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Preface

This book is written for the engineer who wishes to solve a noise control
problem. The material is graded in technical level, starting with the
fundamentals of sound in air, scales that are used to measure sound,
and the measurement and analysis of noise and vibration; and followed
by methods of controlling noise and vibration and the so-called criteria
for noise control. The text is a successor to Noise Reduction (McGraw-
Hill, 1960), tl:ough only three of its eighteen chapters have the same
authors as in the 1960 book.

Much of the material included in the present volume was developed
for Special Summer Programs on Noise and Vibration Reduction offered
at the Massachusetts Institute of Technology through the years since
1953. Other material was taken from the general acoustical literature
and from the research and consultation practice of the staff of Bolt
Beranek and Newman Inc.

I wish to express my warm appreciation to my co-authors both outside .
and inside Bolt Beranek and Newman Inc. for their unstinting effort
toward producing authoritative' and broadly applicable chapters.
Parenthetically, those authors whose affiliations are not designated on
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the-chapters are members of the BBN staff. I wish especially to thank
Tony F. W. Embleton who assisted me at two recent Special Summer
Programs at M.I.T., and Robert W. Young who made detailed com-
ments on four chapters. I am indebted to O. L. Angevine, Jr., Peter K.
Baade, James H. Botsford, Robert A. Heath, Ralph Huntley, Alan H.
Marsh, Helmut A. Mueller, T. D. Northwood, Douglas W. Robinson,
Hale J. Sabine, S. S. Stevens, Dean G. Thomas, Clayton H. Allen, Erich
K. Bender, Warren E. Blazier, James J. Coles, Charles W. Dietrich, Ira
Dyer, Parker W. Hirtle, Robert M. Hoover, George W. Kamperman,
David H. Kaye, Edward M. Kerwin, Jr., Ronald L. McKay, Laymon N.
Miller, Robert B. Newman, Denis U. Noiseux, and Bill G. Watters for
their help and criticism during the preparation of the book.

I am particularly grateful to Elizabeth M. Donnelly, whose organiza-
tional talents lightened many tasks and to Sandra N. Hale who pre-
pared the typescript with skill and care. I wish also to thank Suzanne
Wadoski and Clare Twardzik for preparing the many illustrations.

Leo L. Beranek



Introduction

Virtually every problem in noise and vibration control involves a sys-
tem composed of three basic elements: a source, a path, and a receiver.
Before a solution to a complex noise problem can be. designed, the
dominant source of the noise must be known, the characteristics of the
significant transmission paths must be understood, and a criterion for
the level of noise considered permissible or desirable in this s1tuatwn
must be available.

These thrge elements of the noise problem do not necessarily actinde-
pendently. The sound power that is radiated depends on the environ-
ment surrounding the source. For example, a machine may radiate
more sound if it is placed in the corner of a room rather than in some
other location. A speaker raises or lowers his voice depending on the
size and reverberation characteristics of the room in which he is talking.
The path of the sound may be affetted by the acoustical details of the
source and the receiver, as well as by their heights above the ground. A
listener’s judgement of noisiness may depend on whether he is working
with his hands, concentrating on a creative task, conversing, listening
to music, or trying to sleep.

His attitude toward noise may be influenced not only by the nature of
the path and the spectrum of the noise, but also by economic or psy-
chological factors such as a bonus for working hours spent in noise, or
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X introduction

the fear of audiological or financial consequences. All these considera-
tions emphasize that each noise problem involves a complex system of
interacting elements.

Noise “control” does not always involve reduction of the unwanted
sound. In the modern open-plan office building, a background “noise”
with carefully controlled tonal quality and loudness may be introduced
into the space through concealed sources in order to “mask” or cover
unwanted noises made by the occupants and their typewriters and calcu-
lators, the elevators, and the street traffic. Thus noisiness, the annoy-
ance caused by noise, can sometimes be reduced by adding more “noise.”

