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Introduction

The analogy of the arithmetic of number fields with that of "function
fields” (i.e. function fields in one variable over a finite field of
constants) has been known for a long time. This analogy starts with
elementary things (structure of rings of integers, ramification theory,

product formula...), but reaches into such deep fields like for example

- (abelian and non-abelian) class field theory;

- Iwasawa theory;

- special values of L-functions (conjectures of Birch and Swinnerton-
Dyer and of Stark, relations with K-theory) ;

- diophantine geometry (conjecture of Taniyama-Weil) .

Many problems in number theory have parallels for function fields; con-
versely, it is often possible to transfer techniques and geometric con-
siderations from the theory of function fields to the case of number
fields.

Within the classical theory of modular forms on the complex upper half-
plane and the various generalizations of that theory, one can distinguish

between two different points of view:

a) Langlands' philosophy. Here one looks for general reciprocity laws
that relate l-adic Galois representations with representations of

adele-valued reductive groups.

b) The classical function theoretic approach. Here one is interested
in properties of single modular forms (Fourier coefficients, alge-

braicity, integrality, congruence properties, associated L-series...).

Needless to say that it is neither possible nor reasonable to strictly

separate these approaches.

While the main tools of a) come from representation theory and functional
analysis, in b) methods of function theory and algebraic geometry are
dominating.

As is well known, the representation theoretic approach in its adelic
formulation may be transferred to function fields (see e.g. [32,34,401).
In the important paper [11], Drinfeld has shown how to transfer b) as

well, i.e. how to obtain a modular theory in the function field case.
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Let now K be a function field over the finite field Fq with g
elements, "=" a fixed place of K of degree 4§ > 1 , A the ring of
functions in K with poles at most at « , K the completion at = ,

C = Rm the completion of an algebraic closure of K_

The group T = GL(2,A) operates by fractional linear transformations on
the "upper half-plane" ¢ = C - K_ , and the set of similarity classes

of two-dimensional free discrete A-lattices in C 1is naturally para-

metrized by I~Q . To each such lattice A , one associates an entire
function e, ¢ C » C which will play simultaneously the part of the
classical lattice functions ¢, , B of WeierstraB. By means of ey v

one constructs an algebraic object over C (later on called a Drinfeld
module over C of rank two) whose definition makes sense over arbitrary
A-schemes. Proceeding this way, one obtains on I'~¢ (and, more generally,
on TI'sqg for each congruence subgroup T' of T ) an algebraic struc-
ture as a modular scheme which, roughly speaking, has all the properties

of a classical modular curve. T''s\2 carries different structures. It is

a) a rigid analytic variety of dimension one over C ;

b) the set of C-valued points of an affine algebraic curve MF' which
is defined over a finite extension of K ;

c) "fibred over TI'~\T ", where T denotes the Bruhat-Tits tree of
PGL(Z,Kw) .

In considering c), Drinfeld gives (Thm.2 in [11]) an interpretation of

the first l-adic cohomology module of M., as a space of automorphic

forms in the sense of [40]. (One should note that this theory has been

generalized by introducing a level structure "at infinity" (see [12]),

but this aspect, leading far away from the classical case, will not be
pursued further in this work.)

In contrast to the situation over number fields, there exist r-dimen-
sional A-lattices in C for arbitrary natural numbers r (instead of
r = 2 only). Correspondingly, we have Drinfeld modules of rank r ,

denoted for short by "r-D-modules".

Let us first consider the case r = 1 . A 1-D-module has a similar
meaning for the arithmetic of K as the multiplicative group scheme
Gm for the field @ of rationals. Drinfeld shows [11, Thm.1]: The

1
modular scheme M for 1-D-modules with level structure is Spec(B)



Vil

where B 1is the ring of integers in the maximal abelian extension of
K which is totally split at the place = . This represents a simultaneous
analogue for both the theorem of Kronecker-Weber and the main theorem

of complex multiplication.

