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Preface

This text incorporates problems which have been used
for several years at seminars in courses in classical mechanics,
electrodynamics, quantum mechanics, and statistical phy-
sics and thermodynamics at the T. (. Shevchenko State
University in Kiev.

The text draws largely on the Course of Theoretical Physics
by L. D. Landau and E. M. Lifshitz, but also makes use
of other textbooks and handbooks recommended for the
university course in theoretical physics. Some of the pro-
blems have boen taken {rom published problem books iisted
at the end of this book, but many are original.

The student will be able to solve the problems if he has
a good knowledge of the fundamentals of theoretical physics,
which are briefly outlined in each section of this book. All
the problems use the International System of Units (SI).

The section on classical mechanics “was compiled by
A. M. Fedorchenko, on electrodynamics by V. 1. Sugakov,
on quantum mechanics by O. F. Tomasevich, and on sta-
tistical physics and thermodynamics by L. G. Grechko.

The Authors






Section 1.

Section 1I.

Section TII.

Section 1V,

Contents

'PREFACE

Classical Mechanics

Problems
Answers

Electrodynamics
Problems
Answers

Quantum Mechanics

Problems

Answers

Statistical Physics and Thermo-
dynamics

Problems

Answers

" APPENDICES

@ h e

. Basic formulas of vector analysis

Curvilinear coordinates

Differential operators in curvilinear
coordinates

. Mathematical supplement
. Legendre polynomials

Hermite polynomials

. The confluent hypergeometric function

BOOKS ON THE SUBJECT

141

50

61
163

78

230






SECTION I Classical Mechanies

The mechanics of systems with a finite number of degrees
of freedor:. In mechanics a particle is a material body of
mass m whose position in space is determined by three coor-
dinates.

The mechanical state of a system of n particles is charac-
terized by 3n coordinates and the 3n time derivatives of
these coordinates. The law involving changes in the state
of a mechanical system in time is defined by Newton’s
equations

mre, =F, i=12 ..., n (1-1)

where F; is the resultant of all the forces acting on the ith
particle: these include both internal forces (those originat-
ing in the particles of the system) and external forces (those
having a source outside the system and such as considered
given at any instant of time).

From the standpoint of mathematics equation (I-1) is
a system of 3n differential equations. For this reason the
basic problem of mechanics consists in finding a solution
for this system. We know from the theory of differential
aquations that to find an unamblguous solutmn of the

system we must indicate 672 values r?, r} at a definite instant
of time. In short, the mechanical state of a system at any
subsequent time is delermined by its initial mechanical

state ri, rj and by the¥forces acting on each particle 1n the
system.

Equations (I-1) are valid only in inertial frames of refe-
rence. An inertial frame of reference is one in which a par
ticle free from forces. i.e. an isolated particle, is in uniform
rectilinear motion. The first law of mechanics states that
such frames do exist.
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Forces acting between two particles are represented by
the formula

Fij
Fy=F (ro)

which reflects the following properties (Fig. 1):
(1) Fif _ _F]i!
(2) Fijllrig
(3) the magnitude of the force depends only on the dist-
ance between the two particles.
Classical mechanics rests on the three laws of Newton,
which were deduced from experiments and observatlons
of mechanical motion. All
z other assertions and laws
J o of mechanics, valid for spe-
4 "~ cific conditions and specific
models, are corollaries of
these three laws.
& In a noninertial frame
of reference (ome moving
< with acceleration) equations
(I-1) do not hold. But we
0 can preserve the form of .
Y equations (I-1) by introdu-
cing what are called forces
of inertia, whose - origin
Z . . cannot beexplained by the
Fig. 1 action of any specific parti-
cles. The forces are due to
the fact that] the frame of reference moves with 'accelera-
tion. The equation of motion for a particle in a noninertial
frame of reference is

)

W

=F + Fiper

where F,,,., = —m (i{.o + o X r] +lo X [0 x rll 4

+2 [0 X r]) is the force of inertia. Ro is the aoceleut/mn
.of the coordinate origin and @ is the angular velocity of
"this frame [see formulas (I-23) and (I-24)]. :