Solving a noise control problem usually involves a tradeoff. The cost
of protecting equally the hearing of every worker in a manufacturing
plant may be so prohibitive that a higher risk of damage would have to
be accepted for some of the personnel. The solution might consist of a
combination of partial noise-reduction measures, the institution of an
audiological testing program to select those with sensitive ears who
should be transferred to other jobs, and a plan to compensate the re-
maining few who might suffer some hearing loss. '

Noise Control at the Source. A noise source is created by the motion
of a solid, liquid, or gas. A solid source may be quieted if its mode of
operation is changed so that it moves less, for example, by reducing the
forces that cause motions and by strengthening, damping, or isolating
all or parts of the structure. Liquid and gaseous sources may be quieted
by eliminating turbulence, reducing flow velocity, smoothing flow, and
attenuating 'pressure pulsations. Control at the source by planning
while the product is in the design stage is often the most effective and
least expensive of control measures. _

Noise Control in the Path. Most corrective measures for an existing
noise control problem utilize changes in the path. Consequently, a
large part of the present book is devoted to that subject. Involved are
control of sound propagation out of doors, in rooms, in structures, and
in ducts. Solutions include barriers, porous materials, plugs, caulking,
bracing, mufflers, enclosures, vibration damping, and vibration isola-
tion.

The Demands of the Receiver. The level to which a noise should be
reduced to be acceptable to human receivers often requires judgment
on the part of the engineer and the owner of a building or machine. A
criterion for noise control for listeners depends on whether the goal is
to preserve hearing, to create space where conversation is easy, or to
provide comfort in the home, at work, or in transportation vehicles.
The first two goals for noise control are fairly accurately quantifiable,
but comfort may depend on mental attitudes, which may be elusive or
which may change on short notice.



Contents

WU bd WN -

10.
11

.

12

Preface vii
Introduction ix

. The Behavior of Sound Waves P. A. Franken

. Levels, Decibels, and Spectra L. L. Beranek

. Sound and Vibration Transducers E. 4. Starr

. Field Measurements: Equipment and Techniques R. D. Bruce

. Data Analysis D. W. Steele

. The Measurement of Power Levels and Directivity Patterns of Noise

Sources L. L. Beranek

. Sound Propagation Outdoors U~ Kurze

L. L. Beranek

. Sound in Small Spaces L. L. Beranek
. Sound in Large Rooms 7. F. W. Embleton

Acoustical Properties of Porous Materials D. A. Bies

Interaction of Sound Waves with Solid Structures /. L. Ver
C. I. Holmer

Mufflers 7. F. W. Embleton

25
45
74
100

138
164

194
219
245
270

362



vi Conicnts

13. Isolation of Vibrations D. Myster 406
R. Plunkett
14. Damping of Panels E. E. Ungar 434
15. Wrappings, Enclosures, and Duct Lining 7. J. Schultz 476
16. Noise of Gas Flows H. H. Heller 512
P. A. Franken
17. Damage-risk Criteria for Hearing 4. Glong 537
18. Criteria for Noise and Vibration in Communities, Buildings, and
Vehicles L. L. Beranek 554
Appendix A General References L. L. Beranek 605
Appendix B English System of Units L. L. Beranck 607
Appendix C Conversion Factors L. L. Beranck 609
Appendix D Decibe! Conversion Tables L. L. Beranck 613

Index 623



Chapter One

The Behavior
of Sound Waves

PETER A. FRANKEN

1.1 The Nature of Sound

Sound is a disturbance that propagates through an elastic material at a
speed characteristic of that medium. This brief sentence, when con-
verted into quantitative terms, contains a large amount of scientific in-
formation that constitutes the basis of the science of acoustics. When
applying the science of sound to the practical task of noise and vibration
control, to which this book is restricted, we do not need to reveal a de-
tailed physical understanding of sound waves. Rather we shall draw di-
rectly on the results of fundamental studies as necessary, and refer the
interested reader to basic literature for further details. )

‘The simple definition of sound above suggests that sound can be sensed
by the measurement of some physical quantity in the medium that is dis-
turbed from its equilibrium value. The physical quantity that is gen-
erally of interest is sound pressure, the incremental variation in pressure
above and below atmospheric pressure, which, in turn, is normally about
14.7 1bfin.? or about 1.013 X 10° N/m? in metric units at sea level.*

* See Appendix C for conversion factors.



2 Noise and Vibration Control

Sound pressures are extremely small. For normal speech, they average
about 0.1 N/m? (1 dyn/cm?) above and below atmospheric pressure at a
distance of a meter from a talker.

In order for there to be wave motion in a material medium, the medium
must exhibit two properties, inertia and elasticity. Inertia is the prop-
erty that permits one element of the medium to transfer momentum to
adjacent elements. It is related to the density of the medium, that is to
say, the mass of an element. Elasticity is the property that produces a
force on a displaced element, tending to return it to its equilibrium posi-
tion. In this chapter, we will be concerned only with sound waves in the
air. In later chapters, we shall study sound in structural elements such
as beams, plates, and walls. .