For an arbitrary r , a r-D-module behaves, roughly speaking, like an
"irreducible abelian variety of dimension r/2 over € ". For example,
the A-module of a-division points (where a is a non-constant element

of A ) is free of rank r over A/a . By deformation arguments, Drinfeld

obtains the nonsingularity of the modular scheme for the module problem
"r-D-modules + a sufficiently rigid structure of level".

The critical step in Drinfeld's proof of his Thm.2 is to construct a
"compactification" ﬁz of the modular scheme M2 for 2-D-modules.
Although this is done by ad-hoc glueing a certain one-dimensional scheme
to M2 (and not by generalizing the module problem as in [8]), the
resulting ﬁz still has a weak modular property with respect to degene-
rate 2-D-modules. One can give a different construction for ﬁz x C
which has the advantage of being applicable to the higher ranks r 2z 2 .
For this "Satake-type" compactification, as well as for generalizations

of the expansions around cusps given in VI , see [73].
Let us now restrict to the case r = 2

Until recently, not very much was known about the geometry and arithmetic

of the curves M (r'* «r = GL(2,A) a congruence subgroup), with the

.
exception of the case A =ZFq[T] , the polynomial ringzin one indeter-
minate T . In this latter case, the modular scheme M7 (1) x C for

2-D-modules without structure of level has the curve MF = I'NQ  as its
only irreducible component. This curve has genus 0, and is identified

with C by means of a j-invariant
1 INQ —> C .

One can calculate the genus of the higher modular curves by the Hurwitz
formula. Some other properties of higher modular curves in this special
case may be found in [20,21].

Let now again A be arbitrary. One reason for the interest in the curves
MF' concerns diophantine geometry (by a theorem of Grothendieck and

Deligne, the analogue of Taniyama-Weil's conjecture on the parametrization
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of elliptic curves is true in this context); another one comes from the
relations with the cohomology of TI'' and with vector bundles over the
nonsingular model of K [61]. In view of the work of Ribet, Wiles,
Kubert-Lang, and Mazur-Wiles, one should also study the groups of divisor
classes of degree zero supported by the cusps of such curves. These

groups are finite by (VI 5.12).

Of course, the main tools in the investigation of these curves are modular
forms, i.e. C-valued functions on § with the usual transformation
behavior and certain holomorphy conditions. The basic examples of modular
forms are the Eisenstein series introduced by D.Goss [27], and certain
coefficient functions constructed from 2-D-modules varying with =z in

Q (see V.3).

(Note: "Modular forms" are certain C-valued functions, whereas the term
"automorphic form" means some characteristic-0-valued mapping, i.e.

both have an a priori completely different meaning.)

In this context, we have different "analytic" theories:

a) the theory of the complex zeta function and L-series of K . This
is well known and presents no analytic difficulties, these functions
being rational in S = q—s . Nevertheless, the special values of
partial zeta functions at the negative integers 1 - r (r z 1) are
of arithmetic interest;

b) the theory of automorphic forms;

c) the C-valued theory of the functions eA , the modular forms, and

related functions.

One link between a) and c) is given by Deligne-Tate's theorem on Stark's
conjecture in the function field case [66, Ch.V] resp. by (IV 4.10, 4.13)
and (VI 3.9, 4.11). It depends on the distribution property of division
points of Drinfeld modules.

(After having a Satake type compactification of the higher rank modular
schemes at our disposal, we can generalize this relation: In complete
analogy with (IV 4.10) and (VI 4.11), the product expansions of modular
forms of rank r 2 3 around cuspidal divisors correspond to the values
of partial zeta functions at 1 - r [73]. It is not clear, where one
should look for a corresponding result in the number field case. Is it

reasonable to expect analogous properties for Siegel modular forms?)
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Further, modular forms may be considered as multi-differentials on
modular curves, whereas automorphic forms occur in the l-adic cohomology
of such curves, thereby connecting b) and c).

In this work, modular forms of the Drinfeld type are investigated, and
consequences for modular curves are derived. Therefore, representation
theory plays no role here. Beyond that, I refrained from discussing
Drinfeld's Thm.2, though it certainly gave the motivation for introducing
the general theory. For better orientation of the reader, I tried,

wherever possible, to indicate the analogies with the number field case.

