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Introduction

An increasing amount of study is being devoted to mathematical models
which seek to capture some of the essential dynamical features of plant
and animal populations. Some of these models describe specific systems
in a very detailed way, and others deal with general questions in a
relatively abstract fashion: all share the common purpose of helping to
construct a broad theoretical framework within which to assemble an
otherwise indigestible mass of field and laboratory observations.

The present book aims to review and to draw together some of these
theoretical insights, to show how they can shed light on empirical
observations, and to examine some of the practical implications. In so
doing, the book seeks to occupy a useful niche intermediate between the
compendious and general text (of which there are an increasing number
of excellent examples) and the often highly technical journal and
monograph literature on theoretical ecology (which many people will
find impenetrable). The book is directed to an audience of upper level
undergraduates, graduate students, or general readers with an educated
interest in the discipline of ecology.

Attention is focussed on the biological assumptions which underlie
the various models, and on the way the consequent mathematical
behaviour of the models explains aspects of the dynamics of populations
or of entire communities. That is, the approach is descriptive, with
emphasis on the biological inputs in constructing the models, and on
the emergent biological understanding. The intervening mathematical
details are, by and large, glossed over; this is a book for people who
did not get beyond a freshman course or A levels in calculus. Those
readers who dislike ex cathedra pronouncements, or who wish to savour
the detailed mathematical development, will find signposts to guide
them to the more technical literature. Other people may be content
to follow the advice given by St Thomas Aquinas (concerning technical
details of proofs of the existence of God): “Truths which can be proved
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2 CHAPTER 1

can also be known by faith. The proofs are difficult, and can only be
understood by the learned; but faith is necessary also to the young,
and to those who, from practical preoccupations, have not the leisure
to learn philosophy. For them, revelation suffices’ (From Russell, 1946,
p- 46).

As will be seen from the chapter headings, the first two-thirds of
the book (chapters 2 to 10) deals with plant and animal ecology as such:
theoretical and empirical aspects of the dynamics of single populations,
of pairs of interacting populations, and of whole communities of different
species. The last third of the book (chapters 11 to 14) is devoted to
various subjects which are having fruitful reciprocal interaction with
theoretical ecology. Although primarily aimed at review and synthesis,
the book does contain a significant amount of new material.

Chapter 2 outlines the dynamical behaviour of single species in which
population change takes place either in discrete steps, or continuously,
subject to density dependent regulatory mechanisms with time-delays;
the environment may be constant, or it may vary in time. The con-
sequent population behaviour may be a stable equilibrium point
(with disturbances damped in a monotonic or an oscillatory manner),
or stable cycles, or even apparently random fluctuations, depending
on the relations among the various natural time scales in the system.
In chapter 2, these ideas are applied narrowly to the dynamical
trajectories of particular laboratory and field populations, and in
chapter 3 they are applied much more broadly to discuss the way an
organism’s bionomic strategy (size, longevity, fecundity, range and
migration habit) is fashioned by its general environment.

Chapter 4 gives a brief survey of the basic dynamical features of
two species interacting as prey-predator, as competitors, or as
mutualists. This serves as a background to the next three chapters,
which focus upon two special cases of the general prey-predator
relationship, and upon competition. In chapter 5, mathematical
models are combined with field and laboratory studies to elucidate
the components of predation in arthropod systems. Chapter 6 does a
similar thing for plant-herbivore systems. Competition is addressed
in chapter 7, which shows how theory and empirical observation can
illuminate such questions as the meaning of the ecological niche,
or the limits to similarity among coexisting competitors.

Quantitative understanding of the populations’ dynamics, of the
sort which enlivens some of the earlier chapters, is rarely feasible
for complex communities of interacting species. Here the search is more
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for broad patterns of community organization. Chapter 8 discusses some
of these patterns: energy flow (where much progress has accrued from
the work of the International Biological Program); relative abundances
of the different species in the community; and convergence in the
structure of geographically distinct communities in similar environ-
ments. Some of these notions can be developed further and applied to
the biogeography of islands, and thence to the design and management
of floral and faunal conservation areas; this is done in chapter g.
Chapter 10 presents a somewhat revisionist account of succession,
arguing from theory and observation that ecosystems require occasional
(neither too frequent, nor too infrequent) disturbance back to the
zeroth successional state, if they are to maintain their potential
diversity.

The final four chapters deal with areas on the edge of mainstream
ecology. Chapter 11 summarizes some of the outstanding problems in
sociobiology (the recently christened subject dealing with the structure
and organization of animal societies). The way recent ecological
advances may shed light on such long debated riddles as the great
waves of extinction which mark the end of many of the conventional
geological epochs is the subject of chapter 12, devoted to palaeobiology.
Chapter 13 pursues the population biology of human host-parasite
systems, such as schistosomiasis, while chapter 14 draws together
ecology and economics in a discussion of optimal strategies for pest
control.

