ENGINEERING GRAPHICS Second Edition

William P. Spence

5744 E.2

William P. Spence

SECOND EDITION

ENGINEERING GRAPHICS

Prentice Hall, Englewood Cliffs, New Jersey 07632

Library of Congress Cataloging-in-Publication Data

Spence, William Perkins, 1925-Engineering graphics.

Includes index.

1. Engineering graphics. I. Title. T353.S573 1988 604.2 87-1276 ISBN 0-13-277865-3

> This book is dedicated to Bettye Margaret Spence in acknowledgment of her support, encouragement, and productive assistance.

Editorial/Production Supervision: Mary Jo Stanley Interior Design: Maureen Eide Manufacturing Buyer: Lorraine Fumoso Cover Photo: Pete Turner, The Image Bank Cover Design: Suzanne Behnke

© 1988, 1984 by Prentice Hall A Division of Simon & Schuster Englewood Cliffs, New Jersey 07632

All rights reserved. No part of this book may be reproduced, in any form or by any means, without permission in writing from the publisher.

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

ISBN 0-13-277865-3 025

Prentice-Hall International (UK) Limited, London Prentice-Hall of Australia Pty. Limited, Sydney Prentice-Hall Canada Inc., Toronto Prentice-Hall Hispanoamericana, S.A., Mexico Prentice-Hall of India Private Limited, New Delhi Prentice-Hall of Japan, Inc., Tokyo Simon & Schuster Asia Pte. Ltd., Singapore Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

.

PREFACE

The second edition of *Engineering Graphics* contains charts and illustrations updated to show the latest standards of the American National Standards Institute. Some changes are minor; others present major revisions. Most significant are those in dimensioning and tolerancing. The new standard issued by the American Welding Society, *Standard Symbols For Welding, Brazing and Nondestructive Examination*, is also included.

Considerable attention has been given to updating the study problems at the end of each chapter. They are now revised both to broaden the experience and to be more challenging.

As is common in revising first editions, a few corrections were necessary in some of the charts and illustrations. Every change suggested by those using the text has been considered, and alterations have been made in each illustration deemed to have an error or omission.

This text has been designed to provide basic and advanced instruction in engineering graphics. The basic content was developed from the results of an analysis of course outlines of introductory graphics courses being offered in accredited engineering schools. Additional material was included to reflect the rapidly changing techniques and procedures in engineering graphics and design.

The text is of sufficient breadth and depth to

meet the needs of instructors of both one- and twosemester courses. Additional materials are included for those who wish to go beyond this level.

The coverage of engineering graphics is handled in such a way that a student with no prior experience can successfully comprehend the material and progress through the subject with a minimum of instruction. The basic principles have been explained as clearly as possible and have been carefully illustrated in order to increase student interest and encourage self-study. The instructor is therefore freed from teaching every minute detail and can devote teaching efforts to the major concepts in engineering graphics. A second color has been used to emphasize important parts of each illustration. Steps of procedure have been placed on the same page as the illustrations whenever possible. This makes it much easier for the student to follow the instructions. An extensive appendix provides additional technical data needed for design problems.

Some engineering graphics instructors emphasize the techniques of drafting and technical information; this type of material is extensively covered. Other instructors prefer to reduce emphasis on these and introduce the basic concepts of engineering design; *Engineering Graphics* permits this approach to be used while including extensive technical data. One chapter is devoted to the engineering design

process, and references to it have been woven into various other chapters. A second chapter is devoted to student design projects and how they might be handled in an academic environment. Therefore, there is sufficient design information to offer a basic experience.

An extensive array of problems are available at the ends of chapters. They cover the areas discussed in the chapter and give the instructor a wide choice of types of problems as well as various levels of difficulty.

Metrics are thoroughly covered and in some cases expanded. The text includes a detailed explanation of the metric system, including symbols, pronunciation, and applications to engineering graphics. Metric standards are used when available.

The text begins by introducing the use of graphics in various engineering fields. The concepts of engineering design are then covered, followed by a study of the graphic language. The discussion of tools used in the production and reproduction of graphics are followed by the techniques of geometric construction. A considerable effort has been made to present the principles of orthographic projection in an easily understood form. Since engineering ideas often start with sketches, techniques for producing engineering sketches are presented.