The emphasis is in the analytic theory of modular forms above C

- description of C-valued points of modular curves;

- behavior of modular forms at cusps: product expansion , properties of

the coefficients, zero orders at cusps;
- behavior at elliptic points;
- determination of the C-algebra of modular forms....;

- arithmetic consequences.

The relations with algebraic modular forms in the sense of [27] are

carried out only as far as possible without going beyond this framework.

One important prerequisite is Hayes' normalization of Drinfeld modules
of rank 1. With its help, we may define the generalized cyclotomic poly-
nomials occuring in the product expansions.
As a result, I am able to compute the genera of the modular curves which
were not known before (except in the special case mentioned). In parti-
cular, an answer is given to the question for the first Betti number of
T (or of groups commensurable with I ) which has been left open in
[61].

The state of problem differs from that in the classical case. For the
group SL(2,Z) , one has the well known fundamental domain which leads
to the value 0 for the genus of the modular curve "without level struc-
ture", and by means of Hurwitz's formula, it is easy to compute the genera
of arbitrary modular curves. For A =T [T] , one may follow the same
lines, this case being treated in [17]. However, for a general A , the
equations defining Drinfeld modules become so complicated that, already
in the next simple case (genus of K = 0 and § = 2 ), it seems hope-

less to try to compute the genera in this naive way. Using the Bruhat-



Tits tree, it is possible to construct a fundamental domain for T in
some very restricted cases [61], but this does not help much. Instead,
we use the description of the elliptic points and of the parameters at

cusps to get a relation between modular forms for T and multi-diffe-
rentials on M_ - This allows the computation of g(ﬁr) , if the divisor

of one single modular form is known. Finally, the divisors of certain

modular forms are obtained from the above mentioned product expansions.

The organization of the work is as follows:

Since Drinfeld modules do not (as yet) belong to the basic tools of the
number theorist, the needed definitions, concepts and properties are
collected in Chapter I. It contains no proofs; these may be found in
[10,11] and, partially, in [36]. The deepest facts cited are the non-

singularityv of the modular schemes (1.10), the description (4.1) of M‘I

and the compactification of M2 (4.2) .

In Chapter II, one finds properties of lattices often needed throughout
the work (§ 1), relations between the coefficients of power series asso-
ciated with lattices, and the links with lattice sums (§2), as well as
additive polynomials related to morphisms of lattices (§ 3). A simple,

but very important fact is (2.10): lattices A resp. Drinfeld modules
a?ﬁ)completely determined by the values of finitely many Eisenstein series
E (r) .

Still some preparations are done in Chapter III. In the first paragraph,
well known facts on the zeta functions of K and A are collected, and
partial zeta functions for elements of Pic A are defined and compared
with complex valued lattice sums. We obtain a distribution on the set of
pairs (a,n) , where a lies in K and n 1is a fractional A-ideal in

K . This distribution takes values in the field €(S) of rational
functions (s = q-s) . Its evaluation at places s = 1-r describes a
C-valued distribution which, later on, will turn out to be the distri-
bution constructed from division points of Drinfeld modules of rank r.

An explicit presentation of the rational function Za,n by means of
generalized WeierstraB gaps is given in § 2. In the third section, certain
finite sums occurring later are interpreted as values of Za,n at S =1
resp. 4 , i.e. as zeta values at s = 0 resp. s = -1 . There is a uniform
upper bound for the numbers Zé,n(1) which assures the convergence of

our product expansions in VI.

In Chapter IV, we deal with Drinfeld modules of rank 1 over C . This

will be necessary for the rank 2 theory, but is also interesting for its
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own sake. First, we handle the most simple case A = IE‘q[T] . Here, all
1-D-modules are isomorphic with the module studied by Carlitz [4,5,6].