I hope that the selection of topics has provided a representative
range of examples where theoretical models have been successfully
intermeshed with real world observations. More than this, T hope that
the collection may convey a sense of excitement, and may, to some
small degree, serve to indicate unanswered questions and future
directions for research.

et



2
Models for Single Populations

ROBERT M. MAY

2.1 Introduction

One broad aim in constructing mathematical models for populations of
‘plants and animals is to understand the way different kinds of biological
and physical interactions affect the dynamics of the various species. In
this enterprise, we are relatively uninterested in the algebraic details
of any one particular formula, but are instead interested in questions
of the form: which factors determine the numerical magnitude of the
population; which parameters determine the time scale on which
it will respond to natural or man-made disturbances; will the system
trackenvironmental variations, or willitaverage over them? Accordingly,
attention is directed to the biological significance of the various
quantities in the equations, rather than to the mathematical details;
to'do otherwise is to risk losing sight of the real wood in contemplation
of the mathematical trees.

1n this use of mathematical models to grasp at general principles,
it is helpful to begin with models for a single species. Models of this
kind seek to elucidate the behaviour of a single population, N(t), as a
function of time, ¢.

Many isolated laboratory populations, carefully maintained in a
controlled environment, may realistically be modelled by such a single
equation.

On the other hand, there are few, if any, truly single species
situations in the natural world. Populations will tend to interact
with their food supply (below them on the trophic ladder), with their
competitors for these resources (on the same trophic level), and with
their predators (above them on the ladder). In addition, populations
will be influenced by various factors in their physical environment.
Even so, it is often useful to regard these biological and physical
interactions as passive parameters in an equation for the single

4
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MODELS FOR SINGLE POPULATIONS 5

population, summarizing them as some overall ‘intrinsic growth rate’,
‘carrying capacity’, or the like.

Section 2.2 discusses models where generations completely overlap
and population growth is a continuous process (first order differential
equations), and section 2.3 treats models where generations are non-
overlapping and growth is a discrete process (first order difference
equations). Some of the emergent insights are applied to field and
laboratory data in section 2.4, and extended to encompass time-varying
environments in section 2.5. Section 2.6 briefly discusses the more
complicated case of many distinct but overlapping age classes. Section
2.7 concludes the chapter by reechoing the major themes.

2.2 Continuous growth (differential equations)

In situations where there is complete overlap between generations
(as in human populations), the population changes in a continuous
manner. Study of the dynamics of such systems thus involves
differential equations, which relate the rate at which the population is
changing, dN/dt, to the population value at any time, N(t).

2.2.1  Density independent growth

The simplest such model has a constant per capita growth rate, 7,
which is independent of the population density:

dN|dt = rN. (2z.1)
This has the familiar solution
N(t) = N(o) exp (rt). (2.2)

There is unbounded exponential growth if r>o0, and exponential
decrease if r < 0. In either event, the characteristic time scale for the
‘compound interest’ growth process is of the order of I Jr.

2.2.2  Density dependent growth

Such unbounded growth is not to be found in nature. A simple model
which captures the essential features of a finite environment is the
logistic equation : :
dN/dt = rN(1 —N/K). (2.3)
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Here the effective per capita growth rate has the density dependent
form r(1—N/K): this is positive if N < K, negative if-N > K, and thus
leads to a globally stable equilibrium population value at N* = K.
K may be thought of as the carrying capacity of the environment, as
determined by food, space, predators, or other things; r is the ‘intrinsic’
growth rate, free from environmental constraints.

In any such dynamical system, it is useful to christen a ‘character-
istic return time’, 7', which gives an order-of-magnitude estimate of
the time the population takes to return to equilibrium, following a
disturbance (for a more formal discussion, see May et al., 1974, and
Beddington et al., 1976a). In eq. (2.3), this characteristic time scale
remains 7', = 1/r. To elaborate this point, we rewrite eq. (2.3) in
dimensionless form by introducing the rescaled variables N' = N/K
and t' = rt = t/T . This gives the parameter-free equation

dN'[dt' = N'(1 - N'). (2.3a)

Such rescaling arguments are of general usefulness in disentangling
those factors which influence the magnitude of equilibrium populations
from those factors which bear upon the stability of the equilibrium.
In this particular example, it is clear that the magnitude of the
equilibrium population depends only on K, whereas the dynamics—
the response to disturbance—depends only on r. This fact underlies
the metaphor of r and K selection, developed in the next chapter.

It must be emphasised that the specific form of eq. (2.3} is not
to be taken seriously. Rather it is representative of a wide class of
population equations with regulatory mechanisms which biologists call
density dependent, and mathematicians call nonlinear. A plethora of
other such models, taken from the ecological literature, is catalogued
in May (1975a, pp. 80-81). All share with eq. (2. 3) the essential property
of a stable equilibrium point, N* = K, with any disturbance tending
to fade away monotonically. One way of justifying eq. (2.3) is to
regard it as the first term in the Taylor series expansion of these more
general density dependent models.

