on each chapter's topics, with classroom uses described by some of our country's finest teachers. Of course, we close each chapter with a customary summary. Discussion questions and ideas for class projects are included; many of these are field based to complement any early field experience or internship that instructors may prefer. Additional readings contain annotations for further study on the important topics of each chapter.

Experiment with how you use this book—we have written each chapter to stand alone, though we have organized this book in a linear way. In Part I we provide a foundation for science, learning, and literacy in four chapters. Then, in Part II, Chapters 5 through 8, we focus on preparing elementary and middle school lessons. In these chapters we explore constructivist lesson planning and assessment, ways to create and maintain a safe science classroom, the characteristics of effective science materials and programs, and ways to use a variety of resources (including technology) for science teaching. Safe science

is featured in Chapter 6, but also integrated throughout our textbook, and included in each lesson.

Part III, Chapters 9 through 11, is devoted to a variety of teaching methods and teacher skills. These chapters include learning cycle and inquiry teaching methods, effective questioning techniques, and effective uses of traditional strategies and materials such as demonstrations and science textbooks.

Our book contains more than 60 complete science lessons, found in Part IV, and organized among the disciplines identified by the NSES: life, physical, and earth and space. Each lesson is correlated with the grade levels and concepts urged by the NSES framework. Our lessons contain more than 150 different activities that are constructed in a very powerful way—a way to encourage the highest level of student hands-on, minds-on activity, and a way to stimulate high levels of concept formation. Our plans are consistent with how children construct their own understanding and with constructivist teaching practices. We use the 4-E learning cycle of Exploration, Explanation, Expansion, and Evaluation. The Exploration phase prepares students for science as an inquiry process, while the Explanation phase stimulates learners to construct conceptual understanding. This fundamental understanding is Expanded by addressing the new dimensions of the NSES content standards, such as the history and nature of science, the interrelationships of science and technology, and science in personal and social perspectives. Evaluation embeds assessment in the instruction throughout the cycle and uses performance-based techniques such as pictorial assessment, reflective questioning, and handson assessment. The lessons have been classroom tested by our own undergraduate and graduate students and by the lead teachers (practicing teachers) previously mentioned.

All chapters and activities are supported by several unique appendixes. These are written for preservice and inservice teachers who wish to locate effective science resources or entire science curriculum projects, and/or to become involved in networks or alliances of science teachers through state or federal agencies.

Of course, at all times we encourage you to try our book's ideas your own way. If you do, you will be learning about teaching science as we advocate for the students you will teach: by constructing *your own*

understanding. So you see we hope you will believe the ideas and information that you see in this book; more important, we hope that you will try each idea and learn to understand the complexity and rewards of effective science teaching from what you do.

ACKNOWLEDGMENTS

No book is ever written alone. In addition to our author team, many important persons supported the project and turned the dreams and ideas into a reality. Indeed it is an understatement to say we are grateful to those many talented persons.

We are indebted to Nancy Forsyth, Vice President and Editor-in-Chief, Education, whose vision shaped the project into a comprehensive product, and her able assistant, Kate Wagstaffe, who ensured first-class treatment at every stage of the publishing process. Deborah Brown, as Production Administrator, steered us through the complexity of publishing. Anne Rebecca Starr functioned admirably and persistently as Production Editor. Beverly Miller earned the moniker of "Hawkeye" as copyeditor. Glenna Collet and Laurel Aiello delivered the nice touches that readers expect in design and illustration. Lois Oster created an extremely useful and comprehensive index.

Research support has been provided by Sara Bush, a dedicated and persistent assistant; Greg Hanek, a talented researcher; and Leah Rife-Wright, a skillful editor. Without them, the task would have much more difficult.

Our special thanks go to the reviewers who offered substantial suggestions that helped to shape this second edition. They are:

Leonard Garigliano, Salisbury State University; William Hughes, Ashland University; Larry Kellerman, Bradley University; Michael Leyden, Eastern Illinois University; Robert Lonning, University of Connecticut; J. Preston Prather, University of Virginia; Mary Rubeck, Friends University.