The key to successful engineering design is an understanding of the principles and applications of descriptive geometry. Two chapters have been devoted to this important area. Related to these chapters are chapters on auxiliary views and revolutions.

Other means of presenting engineering ideas and designs, such as pictorial drawings and the use of sectional views, are given emphasis.

Considerable space is devoted to dimensioning, tolerancing, and surface finish. Careful attention has been given to standards and inch and metric requirements. Geometric tolerancing material includes the use of the various symbols, feature control principles, position, symmetry, form, runout cylindricity, straightness, flatness, profile angularity, parallelism tolerances, and the control of surface quality.

Two chapters are devoted to mechanical and permanent fasteners, including the details of inch and metric threads and fasteners.

Production drawings are the end product of the design effort. An entire chapter has been devoted to this topic and includes many problems for the students to solve.

Surface development and intersections occur on every product and are covered by two chapters. Since analysis is a function of the engineer, a chapter on vector analysis is included. Design involves the application of kinematic principles that are covered in a complete chapter that includes linkages, cams, and gears.

The presentation and graphic analysis of data are necessary parts of the engineering design process. Techniques for presenting data and making engineering analyses of experimental data and physical relationships are explained. Charts of various types and the use of graphical algebra and calculus are included.

Since computer-aided design and drafting (CADD) is assuming an increasingly important role in American industry, a detailed chapter on this subject is included. Chapter 24 begins with a discussion of the computer and how it functions. Computer languages are presented and examples of programs are shown. The key to any CADD operation is software, and this is described along with basic arithmetic operations. The CADD section is introduced with a general explanation followed by a detailed discussion of input and display devices. Plotters are discussed in a special section and considerable space is devoted to basic programming with a variety of programs shown. Included with these are illustrations showing how an object, as a square, is drawn.

Computer output microfilm is discussed and the equipment related to it is shown. Finally, a discussion of computer-aided manufacturing (CAM) explains how numerical control is used in manufacturing, and how to prepare drawings for CAM.

No publication of this size and depth can be completed without the help of many individuals and companies. These are acknowledged in the credits, and my thanks is again extended to each. Special acknowledgment is due to Dr. A. O. Brown, Dr. Joe Porter, and Professor Gene Chambers for their assistance with several of the chapters. And finally thanks is due to the reviewers who, while anonymous, read and commented on the chapters as they were developed.

WILLIAM P. SPENCE

CONTENTS

Preface xiii

1

Graphics in Engineering 1

WHAT ARE THE MAJOR AREAS OF WORK? 1

2

The Engineering Design Process 9

DESIGN 9
PRECEPTS OF DESIGN 12
THE ENGINEERING DESIGNER 12
RESEARCH AND DEVELOPMENT 12
ENGINEERING DESIGN 13
THE ENGINEERING DESIGN PROCESS 14
PROBLEMS 30

3

Graphics Language, Measurements, and Standards 32

LETTERING 32 LINE SYMBOLS 38 ABBREVIATIONS 40
SYMBOLS 41
BORDERS AND TITLE BLOCKS 41
DRAFTING AND INDUSTRIAL STANDARDS 42
MEASUREMENTS 42
METRIC DRAFTING STANDARDS 46
PRONUNCIATION 48
METRIC CONVERSION 49
PROBLEMS 49

4

Drafting Instruments and Techniques 50

DRAFTING TABLES 50
THE T-SQUARE 51
THE PARALLEL STRAIGHTEDGE 52
DRAFTING MACHINES 52
TRIANGLES 53
SCALES 53
TEMPLATES 56
INSTRUMENT SETS 57
IRREGULAR CURVES 59
DRAWING PENCILS 60
INKING INSTRUMENTS 62

ERASERS 64
CLEANLINESS 65
DRAWING LINES 65
DRAFTING PAPERS, FILM, AND GRIDS 69
REPRODUCTION OF DRAWINGS 70
FILING DRAWINGS 77
FOLDING DRAWING REPRODUCTIONS 78
PROBLEMS 78