How do we know that air has the properties of inertia (mass) and elas-
ticity? Atmospheric pressure results from the weight of an atmospheric
column of air. This is an indirect indication that air has weight and
therefore mass. We could get a more direct indication by weighing a box

. containing air and then evacuating the box and weighing it again. We
would find that it would take about 13.6 f of air at sea level (0.751
m Hg) and a temperature of 22°C (71,6°F) to weigh 1 Ib. This cor-
responds to a density of about 1.18 kg/m® in metric units.

We can show by a number of means that air has elasticity. For ex-
ample, if we take a basketball in its uninflated state and drop it on the
floor, it thuds to a halt without rebounding. ' Inflating the ball with air
imparts a resiliency to it which causes it to rebound when dropped. Even
more simply, suppose while preparing to inflate the ball we had held a
finger over the air outlet of our hand pump so that no air could come
out. Pushing on the handle to compress the trapped air in the pump
produces the same sensation as pushing on aspring. By knowing the
physical dimensions of the pump and the amount of ferce we apply to
the handle, we can determine the “spring constant”. or compressibility
of the gas, thus giving us the elasticity of the air quantitatively.

1.2 Basic Pr’opertie_s of Waves

We can gain insight into the nature of wave motion by looking at a very
simple case, that of a single pulse of sound traveling down a tube, which
constrains it from spreading. Figure 1.1a is a “spatial snapshot” of such
apulse. This figure presents the value.of the disturbance, in this case, of
the pressure deviation from atmospheric pressure, plotted as a function
of the spatial coordinate x, at a time ¢ = 0. The waveshape is a rectangu-
lar pulse of value A between the spatial coordinates x =a and x = b.
Elsewhere the value is zero. Let us assume that this wave pulse propa-
gates in the positive x direction at a speed of ¢ units per second. What
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will the spatial snapshot look like after d seconds have elapsed? The
wavefront at coordinate b in Fig. 1.1a will move cd units in the positive
x direction and will then be located at b+ cd. Similarly, the wavetail at
coordinate a in Fig. 1.1a will move to a + ¢d in d seconds. The snapshot
for d seconds is shown in Fig. 1.15. Clearly, the pulse has the same
width as before. Also, since there is no spreading of the wave, nor any
energy loss in the medium, it must have the same value 4 as before.

It is not difficult to find an analytic form that expresses this idea of
propagation without distortion in the positive x direction. The discus-
sion in the previous paragraph shows that this form must permit the
value at x = a + cd, t = d, to be exactly equal to the value atx=a,t= 0.
Any function F that combines the spatial and temporal variables in the
form F(x — ct) satisfies this requirement. For the values x=a, t=0,
such a function would have th= value F(a), while for the valuesx =a +
¢d, t = d, the function takes the form F(a + ¢d — cd) = F(a), exactly as re-
quired. We may emphasize the generality of this result. Any function
F(x — ct) which combines the spatial and temporal variables in the form
x — ct represents a wave propagating in the positive x direction at speed
¢. Examples of such functions are 4 sin k(x — ct), A[(x — ct)® — 3(x —
ct)?}], and AeHE—0, : :

We may use a pair of spatial snapshots similar to those in Fig. 1.1 to
examine the case of a wave moving in the negative x direction. For this
case we will find that the general analytic form must be any function
G(x + cf) which combines the spatial and temporal variables in the form
x +ct.

We now know the general functional form that a wave traveling in the
positive or negative x direction must assume. We must now examine the
important physical properties of a sound wave, so that we may incorpo-
rate thesé properties in our functional form.
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Fig. 1.1 Craphs showing the sound pressure for a single pulse of sound traveling
down a tube, which constrains it from spreading. The waveshape is a rectangular pulse
of amplitude 4 which propagates in the positive x direction (to the right) at a speed of ¢
units per second: (@) the waveshape at ¢ = 0 sec, and (b) the waveshape at t = d sec.
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Frequency. The subjective pitch of a simple sound is determined pri-
marily by the number of times per second at which the sound-pressure
disturbance oscillates between posmve and negative values. The phys-
. ical measure of this oscillation rate is called frequency and is denoted by

the symbol f. The unit of frequency is the cycle per second (cps), which
" by international agreement is called hertz (Hz), after the man who first
studied electromagnetic waves. The range of normal adult hearing ex-
tends approximately from 20 to 16,000 Hz. The ear is most sensitive,
that is, the threshold of audibility is lowest, for sounds around 3,000 Hz.