Its division points generate the maximal abelian extension of K which

is completely split at « . The analogy with the Kroneckex-Weber theorem
is obvious, so this example will serve as a motivation for what follows.
For arbitrary A , the isomorphism classes of 1-D-modules are parametrized
by Pic A, For generalizing the above example, we need "canonical" 1-D-
modules, i.e. for each isomorphism class a distinguished module. These
modules are not given by Drinfeld's theory. If &6 =1 , it is easy to

see:

For each element of Pic A , there exists a 1-D-module (uniquely
determined up to trivial transformations) with coefficients in
the ring of integers of the ring class field H of A and leading

coefficients in Fa s

Under this assumption, the wanted generalization causes no problems [37].
This is no longer true for § > 1 . In [39], Hayes shows how to proceed
in the general case to generate class fields of K by division points
of D-modules. First, one has to choose a sign function sgn , i.e. a
co-section of the embedding Hy S—> K* ,where w = q6—1 . Then one
considers D-modules ¢ with the following property: The function A - C
which associates to each a € A the leading coefficient of the additive
polynomial ¢a agrees up to Galois twist with sgn|A . In each isomor-
phism class, there exist such ¢ . They are uniquely determined up to
twists with w-th roots of unity, and have coefficients in a finite
abelian extension ﬁ of K which contains H . In § 2, we give, as far
as needed, and without proofs, a summary of Hayes' theory of "sgn-norma-
lization".

Now we are able to define the g-invariants of rank 1 lattices up to

w-th roots of unity. In sections 3 and 4, these invariants are computed.

We obtain product formulae (4.10, 4.13) analogous with the classical

v =2 TT © - 1faa?y™ |

a z 1

Perhaps the most striking consequence is the relation of such formulae
with the values of derivatives of partial zeta functions at s = 0
Proceeding, one can construct units in abelian extensions of K with
absolute values (at the different infinite places) prescribed by Stark's
conjectures. This gives in fact a constructive proof of Deligne-Tate's

theorem on Stark's conjecture in our situation (see [39]). Another result
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is the determination of the Galois twist by which the "leading coeffi-
cient function" differs from sgn (4.11). For later computations in the
rank 2 case, we have to fix our f£-invariants. By means of (4.11), we
have control on the effect of the choices made, and we are_ able to

describe the isogenies of different D-modules.

In V, we come to the central point. First, Drinfeld's upper half-plane
is described in more detail (building mapping, analytic structure). In
§ 2, we show how the analytic space T~ is compactified by adjoining
a finite number of cusps. In the next section, modular forms are intro-
duced, their behavior at cusps is discussed and some examples are given
for the construction of forms by means of 2-D-modules. Elliptic points
of the groups GL(Y) are investigated in section 4 (existence, number,
structure of stabilizers). This relates modular forms and differentials.
The resulting formula (5.5) expresses the genus of a modular curve in
terms of the divisor of a modular form. The chapter ends with an appen-
dix not further used in this work. Up to some details, which may be

found in [11], a proof of g(ﬁ = b(r') is given. With the results

)
Fl
of V and VI, one obtains the first Betti number b(r') for all arith-

metic subgroups TI' < I' (not only for those which are p'-torsion free

[611).

Chapter VI is devoted to the computation of expansions of modular forms
around cusps. After some preliminaries, in § 3, the expansions of the
division functions e, (some sort of Fricke functions) around the cusp

o are determined. A major ingredient is the rank 1 theory developed

in IV. The result is (3.9) which presents e, as an infinite product
with positive radius of convergence. The pole order of e, can be ex-
pressed, in view of (III 3.11), by zeta values. The fourth section uses
these results for the computation of similar product expansions for the
"discriminant functions" An associated with positive divisors n . For
principal divisors n = (f) , this product takes the particularly simple

form (4.12), which is, on the one hand, a translation of

i1 12 24
5= (21i) ' “q TT (1-gH " ;
nz 1
on the other hand, it is a two-dimensional analogue of the products for
the ¢-invariants in IV. The determination of the root-of-unity factor
in (4.12) is somewhat delicate, because some of the preceding calcu-

lations yield results only up to (g-1)-st roots of unity.