If we proceed from the second law of Newton- (I-1) and
the first property of the forces of interaction (see above),
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we can prove that the time derivative of the momentum
vector of a system of particles equals the sum of all the
external forces, Fext:

B Fext (I-2)

n .
where p = 2, m;r;; n is the number of particles in the
i=t

system.
If the system is closed, i.e. Fex equals zero, equation
(I-2) gives us the law of conservation of momentum:

p = constant
If we introduce the notion of the centre of mass of a
system
ni
Z‘i miry
— e
R= M
n
where M = ) m;, equation (I-2) takes the form
i=t

MR = Fey (1-3)
If the system is closed, it follows from equation (I-3) that

l.l =constant

Thus, the velocity of the centre of mass of a closed system
remains constant.

From equation (I-2) we can deduce the law of motion
of a body having variable mass, i.e. the law of jet propul-
sion. In the simplest case, if the main body (of mass m) is
losing or gaining mass, the law of jet propulsion (Meshcher-
skii's formula) takes the following form:

m%—: Fext-’r-ddﬂt'-“i—%":—g- u, (1-4)
where m, is the mass gained, u, is its velocity relative to
the main body, and m, and u, are the respective values
for the lost mass. C

Proceeding from the second law of Newton (I-1) and
the first two properties of the forces of interaction, we can
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prove that the time derivative of the angular momentum of
a system of particles equals the sum of the moments of all’
the external forces, N:

L i=SixFI=N . (15

where L= >} m; [r; X r,]
i=1

We must bear in mind that the radius vectors r; of the
particles in the system, which vectors enter into the defini-
tions of the angular momentum and the moment of an
external force, must issue irom the same point because
both depend on the choice of the coordinate origin.

Newton’s third law makes it possible to introduce the
concept of the potential of a force according to the formula

F;; = —grad; U (r;y) (I-6)

where the potential 77 (r;:' depends only on the distance
., between the interacting particles.

We can use the potential concept to prove the following
theorem on tlie basis of Newton's laws of motion: a change
in the mechanical energy of a system equals the work done
by external forces, i.e.

d(K++ E Uy)=d (1-7)
whare by definition X Z mgr! and dA= V (Fext)i dry.
- The law of conservation of energy holds for closed systems:
E=K+ % >} U;j=constant (I-8)

ij

If a part of the external forces has a potential V, we can
‘write formula (I-7) as

+ (K44 2 Uy+V)= ———+§_‘. (1)

where f; is a nonpotentxal force.

v 9
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Thus, a closed mechanical system always has seven
integrals of motion (seven functions of coordinates and
velocities), which remain constant upon motion. In the
general case the number of integrals of motion, which do
not depend on time, is 2k — 1 for a closed system, where &
is the number of degrees of freedom. The seven aforemen-
tioned integrals of motion play a special role in physics.
There are two main reasons for this. First, these integrals
of motion always exist regardless of the number of particles
in the system (for a single particle not all are independent).
Second, their existence can also be proved by the funda-
mental properties of space-time. For instance, the law of
conservation of momentum follows from the homogeneity
of space {all points in space have the same status); the law
of conservation of angular momentum follows from the
isotropy of space (all directions in space have the same
status): the law of conservation of energy follows from the
“homogeneity of time (all instants of time are equivalent).

The laws of motion have other forms than Newton’s.
Using the Lagrangian function (or, simply. the Lagrangian)
and the generalized coordinates, we can wrile equations
(I-1) in the following form:

d ax or . . '
N ) I-8
- (aQi ) 4 % .

where £ is the Lagrangian defined as £ = K — V (K is
the kinetic energy and V the potential energy of the system);
g; are the generalized coordinates, i.e. any coordinates that
satisfy the sole requirement that the Cartesian coordinates
(used in the system of Newtonian equations) are at any
instant of time uniquely expressed in terms of all the g¢’s:

rs:rs((lh <oy Qpy t)