5

Geometric Constructions 82

POINTS, LINES, AND PLANES 83
ANGLES 83
POLYGONS 84
CIRCLES AND ARCS 85
GEOMETRIC SOLIDS 86
BASIC GEOMETRIC CONSTRUCTIONS 88
TANGENTS 93
CONIC SECTIONS 98
OTHER GEOMETRIC CONSTRUCTIONS 102
PROBLEMS 106

6

The Principles of Orthographic Projection 109

POINTS 109
LINES 109
PLANES 110
ORTHOGRAPHIC PROJECTION 110
PROJECTING VIEWS 115
SELECTING THE VIEWS 118
LAYING OUT A DRAWING 121
PROPER USE OF LINES 122
PLANE AND CURVED SURFACES 124
INTERSECTIONS OF PLANE AND CURVED SURFACES 125
FILLETS AND ROUNDS 128
CONVENTIONAL BREAKS 129
KNURLING 130
PROBLEMS 130

7

Technical Sketching 141

TOOLS 142 SKETCHING TECHNIQUES 143 SKETCHING BASIC GEOMETRIC SHAPES 145
PROPORTION 147
ENLARGING AND REDUCING SKETCHES 150
ORTHOGRAPHIC SKETCHES 150
PICTORIAL SKETCHES 150
PERSPECTIVE SKETCHES 153
SHADING SKETCHES 153
TEMPLATES 154
PROBLEMS 156

8

Descriptive Geometry: Spatial Relationships 159

PRINCIPAL PLANES OF PROJECTION 159 PROJECTION OF A POINT 161 LINES 161 LOCATING A POINT ON A LINE 162 INTERSECTING AND NONINTERSECTING LINES 163 VISIBILITY: CROSSING LINES 164 VISIBILITY: LINES AND PLANES 164 PIERCING POINT: A LINE AND A PLANE 164 ESTABLISHING PLANES 164 TYPES OF PLANES 165 LOCATING A LINE ON A PLANE 167 LOCATING A POINT ON A PLANE 168 CONSTRUCTING PRINCIPAL LINES ON A PLANE 168 PARALLELISM: LINES 168 PARALLELISM: PLANES 169 PARALLELISM: A LINE AND A PLANE 170 PERPENDICULARITY: LINES 172 PERPENDICULARITY: A LINE TO A PLANE 172 PERPENDICULARITY: A PLANE TO AN OBLIQUE LINE 174 PERPENDICULARITY: A PLANE TO A PLANE 174 PROBLEMS 176

9

Auxiliary Views 182

AUXILIARY VIEWS 183
IDENTIFICATION OF PLANES 185
PRIMARY AUXILIARY VIEWS 185
SECONDARY AND SUCCESSIVE AUXILIARY
VIEWS 189
SECONDARY AUXILIARY VIEWS 190
SUCCESSIVE AUXILIARY VIEWS 192
PROBLEMS 193

10

Descriptive Geometry: Applications 198

MOVING A POINT TO A PRIMARY AUXILIARY PLANE 198 TRUE LENGTH OF OBLIQUE LINES 199 POINT VIEW OF AN INCLINED LINE 199 ANGLE BETWEEN A LINE AND THE PRINCIPAL PLANES 201 SLOPE 202 EDGE VIEW OF AN OBLIQUE PLANE 205 ANGLE BETWEEN TWO PLANES WHEN THE INTERSECTION IS PARALLEL WITH A PRINCIPAL PLANE 205 PIERCING POINT OF A LINE ON A PLANE USING A PRIMARY **AUXILIARY VIEW 205** PIERCING POINT OF A LINE ON A PLANE USING PROJECTION 205 LINE PERPENDICULAR TO A PLANE 205 INTERSECTION OF TWO PLANES USING A PRIMARY AUXILIARY VIEW 205 INTERSECTION OF TWO PLANES USING CUTTING PLANES AND PROJECTION 206 BEARING AND AZIMUTH 211 STRIKE AND DIP 211 SOLUTIONS REQUIRING SECONDARY AND SUCCESSIVE AUXILIARY VIEWS 214 SUCCESSIVE AUXILIARY APPLICATIONS 227 PROBLEMS 227

11

Revolution 232

FUNDAMENTALS OF REVOLUTION 232 APPLICATIONS OF REVOLUTION 235 PROBLEMS 248

12

Pictorial Presentation of Engineering Designs 253

TYPES OF PICTORIAL PROJECTIONS 254
AXONOMETRIC PROJECTION 255
OBLIQUE PROJECTION 266
PERSPECTIVE PROJECTION 269
PROBLEMS 285