The transfer to other cusps is easy. This is carried out in § 5, where
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we also draw some conclusions:

- final determination of the genus for the modular curves associated

to maximal arithmetic subgroups; F,

- existence of a distinguished cusp form of weight qz(S -1 ;

- finiteness of the group of cuspidial divisor classes of degree 0.

In VII, the results of VI are transferred to higher modular curves, and
rings of modular forms are computed. First, the function field of the
modular scheme Mz(n) is determined, as well as the field of definition
of the cusps and of the elliptic points. After the preceding considera-
tions, it suffices to apply some well known arguments (see for example
[62]). For being able to compute the dimensions of the spaces of modular
forms, it is (up to a small number of exceptions) enough to know the
behavior of the Eisenstein series of weight g-1 at the elliptic points.
In § 3, these series are shown to have simple zerces at elliptic points.
So we are able to give, for the present, dim Mk(F) for maximal arith-
metic groups. Nevertheless, the arithmetic meaning of the modular forms
occurring is not at all clear already in the simple examples discussed

in § 4. It would be desirable to have a description by generators and
relations, where the generating modular forms should have an elementary
interpretation by means of Drinfeld modules. In § 5, the genera of
modular curves for full congruence subgroups T (n) are computed, and

a formula is given for the Hecke congruence subgroup Fo(n) , in the
case n = jp 1is a prime ideal. (If one works patiently enough, it is
possible and not too difficult, to write down a generally valid formula.

The corresponding Betti number depends only on the decomposition type

of the divisor n and, of course, the zeta function of K .) Finally,
the dimensions of Mk(T') are given for some congruence subgroups T'
of T = GL(2,A) . For k =1 , we get only a lower bound for the dimen-
sion.

The final chapter VIII contains some additional material and remarks on
relations with other questions. In § 1, the Hecke operators Tp are
introduced. A priori, Tp is a correspondence on the set of 2-lattices

in C . One obtains
a) a correspondence on the modular scheme ﬁz(n) 7

b) an operator on characteristic-zero valued automorphic forms;
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c) an operator on modular forms.

The Eisenstein series are easily seen to be eigenvectors for the Tp
( g = principal ideal), whilst the effect of Hecke for instance on

the discriminant functions An is totally unknown. In the second section,
the connection with the classification of elliptic curves is discussed.
Finally, some questions are raised which have or have not a counterpart

in the number field case.

For ease of handling, we have included an index and a list of symbols.

References inside the text are made in the form

(x.y) number x.y 1in the present chapter;
(V x.y) number x.y in Chapter V;
[xy] item xy in the Bibliography.

The end of a proof is labelled by o . The symbols N, Z, @0, R, € denote

the usual number sets.

#(S) is the cardinality of a set S,X - Y the complement of Y in X ,
f|Y the restriction of the map £ to Y .

For a ring R and r in R, R*, (r), R/r denote the multiplicative
group, the principal ideal generated by r , the factor ring respectively.
The group G acting on X, G~NX resp. G/X 1is the orbit space, XG the
fixed point set and G the stabilizer of x € X . For g,h in G ,

hg = ghg_1 . Further, éal(L:K) is the Galois group of the field exten-
sion L:K, K an algebraic closure of K and Hn the group of n-th

roots of unity.
"RS" 1is the abbreviation for "system of representatives",
"oBdA" means "without loss of generality",

and "N >> 0" says "the number N 1is sufficiently large".

The present text is a slightly complemented english translation of the
authors "Habilitationsschrift" at the Faculty of Sciences, Bonn 1985.
He wants to thank the staff of the "Max-Planck-Institut fiir Mathematik"
in Bonn for support. In particular, he is grateful to Miss M.Grau who

did an excellent job in preparing the manuscript.
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0. Notations

Throughout the text , @ denotes a power of the prime number p , and

Fq is the finite field with g elements. Let further

K be a function field in one variable over the field of constants
Fq , of genus g ;

® a place of K fixed once for all, of degree § 2 1 ;

A the ring of functions f in K with poles at most at « ;

K the ~»-adic completion of K , with ring of integers O_ and

residue field &k .