Finally, we are grateful to our spouses and children for their encouragement, support, and understanding, especially during the tense moments that always accompany the deadlines for such a large project. Knowing that we could help our children's teachers gave inspiration and helped to shape our mission. There will always be a special place in our hearts for Marilyn, Jennifer, Jessica, Jonathan, Tim, Sarah, Celeste, Carl, Cade, Kara, Pat, Jacque, and Kelly.

Contents

Preface xii About the Authors 1

Science, Learning, and Literacy 2 What Is Science? 2 Introduction 37 How Do Children's Ideas Influence Introduction 4 Their Learning? 38 How Do Children Perceive Science? 5 Preconceptions 39 Science Is . . . 5 Misconceptions 40 Scientists Are . . . 6 What Do We Know About Children's Ideas? 42 Where is Elementary Science? 8 What Do Children Need to Help Them Learn? 44 Achievement 8 Thinking 44 Science Teaching 8 Physical Activity 44 Goals 9 Language 44 Time 9 Socialization 45 Diversity 9 Self-Esteem 45 The Nature of Science 10 Time 45 Three Parts of Science 14 What Is the Dominant Perspective About How Science Attitudes 14 Children Learn Science? 45 Science Process Skills 16 Jessica: A Constructivist Attempt 46 What Research Says: Attitudes and Science What Research Says: Brain-Based Learning 46 Teaching 17 Constructivism 48 Science Knowledge 23 Jean Piaget 51 The Aims of Modern Science Education 26 Jessica: The Novelty Wore Off 55 About This Book 27 What Techniques and Roles Support Chapter Summary 31 Constructivist Learning? 58 Discussion Questions and Projects 31 A Constructivist Learning and Additional Readings 32 Teaching Model 58 Constructivist Teaching Roles 58 Jessica's Knowledge Construction 61 Chapter Summary 62 How Do Children Discussion Questions and Projects 63 Learn Science? Additional Readings 64

How Can You Teach Science for All Children? 66

Introduction 69
Science for All 70
Multicultural Education 70
How Can You Help Non-English-Speaking
Students? 74

Is Gender Equality a Special Need? 78 Similarities in Learning 84

Science for Exceptional Children 87 Teaching Children Who Have Learning Disabilities 89

Teaching Children Who Have Intellectual Disabilities 94

Teaching Children Who Have Physical Disabilities 95

Teaching Learners Who Are Gifted and Talented 99

What Research Says: Teaching Exceptional Students 104

How Can Parents Help Meet Children's Special Needs? 105 Science Is Important to Their Children's Future 105

How Can Parents Help Their Children Study and Prepare for Science? 107

Prepare for Science? 107 What Are Some Extra Science Activities Parents Can Do to Help Their Children? 107 Chapter Summary 109
Discussion Questions and Projects 110
Additional Readings 111

What Goals Promote Scientific Literacy? 112

Introduction 115 What Is Scientific Literacy? 115 What Reform Efforts Have Sought to Provide Goals for Scientific Literacy? 119 Project Synthesis 120 Scope, Sequence, and Coordination of Secondary School Science (SS&C) 122 Project 2061 124 National Science Education Standards 126 Goals Promoting Scientific Literacy 130 Science as Inquiry 131 Science and Technology 136 Science in Personal and Social Perspectives 136 History and Nature of Science 137

What Research Says: What Are Teachers' Attitudes
Toward Reform? 137
Chapter Summary 138
Discussion Questions and Projects 139
Additional Readings 139

PART II Preparing Science Lessons That Help Learners Construct Meaning 140

How Can You Plan Constructivist Science Lessons and Assess Student Performance? 140

Introduction 143
Concept Mapping 144
Necessary Definitions 144
What Are Concept Maps? 147
Why Should Concept Maps
Be Developed? 150
Steps for Developing a Concept
Map 151