13

Sectional Views on Engineering Drawings 297

CUTTING PLANE LINES 297 SECTION LINING 298 CONVENTIONAL BREAKS 301 INTERSECTIONS IN SECTIONING 302 LINES IN SECTIONAL VIEWS 302 PARTS NOT SECTIONED 302 FULL SECTIONS 302 HALF SECTIONS 302 WEBS, SPOKES, AND RIBS IN SECTION 305 ALIGNED SECTIONS 307 OFFSET SECTIONS 308 REVOLVED SECTIONS 308 REMOVED SECTIONS 308 BROKEN-OUT SECTIONS 309 **AUXILIARY SECTIONS 309** PHANTOM SECTIONS 309 ASSEMBLIES IN SECTION 309 PROBLEMS 312

14

Dimensioning 319

BASIC FACTORS IN DIMENSIONING 320 LINES, SYMBOLS, AND ABBREVIATIONS 320 SELECTION OF DIMENSIONS 327 PLACEMENT OF DIMENSIONS 335 DIMENSIONING STANDARD FEATURES 341 PROBLEMS 352

15

Tolerancing and Surface Quality 355

TERMINOLOGY 356
TOLERANCE EXPRESSION 358
TOLERANCING METHODS 358
SELECTIVE ASSEMBLY 359
TOLERANCE SELECTION 359
APPLICATION OF TOLERANCES 359
ANSI PREFERRED LIMITS AND FITS FOR
CYLINDRICAL PARTS 360
DESCRIPTION OF FITS 361
DIMENSIONING CYLINDRICAL PARTS USING
ANSI FITS 362
ISO SYSTEM OF LIMITS AND FITS 362
TOLERANCE ACCUMULATION 363
TOLERANCING BETWEEN CENTERS 365

TOLERANCE OF CONCENTRICITY 366
TOLERANCING ANGULAR DIMENSIONS 366
TOLERANCING CONICAL TAPERS 366
TOLERANCING FLAT TAPERS 369
TOLERANCING RADII 369
GEOMETRIC TOLERANCING 369
TOLERANCES OF LOCATION 376
TOLERANCES OF FORM 379
FORM TOLERANCES FOR RELATED
FEATURES 383
RUNOUT TOLERANCE 385
CONTROL OF SURFACE QUALITY 387

16

Mechanical Fasteners: Bolts, Keys, Nuts, Screws, Springs, and Washers 392

SCREW THREADS 393
THREAD TERMINOLOGY 393
SCREW THREAD FORMS 394
THE THREAD SERIES 395
THREAD CLASSES 396
SPECIFYING THREADS 397
DRAWING THREADS 400
THREADED FASTENERS 401
KEYS AND KEYSEATS 406
PINS 407
WASHERS 408
SPRINGS 408
SCREWS 412
PROBLEMS 413

17

Permanent Fasteners: Welding and Riveting 418

FUSION WELDING 418
RESISTANCE WELDING 420
SPECIAL WELDING PROCESSES 422
WELDED JOINTS 423
RIVETS 432
KNURLING 433
PROBLEMS 435

18

Preparation of Production Drawings 439

DESIGN DRAWINGS 439 PRODUCTION DRAWING FEATURES 440 PRODUCTION DRAWINGS 442
DETAIL DRAWINGS 442
PATTERN DETAIL DRAWINGS 443
MACHINING DETAIL DRAWINGS 444
CASTING DETAIL DRAWINGS 445
FORGING DETAIL DRAWINGS 445
STAMPING DETAIL DRAWINGS 448
ASSEMBLY DRAWINGS 454
PROBLEMS 464

19

Developments 479

GEOMETRIC SURFACES 479
GEOMETRIC SOLIDS 480
DEVELOPMENTS 480
TYPES OF DEVELOPMENTS 481
PARALLEL LINE DEVELOPMENT 481
RADIAL LINE DEVELOPMENT 487
TRIANGULATION 491
PROBLEMS 502