Period. The reciprocal of the frequency fis the period T. 1Itis the time
required for one complete cycle Thus, the period of a 1,000-Hz wave is
0.001 sec.

Wavelength. The wavelength of sound is the distance between analo-
gous points on two successive waves. It is denoted by the Greek letter A

and is equal to the ratio of the speed of sound to the frequency of the
sound, so that

A===,T B (L.1)

¢
f

In a very general way, we may distinguish between noises that consist
of periodic sounds, that repeat regularly, and aperiodic sounds, that
fluctuate randomly. The simplest periodic sound is a pure tone. A
pure-tone sound is a pressure disturbance that fluctuates sinusoidally at
a fixed frequency. Rotating machines, such as turbines and compressors,
usually produce noise that is predominantly a set of pure-tone sounds.
The set is often harinonically related: each of the harmonic sounds has a
frequency that is an integral multiple of the lowest or fundamental fre-
quency. For example, the fundamental frequency (first harmonic) of
the noise from a turbine under certain operation conditions might be
3,000 Hz. The frequencies of the higher harmonics would then be 6,000
Hz, 9,000 Hz, and so on. There is a basic mathematical tool, called
Fourier analysis, that can be used to subdivide any periodic signal into a
series of pure-tone signals, harmonically related. Thus, any sound that
repeats regularly can be subdivided into a series of harmonics, each with
a partlcular amplitude.

The noises of a dishwasher, an air diffuser, and a rocket are examples
of aperiodic sounds. An aperiodic sound cannot be subdivided into a set of
harmonically related pure-tone sounds. It can, however, be described
in terms of an infinitely large number of pure tones, of different fre-
quencies, spaced an infinitesimal distance apart, and with different
amplitudes.

It is mathematically convenient for us to study the behavior of pure-

tone sounds first. We can then infer the behavior of more complex
sounds.
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1.3 Free Progressive Waves

Let us visualize a simple situation, that will permit us to generate and
study a pure-tone (sinusoidal) sound wave. In Fig. 1.2 a long tube is
shown containing air, with a movable piston at one end. When the pis-
ton is moved back and forth by the mechanical arrangement shown, a
plot of its position as a function of time is a sinusoidal function. This to-
and-fro. motion of the piston causes the air molecules adjacent to it alter-
nately to be crowded together, or compressed, and a little later to be
moved apart, or rarefied. This action of alternate compression and
rarefaction moves down the tube owing to the elasticity and inertia of the
medium. The wave thus generated is sinusoidal and has a frequency
equal to the number of times per second at which the piston moves back
and forth. The strength of the wave is determined by the magnitude of
the displacement of the piston.

The three waves at the top of Fig. 1.2 show that the amplitude of the
traveling wave is unchanged as the wave propagates to the right, and
that the time delays between the same part of the wave at the plane at
x =0 and at the planes at x = x; and x = 2x, = x, are x,/c sec and 2x,/c
sec respectively.

Speed of Sound. If we varied the properties of the gas through which
the sound was traveling, we would find that the square of the speed of
sound varied directly with the equilibrium gas pressure p, and inversely
with the equilibrium gas density p. The constant involved in the expres-
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Fig. 1.2 Plane-wave propagation. A plane wave generated by the piston at the left of the
tube travels to the right and is absorbed by the anechoic termination. The three waves at
the top give the variation in sound pressure with time at the three points indicated, x = 0,
x =x;, and x = x, = 2x,.



6  Moiss iz Yidvuass Sondiy:

sion for the speed of sound is the ratio of the specific heat of the gas at
constant pressure to the specific heat at constant volume. For air at
most temperatures with which we deal, this ratio is 1.4. Thus the speed
of sound in air is given by the equation

c= \/%ﬁ m/sec or ft/sec (1.2)

If we assume that air behaves as an ideal gas, we can show that the speed
of sound is dependent only on the absolute temperature of the air. This
assumption is quite reasonable for most temperatures and densities with
which we deal. The equations for the speed of sound become

c=20.05VT  m/sec ‘ (1.3)
c=49.03VR ft/sec (1.4)

where R is the absolute temperature in degrees Rankine, that is, 459.7°
plus the temperature in degrees Fahrenheit, and T is the absolute tem-
perature in degrees Kelvin, that is, 273.2° plus the temperature in de-
grees centigrade.