Planning Constructivist Science Lessons

Selecting or Developing Unit Activities

Developing Objectives 155

Planning the Lesson 155

How Can You Evaluate Student

Learning? 164

Limits and Purposes of Tests 164

Selecting the Tool for the Task 165

What Research Says: Questions to Ask

About Tests 167

Chapter Summary 188

Discussion Questions and Projects 188

Additional Readings 189

How Can You Create a Safe, Efficient, Activity-Based Science Classroom? 190

Introduction 194
What Foreseeable Hazards Are Associated with
Valued Educational Activities? 194

What Are Your Legal Responsibilities? 195 Tort 195

Reasonable and Prudent Judgment 196 Foreseeability 197 Negligence 198

Due Care 198

Federal and State Legislation 204

Safety Equipment 205
Electrical Equipment 205
Heating Equipment 206

Flammable Liquid Storage 206 Loose Clothing and Long Hair 206

Fire Blankets 207 Fire Extinguishers 207

Eyewash and Shower 208
Performing Safety Assessments 209

What Materials Are Necessary for the Activities? 210

Items Purchased Through a Scientific Supplier 211

Items Purchased Through a Scientific Supplier 211 Items Purchased Locally 214

Items Made from Recycled Materials 215 Storage 215

Central or Classroom Storage Access 215 Storing and Dispensing Materials 219

Room Arrangement 222

Large-Group Science Activities 222

What Research Says: Class Size and Science
Achievement 224

Science Learning Centers 224 Bulletin Boards and Other Displays 230

Chapter Summary 232
Discussion Questions and Projects 233

Additional Readings 234

What Are the Characteristics of Effective Science Materials and Programs? 236

Introduction 238

Dominant Beliefs in Science Education 239

Changes Over Time: Legacy of the Past 239

Major Elementary Science Program Models:

Looking Back for the Source of Wisdom 241
The Alphabet Soup 241

Science—A Process Approach (SAPA) 243 Science Curriculum Improvement Study (SCIS) 251 The Elementary Science Study (ESS) 256

What Works? 261

What Research Says: Criteria for Excellence in K-6 Science Programs 266

Supported Assumptions About Effective Elementary Science Programs 268

The Next Generation of Science Programs 269 Chapter Summary 274 Discussion Questions and Projects 274

Additional Readings 275

How Can You Improve Your Science Instruction Through Human, Print, and Multimedia Resources? 276

Introduction 278
Why Use Supplemental Resources? 279
What Resources Are Available? 282
Human Resources 282
Print Resources 286
Microcomputer Applications 288
Accessing and Sharing Information Through
Telecommunications Networks 292

Chapter Summary 295
Discussion Questions and Projects 296
Additional Readings 296

PART III Teaching Science 298

What Teaching Methods Help Learners to Construct Meaning? 298 Introduction 301 What Are Inquiry and Discovery? 301 Inquiry 301 Discovery 302

The Importance of Experience 302 Constructivist Science Teaching Methods 303 The Science Learning Cycle 303 Planning and Teaching Science Learning Cycle Lessons 311 How Can You Use Principles of Scientific Experimentation While Teaching? 311 The Principles of Scientific Inquiry as a Teaching Method 312 What Research Says: The Science Learning Cycle 314 Limitations and Benefits 315 Suchman's Inquiry: How Can You Get Students to Think and Question? 316 Can Children Learn Science Through Play? 319 How Can You Turn Students' Questions into an Inquiry Teaching Method? 323 Will You Survive? 327 Cooperative Learning in Science 328 Cooperative Inquiry Groups 329 Recommendations for Successful Cooperative Constructivist Science Teaching 332 Chapter Summary 333 Discussion Questions and Projects 334 Additional Readings 334