20

Intersections 507

INTERSECTION OF AN INCLINED PLANE AND A RIGHT PRISM 508 INTERSECTION OF AN OBLIQUE PLANE AND A RIGHT PRISM 509 INTERSECTION OF AN OBLIQUE PLANE AND AN OBLIQUE PRISM 509 INTERSECTION OF AN INCLINED PLANE AND A RIGHT CYLINDER 511 INTERSECTION OF AN OBLIQUE PLANE AND A RIGHT CYLINDER 511 INTERSECTION OF AN OBLIQUE PLANE AND AN OBLIQUE CYLINDER 511 INTERSECTION OF AN INCLINED PLANE AND A RIGHT CONE 513 INTERSECTION OF AN OBLIQUE AND A RIGHT CONE 513 CONIC SECTIONS 513 INTERSECTION OF AN INCLINED PLANE AND A SPHERE 516 INTERSECTION OF TWO PRISMS AT RIGHT ANGLES TO EACH OTHER 517 INTERSECTION OF TWO PRISMS OBLIQUE TO EACH OTHER 518 INTERSECTION OF TWO CYLINDERS AT RIGHT ANGLES TO EACH OTHER 519 INTERSECTION OF TWO CYLINDERS OBLIQUE TO EACH OTHER 520

INTERSECTION OF A CYLINDER AND A PRISM 520 INTERSECTION OF A CONE AND A PRISM 520 INTERSECTION OF A CONE AND A CYLINDER 522 INTERSECTION OF A PYRAMID AND A PRISM 522 INTERSECTION OF A SPHERE AND A PRISM 522 INTERSECTION OF A SPHERE AND A CYLINDER 524 PROBLEMS 525

Vector Analysis 531

TERMINOLOGY 532 UNITS USED ON VECTOR DIAGRAMS 534 DRAFTING SUGGESTIONS 534 CONCURRENT, COPLANAR FORCE SYSTEMS 534 CONCURRENT, NONCOPLANAR FORCE SYSTEMS 537 EQUILIBRIUM 538 BOW'S NOTATION 540 STRESS ANALYSIS OF TRUSSES 540 DETERMINING TENSION AND COMPREHENSION 542 A SIMPLE TRUSS ANALYSIS 543 GRAPHICAL STRESS ANALYSIS OF A FINK TRUSS USING A MAXWELL STRESS DIAGRAM 543 CONCURRENT, NONCOPLANAR VECTORS 545 NONCONCURRENT, COPLANAR VECTORS 547 NONCONCURRENT SYSTEMS: COUPLES 547 PARALLEL, NONCONCURRENT FORCES 548 PROBLEMS 551

Graphical Kinematics 556

LINKAGES 557 MOTION OF LINKS 557 DISPLACEMENT, PATH, VELOCITY AND ACCELERATION 558 VECTOR NOTATION 559 TRANSLATION MOTION 559 ROTATIONAL MOTION 559 TYPICAL APPLICATIONS 560 CAMS 562 CAM FOLLOWERS 564 DISPLACEMENT DIAGRAMS 564 UNIFORM MOTION 565

HARMONIC MOTION 565 PARABOLIC MOTION 565 DWELL 567 COMBINATION OF MOTIONS 567 DRAWING A DISC CAM WITH A KNIFE-EDGE FOLLOWER ON CENTER 567 DRAWING A DISC CAM WITH AN OFFSET ROLLER FOLLOWER 568 DRAWING A DISC CAM WITH A FLAT-FACE FOLLOWER 571 GEARS 571 GEAR TOOTH FORM 571 GEAR NOMENCLATURE 571 DIMENSIONING GEAR DRAWINGS 575 GEAR DRAWING PRACTICES 575 SPUR AND HELICAL GEAR DRAWINGS 575 RACK DRAWINGS 577 BEVEL GEAR DRAWINGS 579 WORM AND WORM GEAR DRAWINGS 582 PROBLEMS 586