Example 1.1 Determine the speed of sound at 70°F (21.1°C) in both English
and metric units.

soLuTioN: The Rankine temperature is 459.7 + 70 = 529.7°R and the Kelvin
temperature is 273.2 + 21.1 = 294.3°K. The speed of sound is then about

c=49 VR = 49 V530 = 1,128 ft/sec
¢ = 20.05VT = 20.05 V294.3 = 344 m/sec

In discussing the piston-tube experiment of Fig. 1.2, we must as-
sume either that the tube is infinitely long or else that it has a nonreflect-
ing (anechoic) termination so that no part of the energy in the sound
wave will be reflected from the far end of the tube. The sound wave
started by the piston then progresses down the tube without inter-
acting with the side walls or the far end of the tube. All properties of the
wave can then be described in terms of the distance down the tube from
the piston and the action of the piston itself. This form of wave is known
as a one-dimensional, plane, free progressive wave. The one-dimensional
aspect relates to the specification of the parameters in terms of a single
distance, the planar aspect to the fact that the wavefronts are parallel
to each ather, and the free progressive aspect to the advancement of the
wave without interference from other objects or changes in the medium.
In actuality, the wave is not truly free in that it is bounded by the walls
of the tube and there will be some frictional losses at the boundaries.
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For practical purposes, however, the motion is essentially the same as if
the tube and the piston were infinite in cross section.

Sound Pressure and Particle Velocity. We have noted that at any point
along the tube we can measure the varying disturbance from equilibrium
pressure, the sound pressure p. In the mks system, its units are newtons
per square meter, or N/m?. Also, we can measure a varying particle
velocity u, associated with the to-and-fro motions of the air molecules,
which always occur along a line parallel to the direction of propagation.
Its units are meters per second, m/sec.

Intensity. A free progressive sound wave transmits energy. The
usual way in which the sound-energy propagation is described is in
terms of intensity I, defined as the energy that flows through a unit area
in a unit time. The unit for intensity is watts per square meter. In
terms of the parameters describing a free progressive sound wave in which
p and u are in phase, the average intensity in the direction of the wave
propagation is the time average of the product of the sound pressure
and the particle velocity measured in the direction of the wave propagation,
expressed as

I=pu watts/m? (1.5)

1.3.1 One-dimensional Plane Wave We can now examine the
quantitative behavior of a one-dimensional sound wave. Consider the
piston-tube experiment (see Fig. 1.2) with an anechoic (echo-free) termi-
nation at the right of the tube, so that the tube contains a sinusoidal
sound wave traveling in the positive x direction (toward the right).” We
have some freedom in our choice of time and space origins, and so let us
select these origins so that the sound pressure at the plane x=0and at
the time ¢ = 0 has its maximum value of P;. Figure 1.3 is a series of
spatial snapshots representmg the sound pressure as a function of dis-
tance, at four different instants of time. Each of these snapshots shows
the sound pressure over a spatial extent of one wavelength . The
vertical lines that separate the distance between x = 0 and x = X into 20
intervals help us to observe the sound-pressure behavior at any fixed
point.

First, let us look at the uppermost plot of Fig. 1.3. Plota represents
the sound-pressure snapshot at the time ¢t = 0. Because we are dealing
with a periodic wave, it also represents the snapshots for times
t=T, 2T, 38T, ...,nT. The value of the sound pressure at each posi- -
tion is represented by the location of the dots. As we required earlier,
the maximum value + Py, exists at the location x = 0 for this first snapshot.
Again, because the wave is periodic in space, the same maximum value
must occur at values of x= X, 2X, 3, .

Plot 4 is the snapshot that describes the sound pressure a quarter of a
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period (T/4 sec) after a. In other words, the wave in a has moved to the
right a distance equal to A/4 to become the wave in b. Plots ¢ and d rep-
resent the sound-pressure snapshots after two more successive intervals
of T/4 sec. After T sec has elapsed, the wave has traveled a full wave-
length A to the right, and the sound-pressure distribution has returned
to the snapshot of 2. Then the entire sequence of snapshots repeats it-
self as the wave continues to travel to the right. To convince yourself
that the wave is traveling to the right, allow your eyes to jump succes-
sively from a to b to ¢ to d.

