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Preface

M ANY BIOLOGY COURsEs are offered with laboratory sections that teach the techniques
specific to that discipline as well as the broader tools of how we do science. While this text
cannot replace the hands-on experience of an ecology lab, it does introduce many of the
theoretical and quantitative tools of ecology, conservation biology, and environmental sci-
ence, and often shows how they intersect.

The exercises in this text were written and piloted by a group of teachers committed to
helping students experience the intellectual excitement of ecology and environmental sci-
ence, even when their courses may not give them the opportunity to gather their own data
out in the field. These exercises have transformed our discussion sections into “brains-on”
thinking labs rather than “hands-on” technique labs.

You will see that every exercise asks you not only to read, think, and “digest” the con-
tent, but also to analyze the information in specific ways, both alone (before class) and with
others (in class). This is deliberate—we too have fallen asleep in class when all we had to
do was listen! And we have assigned some of the most difficult tasks to be solved in small
groups of students so that collaborative learning can take place.

You will also notice that we choose very simple techniques, often using paper and dice,
for example, when there exist computer programs that can do the same task in a fraction of
the time. This, too, is deliberate. For almost all of us, what is actually done in a computer
is a mystery, a Black Box of methodology, if you will. We think it is essential to understand
the process first, especially in simulation modeling. In part, you can explain better to oth-
ers what you have done, if you have actually performed the process, rather than simply
entering data. It is also true that if you understand the process thoroughly, you will be
better at catching problems in later computer runs—you will have an intuition about the
approximate answer, so that if you have mis-entered a data point (e.g., 20 rather than 2.0),
you won’t slavishly copy the computer’s answer. And, finally, you will be better prepared to
explain computer simulations to others.

One of our aims is to show how, even though we do not typically recognize it, ecology
(section I), demography and population biology (section II), and population genetics (sec-
tion I1I) are all closely related. Further, all these fields require that you be able to do some
forms of quantitative analysis (section IV), and to synthesize what others have done lead-
ing to our present understanding, and to think about the current state of affairs (section
V). It is not intended that any one course would use all of the chapters you find here. But
the subset chapters used in different courses will overlap very differently depending on the
approach and interests of your instructor. You may have this book as a supplemental text
in more than one course—in fact, even if you do not, we hope that you will find some unas-
signed sections useful in other courses.
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INntroduction

WrLcomE o An Introduction to Methods and Models in Ecology, Evolution, and Conserva-
tion Biology. We hope you will enjoy using it. The fields of ecology, evolution, behavior, and
conservation, although treated as separate topics, in fact are aspects of a large interdisciplin-
ary core of knowledge with a common theoretical foundation—we hope you will find that
the skills you acquire are useful in many contexts. The best work in all of these fields begins
with hypotheses about “how things work” and proceeds to devise experiments or collect
data to test clear predictions that are derived from the hypotheses. The point, of course, is
to devise tests so that the answers will distinguish among alternative hypotheses—different
explanations that cannot simultaneously be true.

You will also find that we do something that may strike you as a step backward: we
ask you to do a lot of pencil-and-paper work, plotting things as you think them through,
for example. This is actually deliberate. We have found (as we bet you have, too) that it’s
altogether too easy to “cookbook” a process such as a statistical test without actually under-
standing just what we are doing. Only if you really understand just what each equation,
each process does, will you be able to know when to use each in new situations, and how to
apply each to new data.

Just how you use this text will depend on the particular course(s) in which you are using
it, so you may not begin at the beginning, or go through the chapters in a linear fashion. In
fact, if this text has been assigned in one of your courses, you may find it useful (we hope
so0) in others. Do, please, browse through!

Section I focuses on the foundations of evolutionary ecology: natural selection, adapta-
tion, phylogeny, and life history analysis. In section II, we examine more traditional ecolog-
ical models, from the Lotka-Volterra competition and predator/prey models to MacArthur
and Wilson’s island biogeography model. In section III, we deal with the basic population
genetic parameters so frequently involved in making conservation decisions, but which are
rarely well understood. You will use these to design conservation programs, for example.
Section IV is a bit different. These chapters are organized around quantitative tools that
we need to examine a wide array of ecological systems. You may find that you return to
the statistics chapters for years, as you work to understand statistical language in scientific
papers or when you choose statistical tests for your own independent projects. Finally, sec-
tion V has synthetic exercises we hope will help you pull together a variety of skills you have
learned this semester in the service of making broad applied or theoretical arguments.
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Evolution and Pesticide Resistance: Examining Quantitative Trends Visually

Stanton Braude and John Gaskin

Introduction and Background

Evolution and natural selection have always been central concepts in the study of ecol-
ogy. When German biologist Ernst Haekel coined the term “ecology” in the 1860s, he en-
visioned studying the forces of nature that were selective forces in the Darwinian sense.
Darwin is popularly associated with the rise of evolutionary thought in biology; his major
contribution was explaining natural selection—and the concept is so rich that we still find
it fascinating to explore today.

Evolution is the term we use for changes in gene frequencies in populations or species
over time. It is not the same as natural selection; in fact, evolution results from mutation,
recombination, and drift, which generate variation but are not predictable, as well as from
natural selection. So what is natural selection? It is the mechanism that drives adaptive evo-
lution; the result of the simple fact that in any environment, depending on the conditions
of that environment, some variants—individuals with specified genetic traits—survive and
reproduce better than others. If we understand how any environment shapes traits, favor-
ing some and disfavoring other individuals who possess those traits, we can predict how
traits should match environmental conditions—and how populations will change over
time. We will see this throughout this book, especially in this chapter, and in chapters 2, 4,
5, 18, and 19.

Ecology is a very empirical science, so it is not surprising that much ecology of the early
twentieth century was descriptive. Ecologists today know that understanding natural selec-
tion and evolution is central to understanding important “why” hypotheses-—especially to-
day, when we humans change environments (and thus selective pressures) rapidly without
necessarily understanding our impacts.

“Why” hypotheses can be of several sorts (Tinbergen, 1963). Hypotheses that explain
why phenomena exist in nature are ultimate hypotheses, and those that explain how things
work are proximate hypotheses. Both are important, but it is especially crucial not to con-
fuse the two; it is confusing and wrong to offer a proximate answer to an ultimate question.
For example: why do birds fly south for the winter? “Because individuals in this species in
this region that migrate seasonally survive and reproduce better than those that do not” is
an ultimate answer (and you can see all sorts of testable predictions: whether hummingbirds
will migrate when seed-eating species will not; whether migration will be associated with
seasonal changes, etc.). “Because changing day length causes shifting hormone levels” is a