Graphical Presentation and Analysis 590

THE COMPUTER 591 DRAFTING AIDS 592 BAR CHARTS 593 PIE CHARTS 596 PICTORIAL CHARTS 596 FLOW CHARTS 597 ORGANIZATION CHARTS 597 LINEAR CHARTS 597 STEPPED-LINE CHART 601 LINEAR CHARTS USING RECTANGULAR GRIDS 601 TRILINEAR CHARTS 603 POLAR CHARTS 605 NOMOGRAPHS 606 LOGARITHMIC SCALES 607 SEMILOGARITHMIC CHARTS 607 LOGARITHMIC CHARTS 610 EMPIRICAL EQUATIONS 610 PLOTTING TECHNIQUES 611 METHODS FOR DETERMINING THE EQUATION 612 THE LINEAR EQUATION y = mx + b 612 THE EQUATION $y = bm^x$ 614 THE EQUATION $y = bx^m$ 614 GRAPHICAL ALGEBRA 615 GRAPHICAL CALCULUS 616 GRAPHICAL DIFFERENTIATION 616 GRAPHICAL INTEGRATION 620 PROBLEMS 621

Computers in Engineering and Graphics 632

COMPUTERS 633
COMPUTER-AIDED DESIGN DRAFTING
(CADD) 637
BASIC PROGRAMMING 652
COMPUTER OUTPUT MICROFILM 658
COMPUTER-AIDED MANUFACTURING
(CAM) 662
GLOSSARY 667

25

Engineering Design Problems 670

WORKING ALONE 673
WORKING ON A TEAM 673
ASSIGNING A PROBLEM 674
PRELIMINARY IDEAS 674
REFINING THE DESIGN 674
ANALYSIS OF THE DESIGN 674
FINALIZING THE DESIGN 675
THE ENGINEERING DRAWINGS 676
THE FINAL REPORT 676
INDIVIDUAL DESIGN PROBLEMS 676
COMPREHENSIVE PROBLEMS 681

APPENDICES 689

Appendix A: Abbreviations 690

Appendix B: Inch Millimeter Equivalency Tables 695 Inch-millimeter Equivalents

COMMON FRACTIONAL INCHES TO
MILLIMETERS 696
DECIMAL INCHES TO MILLIMETERS 696
MILLIMETERS TO DECIMAL INCHES 697
DECIMAL INCH DESIGN TOLERANCES TO
MILLIMETERS 697

Appendix C: Metric Conversion Factors 698

CONVERSION FACTORS-CURRENT PRACTICES
TO METRIC 698
CONVERSION FACTORS-METRIC (SI) TO
CURRENT PRACTICES 699
CURRENT MEASURES-METRIC
EQUIVALENTS 700

Appendix D: Inch and Metric Drill Sizes 701

NUMBER AND LETTER SIZE INCH DRILLS WITH METRIC EQUIVALENTS 701 METRIC TWIST DRILL SIZES WITH DECIMAL INCH EQUIVALENTS 702

Appendix E: Metric Threads and Fasteners 703

METRIC SCREW THREAD SERIES 703 METRIC FINISHED HEXAGON HEAD BOLTS AND CAP SCREWS 705 METRIC UNFINISHED HEXAGON HEAD BOLTS 706 METRIC HEX NUTS 707 METRIC HEX SLOTTED NUTS 707 METRIC 12-SPLINE FLANGE BOLTS 708 METRIC HEXAGON HEAD AND HEXAGON WASHER HEAD MACHINE SCREWS 709 METRIC SLOTTED FLAT AND OVAL HEAD MACHINE SCREWS 709 METRIC SLOTTED AND RECESSED PAN HEAD MACHINE SCREWS 710 RECOMMENDED CLEARANCE HOLES FOR STUDS, BOLTS, AND SCREWS 710 METRIC TAPPING SCREWS TYPE D, F, AND METRIC TAPPING SCREWS TYPE B, AB, BF, AND BT 711 METRIC STUDS 711 METRIC COUNTERSUNK EXTERNAL TOOTH LOCK WASHERS 712 METRIC EXTERNAL TOOTH LOCK WASHERS 712 METRIC INTERNAL TOOTH LOCK WASHERS 713 METRIC FLAT WASHERS, LOCKWASHERS, AND SPRING LOCKWASHERS 713 METRIC COIL SPRING PINS 714