What Do You Need to Know About Using Questions as a Science Teaching Tool? 336

Introduction 338

Questions on Questions 339

What Kinds of Questions Do Teachers Ask and

What Kinds of Answers Do They Require? 339

Why Do Teachers Use Questions? 340

How Do Questions Affect Students? 341

How Are Teacher Questions and Student Answers

Related? 343

How Do Teachers Use Questions to Involve All

Students? 344

What Is Wait-Time and Why Is

It Important? 345

What Types of Questions Are Used Most in

Elementary Science Books and Tests? 348

What Are the Different Types

of Questions? 349

What Research Says: Using Questions in Science
Classrooms 350

What Are the Keys to Effective
Questioning? 356

How Can You Improve Your
Questioning? 359

Why Use Students' Questions? 361

Why Bother with Students' Questions? 362

How Can You Stimulate Students'
Questions? 364

How Can You Use Students' Questions
Productively? 368

Chapter Summary 368

Discussion Questions and Projects 369

Additional Readings 369

How Can You Use Science Demonstrations and Textbooks Effectively? 372

Introduction 374
Avoiding Authoritarianism and the Exclusive Use
of Textbooks 374
Why Is an Interactive Classroom
Important? 375
How Can You Use Teacher Demonstrations to
Foster Constructed Learning? 376

Foster Constructed Learning? 376
Tips for Effective Demonstrations 379
When Should You Use a Demonstration? 380
When Should the Students Do
a Demonstration? 381

How Can You Use Exposition Effectively? 381
Problems and Uses 381
Using Deduction 383
Teaching Explicit Material 385

How Can You Use Science Textbooks
Effectively? 388
Be Aware of Shortcomings and

Differences 388
Enhancing the Textbook 390

What Research Says: How Are Scientists Portrayed in Children's Literature? 391
Changing the Sequence 392
Selecting the Best Textbook 395
Chapter Summary 401

Discussion Questions and Projects 401 Additional Readings 402 PART IV Lessons, Activities, and Teaching Materials to Meet the Goals of Elementary and Middle School Science 405

Section 1 Life Science Activities 406 Section 3 Earth and Space Science Activities 539

Section 2 Physical Science Activities 470

APPENDIXES

Appendix A National Science Education Standards: Content Standards for K-4 and 5-8 616

Appendix B Curriculum Projects 620

Appendix C State Education Agencies 630

Appendix D Organizations That Support Reform in Science Education 632

Appendix E Resource Organizations 633

Appendix F National Aeronautics and Space Administration (NASA) Resources 639

Appendix G Materials and Resource Sources 642

Appendix H Out-of-School Resources 643

References 644 Index 652

Science Activities

SECTION | Life Science Activities 406

Plant Parts and Needs (K-4) 407

Plant Dig • Eggshell Planters • Food Storage Chlorophyll Production: Changing Leaf Color (2-5) 410

Leaf Collection • Life of a Tree Drama • Leaf Press and Mobile

Osmosis and Capillary Action (5–8) 413 Colored Carnations • Three-Way Split Plant Photosynthesis (5–8) 416

Radish Growth: Light versus Dark in a Bag • Radish Growth: Light versus Dark in Soil

Starch Exploration (5–8) 419

Microscopic Starch • Beans and Starch Grains

Colors of Wildlife (K-4) 422

Animal Similarities and Differences • Create a Rainbow Animal

Shelter (K-4) 424

Shelter Drawing • Animal Homes

Wildlife and Domesticated Animals (K-4) 427 Animal Needs • Domestic versus Wild Charades

Habitat (3-6) 430

Basic Needs Lap Sit • Animal Habitat Research Crickets: Basic Needs of an Organism (5–8) 434

Cricket Needs • Cricket Behavior

Animal Adaptations (5-8) 437

Mitten and Tweezer Beaks • Fish Adaptations

Owl Pellets (5–8) 440

Owl Pellet Dissection • Owl Research or Field
Trip

Humans and Trash (K-4) 443

Trash and Animals • Classroom Landfill and Recycling

Useful Waste (5-8) 446

Rating Garbage • Litter-eating Critter • Making

Litter in Our Waterways (4–8) 449

Sink or Float Litter • Plastic Food

Slogans and the Environment (5–8) 452

Slogan Categorization • Environmental Slogans

Sense of Taste (K-4) 455

Buds and Tasters • Supertasters

Skeleton (1–4) 458

Bones Assembly Line • Newsprint Bone Bodies Temperature Receptors on Skin (3–6) 463