We choose a uniformizing parameter = at = , and we determine the
degree function deg and the absolute value on K by

deg ™ = -§ , |x| = qdeg X

In particular, deg 0 = -» , Divisors on K which are prime to « are
written multiplicatively and identified with fractional ideals of A .
They are denoted by a,bh...m,n . Correspondingly, §,g... are places

resp. prime ideals of A .

For a divisor a , let |[a]| = qdeg 2 and a, = {ac€ aldeg a

- N}

A

We use "a > 1" or "a < A" co designate positive divisors a . Further,

we need

A = Af
spondingly, we let

x K_ the ring of adeles of K , with finite part Af ; corre-

I = Ipx K* the group of ideles of K and

E = Ef x E_ the group of unit ideles.

For a > 1, let E(a) = Ef(a) x E_ = {e € Ele = 1 mod a} . Finally,



A = <lim A/n 1is the ring of integral finite adeles. As occasion demands,
n>1

we consider K as a subring of A,Af , or K .

)

I. Drinfeld Modules

1. Algebraic Theory [10,11,36]

(1.1) Let L be a field of characteristic p and EndL(Ga) the ring
of those endomorphisms of the additive group scheme Ga which are
defined over L . Then EndL(Ga) is a non-commutative polynomial ring

over L , generated by the Frobenius endomorphism

T : L —> L
p
x b—> xP .
We write EndL(Ga) = L{Tp}  the curly braces indicating the commutation

rule rpx = xp1p for x € L . By Tp | — xP ’ EndL(Ga) is isomorphic
with the ring of additive polynomials over L , i.e. the ring of poly-

nomials of the form
i
I ixP o,

the multiplication being defined by substitution. We do not distinguish
mn i n
T

i
P or "xP7" , depending

between both points of view, and we write
on the context.

The structure of EndL(Ga) has first been studied by Ore [53];
for example , EndL(Ga) is right euclidean, and each left ideal is prin-

cipal.

(1.2) We now assume that L has a structure y : A - L as an A-algebra.

By definition, the characteristic of L 1is the prime ideal « , if y

is injective, and Ker y otherwise. An injective ring homomorphism

¢ : A —> EndL(Ga)
atb—> N
defines by

|la]| = degree of the additive polynomial corresponding to N



an absolute value || || on A , provided there exists an a with

[la]| > 1 . Under this assumption, the extension of || || to K is
equivalent with | | . Hence, there exists a real number r > 0 such
that for all a in K , we have |[lal| = |a|® . In fact, r is even a
natural number, and ¢ takes values in L{T} < EndL(Ga) . Here, 1 = T;
is the element corresponding to x4d , where g = p~ . Each element £
of L{t} can be written uniquely in the form £ = § liTi with left
coefficients li = li(f) . We put D(f) = lo(f) = "constant term" of

f and 1(f) = ldeg £ = "leading coefficient" of f , where deg f |is

the degree of £ in 1

1.3. Definition. A Drinfeld module over L of rank r € N 1is an

injective ring homomorphism

6 : A —> EndL(Ga)
a+—> d’ar

such that for all a € A , we have

(i) deg ¢a =r * deg a (deg ¢a = degree of ¢a in 1 ), and

(1) Dle,) = v(a)

We abbreviate the notation "Drinfeld module" resp. "Drinfeld module of
rank r" by "D-module" resp. "r-D-module".

By ¢ , the additive group scheme over L becomes a scheme of
A-modules. Let ¢ and ¥ be D-modules over L . A morphism

us: ¢ » ¥ 1is a L-endomorphism u of Ga with the property

for all a in A . If u is an automorphism of Ga , i.e. a constant
different from 0, u is called an isomorphism. Non-trivial morphisms u
are already in L{rt} < L{Tp} ; they may exist only between Drinfeld

modules of the same rank and are therefore called isogenies.

1.4. Example. If K 1is the field Fq(T) of rational functions and
A the ring Fq[T] of polynomials in an indeterminate T , a r-D-module

¢ 1is given by