PREFERRED LENGTHS OF METRIC KEYS 714 METRIC SQUARE AND RECTANGULAR PARALLEL, TAPER, AND GIB HEAD KEYS 715

Appendix F: Inch Threads and Fasteners 716

UNIFIED INCH SCREW THREADS 716 INCH HEXAGON, HEAVY HEXAGON, AND SQUARE BOLTS 717 INCH HEXAGON NUTS AND JAM NUTS 717 INCH STANDARD REGULAR AND HEAVY SQUARE NUTS 717 INCH ACME AND STUB ACME THREADS 718 DIAMETER-PITCH COMBINATIONS FOR 7°/45° BUTTRESS THREADS 718 INCH HEXAGON HEAD CAP SCREWS 719 INCH HEXAGON AND SPLINE SOCKET HEAD CAP SCREWS 719 INCH SLOTTED HEAD MACHINE SCREWS 720 INCH SLOTTED HEAD CAP SCREWS 721 INCH SQUARE HEAD SET SCREWS 721 INCH SLOTTED HEADLESS SET SCREWS 722 INCH STUDS 722 INCH TYPE A PLAIN WASHERS 723 INCH HELICAL SPRING LOCK WASHERS 724 DIMENTIONS OF EXTERNAL TOOTH LOCK WASHERS 725 DIMENSIONS OF INTERNAL TOOTH LOCK WASHERS 726 DIMENSIONS OF HEAVY INTERNAL TOOTH LOCK WASHERS 726 DIMENSIONS OF COUNTERSUNK EXTERNAL TOOTH LOCK WASHERS 727 INCH STRAIGHT PINS 727 INCH HARDENED AND GROUND DOWEL **PINS** 728 SUGGESTED SHAFT DIAMETERS TO USE WITH TAPER PINS 728 INCH TAPER PINS 729 INCH CLEVIS PINS 730 INCH COTTER PINS 730 INCH LARGE RIVETS 731 INCH STANDARD SMALL RIVETS 731 INCH PARALLEL, PLAIN TAPER, AND GIB HEAD KEY DIMENSIONS AND TOLERANCES 732

INCH KEY SIZES FOR SHAFT DIAMETERS FOR PARALLEL, PLAIN TAPER, AND GIB HEAD KEYS 732
INCH WOODRUFF KEYS AND KEYSEATS 733
INCH WOODRUFF KEY SIZES FOR SHAFT DIAMETERS 733
INCH SLOTTED HEAD WOOD SCREWS 734
INCH TWO RECESSED FLAT HEAD WOOD SCREWS 734

Appendix G: Preferred Metric Limits and Fits 735

Appendix H: American Standard Limits and Fits 743

Appendix I: Bend Allowance for NonFerrous Metal 750

Appendix J: Logarithms of Numbers 751

Appendix K: Values of Trigonometric Functions 753

Appendix L: Standard Welding Symbols 758

Appendix M: Metal Sheet and Wire Standard 760

Appendix N: American National Standards 762

INDEX 765

Graphics in Engineering

Many young people have an early interest in a career in engineering. Often they are not certain what an engineer does, but they want to be one. Young people do not generally have the opportunity to get into the plants and laboratories of industry and see what actually takes place. Even if their parents are engineers, they may not be certain what tasks they perform on the job. A study of the early chapters of this text plus a well-rounded experience in an engineering graphics course will give a brief look into some of the problems and opportunities of engineering.

WHAT ARE THE MAJOR AREAS OF WORK?

The work of an engineer covers a wide range of activities. Some work in areas—such as manufacturing management—where they draw upon a wide variety of experiences and knowledge. Others work in areas—such as nuclear research—where they draw upon a narrow but intensive area of specialization. Following are the broad areas in which engineers work and illustrations of how engineering graphics is used.

Engineers in Research

Engineers involved in research are attempting to apply known principles to solve existing problems or to discover new knowledge. This is usually a practical type of research that can involve many things, such as the use of materials or the development of a new process. This type of work is often slow to show results. While scientific knowledge is the basis for research, many attempts at solutions are by trial and error. Research engineers learn from failure as well as success. They add to the knowledge that can be used by others (Fig. 1–1).

Most of the time, research engineers work on research teams. The team can have a variety of people besides engineers. If the project involves chemical and biological factors, chemists and biologists may be on the team. Technologists and technicians also are a part of the team. They do much of the practical work, such as building prototypes or running routine tests.