<>f=i‘,(fs-3;;) ; :
s=1

where f, is a nonpotential force; the subscript &k is the num-
ber of degrees of freedom.
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If there are nonpotential forces in the system but the
generalized force corresponding to them can be written as

’ au d [aU
O~y (2
aq; dt 4,
where U is a function of the coordinates and velocities,
the Lagrange equations of the second kind take the form
d (0L £ }
a (5) =5 =0 (1-9)
where £ = K — V -+ U. For example, the Lorentz force
f=¢E +elr X Bl
defined by the equations

E= —grad ¢ ——%
B=curl A
is a nonpotential force. It can be written as
> . ou d oU
fa=eEx+e(yB. —2B)) = — 5—+3 (T)
'z

where
U=ep-+te (;'-A)

The Lagrange equations can be obtained from the varia-
tional principle, which states that if we introduce the func-
tional S, called action, according to the formula

7]

s={z¢ a aa, (1-10)

ty

the actual motion will be described by such functions
g; {{) as ensure a minimum of the functional S provided
that g, ({;) and g; (t,) are given.

The Lagrange equations are a system of % second-order
differential equations. We know from mathematics that
a system of k second-order differential equations can b
reduced to a system of 2k first-order differential equations.
In mechanics this is done by introducing the Hamiltoniar
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function (or, simply, the Hamiltonian), which is a function
of the generalized coordinates and momenta. The general-
ized momenta are defined by the formula
0L -
Pir=— (I-11)
9q;

Since the Lagrangian is a quadratic function of the
generalized velocities, formulas (I-11) give a (linear and
single-valued) relationship between the generalized velo-
cities and the generalized momenta.

The Hamiltonian is related to the Lagrangian in the
following way:

f . .
%(ph qi, t)=i§ Pm—z(‘h, qi, t) (1'12)

All the generalized velocities in the right-hand side of
(I-12) must be expressed in terms of the generalized momenta
according to (I-11).

The canonical equations of Hamilton are

b e

e =5 (1-13)
' © o
%=or (I-14)

Equations (I-13) and (I-14) are a system of 2k first-order
differential equations.

In some cases the interaction of bodies is of a peculiar
nature, the nature of a constraint. Constraints impose
certain restrictions on changes in position or velocity.
There is a fairly large class of s0-called holonomic constraints,
i.e. restrictions on position that can be expressed by algeb-
raic equations:

JJa@ o 2 =0, @ =1,2,...,5 (45

These are the equations of constraints.

To solve problems involving constraints we can use the
Lagrange‘équations of the second kind, if we introduce
"such generalized coordinates as satisfy the equations of
constraints automatically, or we can use the Lagrange ;
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equations of the first kind in the following form:
mr,=Fi+ X Aagrad; fo - (1-16)
a=1

which must be solved together with (I-15).

If we deline the product —m;r; as the force of inertia,
we can formulate the d’Alembert principle: a system moves
in such a way that on any virtual displacement the work
of all the forces, including forces of inertia, at any instant
of time equals zero, i.e.

:_" (Fy —m;r;) 8r; == 0 117
==

In the absence of constraints this principle gives us the
Newtonian equations (I-1). In the case of ideal constraints
we get the Lagrange equations of the first kind.

If a system of points (particles) rests while the constraints
act on it, the principle (I-17) takes the following form:

(Fl 6“’:) =

IIM=

This equation expresses the principle of virtual displace-
ments, which is the basis of statics. If we add to it the
equations of constraints, we can find the cendition for the
equilibrium of a system of particles.

Solution of equations (I-1) gives us all the information
about the mechanical state ‘of a system consisting of any
number of particles having an arbitrary law of interaction.
However, even the three-body problem (for instance, the
problem of three particles interacting via the Coulomb
force) poses great mathematical difficulties. For this reason
a variety of approximate methods or models that to one
dogree or another refloct the properties of actual system
are used to solve such problems. One is the model of a rigid
body. In mechanics a rigid body is a system of particles
whose distances from each other remain constant in time.
Suach a body acts as a single whole while it is in motion.

A ngld body has six degrees of freedom, which can be

- chosen in tho following way. Let us spectfy an arbitrary