Soaking Hands • Hot/Cold Receptor Mapping

Building Microscope Skills (5–8) 466

Microscope Use and Crystal Comparisons •

Charcoal Crystals

470

SECTION II Physical Science Activities

Sound versus Noise (K-4) 471
School Sound Search • Magazine Sound
Search
Sounds Are Different (2-4) 473

Megaphones and Vibrating Straws • Bell Ringers Vibrations Causing Sound (2–4) 476 Sound Makers • Waxed Paper Kazoo Loudness and Pitch (2-4) 479

Soda Bottle Orchestra • Cigar Box Strings • Fish Line Harps • Homemade Music

Sound Movement as Waves (2-4) 483

Vibrating Fork • Striking Rod • Clapping Blocks • Sound Producers? • Tapping Tank • Paper Cup Telephone

Sound Waves (4-6) 486

Soup Can Reflectors • Slinky Waves • Sound Waves and the Ear

Sound Production (5–8) 490

Noise and Sound Identification • Sound Movement • Sound Game, "What Is Sound?"

Characteristics of Matter (3–8) 494
Plastic Bag Chemistry • Marble Matter
Physical Properties of Matter (K–6) 500
Egg-citing Observations • Chocolate Chip

Exploration
Changing Matter (5–8) 505

Physical and Chemical Paper Change • Polymer-Rubber Balls Identification of an Unknown (5–8) 509

Physical Properties of an Unknown • Chemical Properties of an Unknown

Using the Scientific Method to Solve Problems (5–8) 515

Exploring with Efferdent Tablets • Exploring with Cornstarch

Heat Energy (1-4) 519

Liquid Birthday • Liquids to Solids

Structure Strength (2–6) 521

Simple Construction • Triangle Construction

Mirrors and Reflection (2-6) 525

Mirrors and Reflectors • What's a Mirror?

Paper Chromatography (4–8) 527

Moving Black Ink Dots • Moving Colored Ink Dots and Snowflakes

Toys in Space (4-8) 531

Toy Behavior in Zero Gravity • Toys and Newton

Simple Machines: The Lever (4–8) 533

Lever Creations • Spoons and Nuts • Lever Scavenger Hunt

SECTION III Earth and Space Science Activities 539

The Solar System and the Universe (K-2) 540

Rhythm Activity • Postcard Writing

The Expanding Universe (3–8) 543

Expanding Balloon/Universe • Build a Solar System Salad

Constellations (4–8) 547

Connect the Stars • Evening Field Trip • Create a Constellation

Earth Layers (K-4) 550

Clay Earth Layers • Clay Continents

Fossils (2-6) 553

Fossil Observations • Plaster Molds and Casts

Soil Formation (3–6) 557

Soil Separation and Rock Crushing • Soil Components

Rock Types (5-8) 561

Rock Categorization • Rock Collection Field Trip

Cooling Crystals (5-8) 564

PDB Crystal Formation • Rock Type versus Crystal Formation

Weathering (5–8) 567

Freezing Bottle • Weathering Field Trip • Rock Identification • Chemical Weathering • Mechanical Weathering

Crustal Plate Movement (5-8) 571

Moving Plates • Mapping Volcanoes and Earthquakes • Oatmeal and Crackers Plate Tectonics

Rain Formation (K-4) 574

Rain in a Jar • Water Drop Attraction

Dew Formation (K-4) 577

Soda Bottle Condensation • Thermometer Reading and Dew Point

Radiant Energy (2–4) 580

Temperature and Colored Surfaces • Temperature: Sun versus Shade • Magnifiers: Capture the Sun • Sun Tea

Weather Forecasting (4–8) 583

Weather Log Creation • Weather Map Symbols • Weather Data Collection

Weather Predictions (4-8) 587

Weather Map Information • Recording Weather Data and Predicting Weather

Air Mass Movement (4-8) 590

Coriolis Effect: Globe • Coriolis Effect: Top • Air Movement: Dry Ice • Oil and Water Fronts • Create a Rain Gauge • Air Masses and Parachutes