Possible solutions and test procedures and equipment require the use of engineering drawings.

The research engineer must be able to read engineering drawings and produce engineering sketches. Engineering drafters work from these sketches to produce the needed finished drawings (Fig. 1–2).

Research engineers must be thoroughly prepared in mathematics and the sciences. They must have a strong curiosity and a desire to question, try, reason, and speculate. Usually, advanced degrees are necessary for employment.

Engineers in Development

The area of development involves the actual use of discoveries. Development follows the research activity and sometimes occurs along with it. Because the two activities overlap, many companies combine them into a single research and development department.

Much of the work in engineering development involves improving and redesigning existing products. Engineers study other solutions. They find out why the product is not totally satisfactory and propose a new design. This could involve actual field testing of the product after the laboratory model has proven satisfactory. The final key to success is to have the solution perform satisfactorily under the actual conditions for which it was designed (Fig. 1–3).

Engineers in development must keep up to date on new discoveries and materials. This requires that they have a regular time for reading professional journals and attend seminars and other educational programs.

Development involves a great deal of drafting, including both sketches and finished engineering drawings. From these are developed the models or prototypes that are used in testing and manufacturing planning, which usually results in revisions, drawing changes, and more testing. If the project is successful, final drawings are used for production.

FIGURE 1-1 Engineering research involves the use of computer graphics for engineering testing and data analysis. (Courtesy of Tektronix, Inc.)

FIGURE 1-2 Research engineers must be able to produce engineering sketches and drawings.

Engineers in Design

The design engineer works on both mass-produced and single-item products. For example, a typical mass-produced product is the radio. Its various components provide a variety of possible design solutions. These include AM and FM reception, a variety of electronic circuits and components, the inclusion of cassette recording and playing capabilities, shortwave bands, a clock, and other possibilities. The components are housed in a variety of packages, from a basic rectangle to a square to a sphere. They can be designed for use in a home, car, or boat or as portable units. The design engineer is involved with designing a salable product that will function in the described environment and will meet the needs of the purchaser at a price people will pay.

An example of a single-item design project would be a multistory office building or a satellite. These are designed for a specific situation and are not likely to be built again (Fig. 1-4).

The design engineer works with many materials and must be thoroughly prepared in the basic

FIGURE 1-3 Development engineers evaluate designs using laboratory and field tests. (Courtesy of Cessna Aircraft Company.)

FIGURE 1-4 Design engineers working with a satellite. (Courtesy of National Aeronautics and Space Administration.)

principles of engineering. Often, the engineer will call on specialists in other disciplines for advice and assistance. The design engineer must know the thousands of stock parts available and have access to catalogs listing them. These are used because they are cheaper, and final cost is a primary aspect of the design solution. A product made with stock 6-mm bolts will be cheaper than if special bolts of an unusual size have to be made especially for that product. The engineer in construction will certainly consider the use of stock 4×8 -ft sheets of plywood rather than requiring special sizes such as 4 ft 6 in. \times 8 ft 6 in. be manufactured.

As a product is developed, several acceptable solutions might be reached. In making decisions, the engineer will consider the cost of manufacture and the ease of acquiring materials. Marketing staff are often consulted to see which solution might be best for sales promotion. In the end the design engineer must consider all factors and select the final solution.

FIGURE 1–5 Engineers in design use drawings to record ideas and check possible solutions. (Courtesy of Bendix.)

An important part of the design process is the production of engineering drawings (Fig. 1–5). Possible solutions can be first tested by making appropriate drawings. The location and sizing of parts can be checked with a drawing. Various solutions can be analyzed and revised before expensive models or prototypes are built. Changes developing from the construction of models or prototypes are recorded on drawings (Fig. 1–6). The engineer must be able to read and produce design drawings and supervise the engineering drafting staff.

The design engineer must have a good general engineering background. Interest in the practical and a concern for cost are essential. Since design engineers often direct the work of others, preparation in management is helpful.

Engineers in Manufacturing

The engineer in manufacturing is closely involved with the production of the product. This includes aspects such as fabrication and assembly of parts, establishing the work flow in the plant, quality control, safety, equipment selection, standards of workmanship, and production schedules (Fig. 1–7). A knowledge of how materials of all kinds are pro-