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Financial Derivatives

This book offers a succinct account of the principles of financial deriva-
tives pricing. The first chapter provides readers with an intuitive expo-
sition of basic random calculus. Concepts such as volatility and time,
random walks, geometric Brownian motion, and Itd’s lemma are dis-
cussed heuristically. The second chapter develops generic pricing tech-
niques for assets and derivatives, determining the notion of a stochastic
discount factor or pricing kernel, and then uses this concept to price
conventional and exotic derivatives. The third chapter applies the pric-
ing concepts to the special case of interest rate markets, namely, bonds
and swaps, and discusses factor models and term-structure-consistent
models. The fourth chapter deals with a variety of mathematical topics
that underlie derivatives pricing and portfolio allocation decisions, such
as mean-reverting processes and jump processes, and discusses related
tools of stochastic calculus, such as Kolmogorov equations, martingales
techniques, stochastic control, and partial differential equations.
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Introduction

This book is about risk and derivative securities. In our opinion, no
one has described the issue more eloquently than Jorge Luis Borges,
an intrepid Argentinian writer. He tells a fictional story of a lottery in
ancient Babylonia. The lottery is peculiar because it is compulsory. All
subjects are required to play and to accept the outcome. If they lose,
they stand to lose their wealth, their lives, or their loved ones. If they
win, they will get mountains of gold, the spouse of their choice, and
other wonderful goodies.

It is easy to see how this story is a metaphor of our lives. We are
shaped daily by doses of randomness. This is where the providen-
tial financial engineer intervenes. The engineer’s thoughts are along
the following lines: to confront all this randomness, one needs artifi-
cial randomness of opposite sign, called derivative securities. And the
engineer calls the ratio of these two random quantities a hedge ratio.

Financial engineering is about combining the Tinker Toys of capital
markets and financial institutions to create custom risk-return profiles
for economic agents. An important element of the financial engineering
process is the valuation of the Tinker Toys; this is the central ingredient
this book provides.

We have written this book with a view to the following two
objectives:

¢ to introduce readers with a modicum of mathematical background
to the valuation of derivatives



2 Introduction

* to give them the tools and intuition to expand upon these results
when necessary

By and large, textbooks on derivatives fall into two categories: the
first is targeted toward MBA students and advanced undergraduates,
and the second aims at finance or mathematics PhD students. The
former tend to score high on breadth of coverage but do not go in
depth into any specific area of derivatives. The latter tend to be highly
rigorous and therefore limit the audience. While this book is closer to
the second category, it strives to simplify the mathematical presentation
and make it accessible to a wider audience. Concepts such as measure,
functional spaces, and Lebesgue integrals are avoided altogether in the
interest of all those who have a good knowledge of mathematics but
yet have not ventured into advanced mathematics.

The target audience includes advanced undergraduates in math-
ematics, economics, and finance; graduate students in quantitative fi-
nance master’s programs as well as PhD students in the aforementioned
disciplines; and practitioners afflicted with an interest in derivatives
pricing and mathematical curiosity.

The book assumes elementary knowledge of finance at the level
of the Brealey and Myers corporate finance textbook. Notions such
as discounting, net present value, spot and forward rates, and basic
option pricing in a binomial model should be familiar to the reader.
However, very little knowledge of economics is assumed, as we develop
the required utility theory from first principles.

The level of mathematical preparation required to get through this
book successfully comprises knowledge of differential and integral cal-
culus, probability, and statistics. In calculus, readers need to know ba-
sic differentiation and integration rules and Taylor series expansions,
and should have some familiarity with differential equations. Readers
should have had the standard year-long sequence in probability and
statistics. This includes conventional, discrete, and continuous proba-
bility distributions and related notions, such as their moment generat-
ing functions and characteristic functions.

The outline runs as follows:

1. Chapter 1 provides readers with the mathematical background
to understand the valuation concepts developed in Chapters 2
and 3. It provides an intuitive exposition of basic random
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calculus. Concepts such as volatility and time, random walks, ge-
ometric Brownian motion, and Itd’s lemma are exposed heuris-
tically and given, where possible, an intuitive interpretation. This
chapter also offers a few appetizers that we call paradoxes of fi-
nance: these paradoxes explain why forward exchange rates are
biased predictors of future rates; why stock investing looks like
a free lunch; and why success in portfolio management might
have more to do with luck than with skill.

. Chapter 2 develops generic pricing techniques for assets and
derivatives. The chapter starts from basic concepts of utility
theory and builds on these concepts to derive the notion of
a stochastic discount factor, or pricing kernel. Pricing kernels
are then used as the basis for the derivation of all subsequent
pricing results, including the Black-Scholes/Merton model. We
also show how pricing kernels relate to the hedging, or dynamic
replication, approach that is the origin of all modern valuation
principles. The chapter concludes with several applications to
equity derivatives to demonstrate the power of the tools that
are developed.

. Chapter 3 specializes the pricing concepts of Chapter 3 to in-
terest rate markets; namely bonds, swaps, and other interest
rate derivatives. It starts with elementary concepts such as yield-
to-maturity, zero-coupon rates, and forward rates; then moves
on to naive measures of interest rate risk such as duration and
convexity and their underlying assumptions. An overview of in-
terest rate derivatives precedes pricing models for interest rate
instruments. These models fall into two conventional families:
factor models, to which the notion of price of risk is central, and
term-structure-consistent models, which are partial equilibrium
models of derivatives pricing. The chapter ends with an inter-
pretation of interest rates as options.

. Chapter 4 is an expansion of the mathematical results in
Chapter 1. It deals with a variety of mathematical topics that
underlie derivatives pricing and portfolio allocation decisions. It
describes in some detail random processes such as random walks,
arithmetic and geometric Brownian motion, mean-reverting
processes and jump processes. This chapter also includes an ex-
position of the rules of It6 calculus and contrasts it with the
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competing Stratonovitch calculus. Related tools of stochastic
_calculus such as Kolmogorov equations and martingales are also
discussed. The last two sections elaborate on techniques widely
used to solve portfolio choice and option pricing problems:
dynamic programming and partial differential equations.

We think that one virtue of the book is that the chapters are
largely independent. Chapter 1 is essential to the understanding of
the continuous-time sections in Chapters 2 and 3. Chapter 4 may be
read independently, though previous chapters illuminate the concepts
developed in each chapter much more completely.

Why Chapter 4 is at the end and not the beginning of this book is
an almost aesthetic undertaking: Some finance experts think of math-
ematics as a way to learn finance. Our point of view is different. We
feel that the joy of learning is in the process and not in the outcome.
We also feel that finance can be a great way to learn mathematics.