We can now combine our knowledge of the behavior of sound waves
with the snapshots of Fig. 1.3 to obtain an analytical expression for a
one-dimensional sound wave. Our earlier discussion of Fig. 1.1 showed
that our eéxpression must have the functional form F(x — ct). .Figure 1.3
shows us that this function must be a sinusoid. From trigonometry we *
know that a general expression must then have the form C cos [k(x — ct)]

t=nT{n=0,1,2,...)
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Fig. 1.3 Graphs showing the sound pressure in a plane free-progressive
forward-traveling wave at 20 places in space at four instants of time ¢.
The wave is produced by a source at the left and travels to the right with a
speed c. The length of time it takes a wave to travel a distance equal to a
wavelength is called the period T. Forward-traveling wave: p(x,t) = Py
cos [k(x — ct)); k= 2@/\ = 27/(cT) = w/c.

LTI e



The Behavior of Sound Waves 9

+ § sin [k(x — ct)] where C and § are unknown amplitudes and & is an
unknown parameter whose meaning will become clear shortly. We have
already required that the sound pressure have its maximum value Pp
for x=10, t=0. Our expression will satisfy this requirement if we set
C = Pg and S = 0, so that

p(x,t) = Pg cos [k(x — ct)] N/m? (1.6)
Wavenumber. The cosine function is periodic and repeats its value

every time the argument increases 2w radians (360°)." From the defini-
tion of wavelength A, we can write this periodicity condition as

cos [k(x + X\ — ct)] = cos [k(x — ct) + 27] (1.7)
so that
=2 k= %ﬁ radians/m (1.8)

We thus see the meaning of the parameter k. Itis called the wavenumber.

Combining Egs. (1.1) and (1.8), we can obtain an alternate expression
for k

L2 2nf .
k= e "3 radians/m (1.9)
where the quantity 2xf is defined as ‘the circular frequency w, so'that
o=2nuf=k radians/sec - (1.10)

Thus the argument in the trigonometric function may also be written
in any one of the following ways

X t

k(x-—ct)=2;£(x—ct)=2wf(%—t)=2'rr (X—T>=T—27rﬂ
= kx — wt (1.11)

In Fig. 1.3 we have looked at the spatial behavior of a traveling sound
wave, at certain fixed instants of time. From Eq. (1.7) the equations for
the snapshots in Fig. 1.3 are given by

(@) t=nT: 1)=P,gcos—2—‘;\E
()] t=(n+})T: p=PRcos(%—%)

©) t=mn+PT: p=PRcos(%—7r)

27x 3w

d) t=mn+HT: p=Pgcos (T_T)

wheren=20,1,2,3,...
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We could equally well look at the temporal behavior at fixed points,
for any particular time ¢.

x=0: p=Pgcos2aft

x=\/4: p=Pgcos [21'rf (t - -‘:—C)] = cos [27rf (t - %)]

= cos (21rﬂ - %)
$c =\/2: p=Pgcos [217f (t - %)] = cos (2mft —

R O R

"where we have used the trigonometric identity cos (—4) = cos 4. We
see that the temporal behavior at x = A/4 is the same as the behavior at
x =0, except that it is delayed by a time of T/4 sec. Another way to
express this time delay is to say that a shift in phase (the argument of the
trigonometric function) of 7/2 radians (90°) has occurred relative to
t=0. Similarly, at x = \/2 the behavior is the same as at x = 0, except
for a time delay of 7/2 sec. This corresponds to a phase shift of =
radians (180°), relative to ¢ = 0.

Consider the piston-tube experiment with the sound source and
anechoic termination interchanged, so that the tube contains a sinu-
soidal sound wave traveling in the negative x direction (toward the left).
The corresponding sequence of spatial snapshots for this backward-
traveling wave is shown in Fig. 1.4. Earlier in the chapter we stated
that the general form for a wave moving in the negative x direction is -
any function G(x + ct) which combines the spatial and temporal vari-
ables in the form x + ct. We can use this functional form to describe
the wave shown in Fig. 1.4, and we obtam the result for the backward-
traveling wave '

plxt) = Py, cos [k(x + ct)] N/m? (1.12)

where P, is the pressure amplitude.

A comparison of Egs. (1.6) and (1.12) emphasizes that the sign rela-
tion between the space and time variables determines the direction in
which the wave propagates. - If the two variables are of different sign,
the wave propagates in the positive spatial direction; if the two variables
are of the same sign, the wave propagates in the negative spatial direc-
tion. This fact is confirmed by scanning Fig. 1.4 fromatod. The wave
can only be made to “travel” from right to left as one’s eyes jump from
one plot to the next.