Air Pressure (5–8) 596

Balloon Balance • Paper Blowing • Newspaper Strength

Solar Heating (5–8) 601

Temperature versus Surface Color • Optimum Thermometer Placement

Air Movement and Surface Temperature (5–8) 604

Convection Current • Surface Temperature • Observation Box • Paper Bag Balance

Uneven Heating of the Earth (5–8) 608

Tower of Water • Aneroid Barometer • Uneven Heating and Air Pressure • Air Pressure versus Water Temperature • Air Temperature versus Movement of Air • Heat Transfer on a Wire • Heat Movement Through Air • Heat Transfer Through Metal • Movement of Smoke over Hot and Cold Surfaces: Clouds

About the Authors

Ralph Martin is Professor of Science Education and Director of the School of Curriculum and Instruction for Ohio University's College of Education. Throughout his years of teaching, he has received more than \$1 million in grants for work in science and mathematics. He has served on Ohio commissions in science and vocational education to improve science education. He is an active member of the National Science Teachers Association and the School Science and Mathematics Association, as well as his state science organization, Science Education Council of Ohio (SECO), where he served four terms on the board of directors. Dr. Martin has earned the SECO Service Award in Science Education, Ohio's Outstanding Educator award for Project Learning Tree, and the Project Learning Tree national award. The second edition of Teaching Science for All Children is Dr. Martin's fifth book, including Introduction to Teaching (1988) with co-authors George Wood and Edward Stevens, also published by Allyn and Bacon.

Colleen Sexton has worked in preparing science teachers and promoting science education in a number of capacities. Dr. Sexton is involved in the Appalachian Distance Learning Project—a project which fiber optically links three third-grade classrooms, separated by over 150 miles. She has worked extensively with classroom teachers in helping them plan science lessons which take advantage of available technology.

For the past three years Dr. Sexton has worked with 43 elementary science teachers from 13 different school districts in southeast Ohio on an NSF-funded Lead Teacher Project. Dr. Sexton is also involved in a research project which is concerned with equity throughout Ohio's school districts.

Kay Wagner has over 26 years of experience in the education and information transfer field, including 18 years of public school teaching, 6 years as Ohio's state science education supervisor, and 12 years in

project management related to public information and education programs, public information product development, resource curriculum production, public outreach program planning, and teacher and student activities. While employed as state science supervisor in Ohio, Ms. Wagner devised and implemented a statewide telecommunications network linking all school districts, vocational schools, and colleges and universities that provided teacher training. She served as the director of the Alliance Programs for the Triangle Coalition for Science and Technology Education, as President of the Science Education Council of Ohio, and on the Board of Directors for the National Science Teachers Association.

She currently is employed by Science Applications International Corporation (SAIC) as director of the U.S. Department of Energy's Center for Environmental Management Information, a nationwide information center for the Department's Environmental Management program.

Jack Gerlovich is Associate Professor of Science Education at Drake University. He was the state science consultant for the Iowa Department of Education for 11 years. He is also the president and founder of JaKel, Inc., a science education safety company. His 15 years of science teaching experience include elementary, junior high, high school, and college levels.

Dr. Gerlovich is a fellow at the American Association for the Advancement of Science and the Iowa Academy of Science. He is a member of the National Science Teachers Association (Board of Directors 1985–87), the Council of State Science Supervisors (National President 1985–87), and the National Academy of Applied Sciences (Board of Directors).

Dr. Gerlovich, a nationally renowned safety expert, has authored and coauthored 30 professional journal articles, eight state science publications, and developed books, software, and video products on the subject.

CHAPTER OUTLINE

Introduction

How Do Children Perceive Science?

Science Is . . .

Scientists Are . . .

Where Is Elementary Science?

Achievement

Science Teaching

Goals

Time

Diversity

The Nature of Science

Three Parts of Science

Science Attitudes

Science Process Skills

Science Knowledge

The Aims of Modern Science Education

About This Book

Chapter Summary