2.2.3 Time-delayed regulation

In eq. (2.3), the density dependent regulatory mechanism, as repre-
sented by the factor (1—N/K), operates instantaneously. In most
real life situations, these regulatory effects are likely to operate with
some built-in time lag, whose characteristic magnitude may be denoted
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by T'. Such time lags may, for example, derive from vegetation recovery
times or other environmental effects, or from the time of approximately
one generation which elapses before the depression in birth rates at
high densities shows up as a decrease in the adult population. A rough
way of incorporating such time delays is to rewrite eq. (2.3) as

dN/dt = rN[1 - N(t—T)/K]. (2.4)

This delay-differential equation was first introduced into ecology
by Hutchinson (1948) and Wangersky and Cunningham (1957), and
by now it enjoys an extensive literature (for a brief guided tour, see,
e.g., May 1975a, pp. 95-98). One way of deriving it is as a crude
approximation to a fully age-structured description of a single

population, in which case 7' is the generation time. As before, the

detailed form of this equation is not to be taken literally, and in more
realistic treatments the regulatory term is likely to depend not on the
population at a time exactly T earlier, but rather on some smooth
average over past populations. (For a more mathematical discussion,
see May, 1973a.) Nonetheless, the general properties of eq. (2.4) are
representative of this wider class of models, and will be discussed in this
spirit.

The qualitative nature of the solutions of eq. (2.4) follow from
precepts familiar to engineers. If the time delay in the' feedback
mechanism (namely, 7') is long compared to the natural resp\bnse time
of the system (namely, 7', or 1/7), there will be a tendency to overshoot
and to overcompensate. For modest values of the time delay this over-
compensation produces an oscillatory, rather than a monotonic, return
to the equilibrium point at N* = K. As the time delay becomes longer
(as T'/T g or rT exceeds some number of order unity), there is a so-called
Hopf bifurcation, and the stable point gives way to stable limit cycles.
These stable cycles are an explicitly nonlinear phenomenon, in which
the population density, N(t), oscillates up and down in a cycle whose
amplitude and period is determined uniquely by the parameters in the
equation. Just as in the case of a stable equilibrium point, if the
system is perturbed it will tend to return to this stable cyclic trajectory.
Such stable limit cycle solutions are a pervasive feature of nonlinear
systems, for which conventional mathematics courses (with their
focus on linear systems) give little intuitive appreciation.

Specifically, eq. (2.4) has a monotonically damped stable point if
0<rT' <e’!, and an oscillatorilly damped stable point if e~ <77 < im.
For 7T > {m, the population exhibits stable limit cycles, the period

e
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and amplitude of which are indicated in Table 2.1. These numerical
details (e-1 and 1#) are peculiar to eq. (2.4), but the character of the
solution, with a stable equilibrium point giving way to stable cycles
once T'|T;, exceeds some number of order unity, is generic to a much
wider class of models with time-delayed regulatory mechanisms.

Table 2.1. Properties of limit cycle solutions of

eq. (2.4).
rT N{(max)/N(min) Cyecle period, T'

1+57, or less 1-00 —
1-6 2-56 4°03
17 576 409
1-8 11°6 4-18
19 22-2 429
20 42°3 440
2-1 84-1 4754
2-2 178 471
2-3 408 4:90
24 1,040 511
25 2,930 5:36

In particular, it is worth noting that once stable limit cycles arise
in equations of the general form of eq. (2.4), their period is roughly
equal to 47. A qualitative explanation of this fact is as follows: In
the first phase of the cycle, the population continues to grow (dN/dt > 0)
until the earlier population value in the time-delayed - regulatory
factor attains the potential equilibrium value (N(t—7') = K); at this
point, population growth ceases (dV/dt = o), and the population begins
an accelerating decline from its peak value. Thus the first phase,
where the population grows from around K to the cycle maximum,
takes a time 7". Similar arguments applied to the subsequent phases of
the cycle suggest an overall period of roughly 47. The exact results in
Table 2. 1 show that this rough rule remains true, even as the amplitude
of the cycle (population maximum/population minimum) increases
over several orders of magnitude.

In short, equations such as (2.4) constitute minimally realistic
models for a single population, in which the density dependent
regulatory effects (derived from food supply limitations, or crowding,
or whatever) operate with a time delay. The consequent population
dynamics can be monotonic damping to an equilibrium point, or
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damped oscillations, or sustained patterns of stable cycles, depending
on the ratio between 7' and T'y. A variety of population data can be
surveyed in this light, and this is done in section 2.4 and in chapter 3.

2.3 Discrete growth (difference equations)

At the opposite extreme from section 2.2, many populations are
effectively made up of a single generation, with no overlap between
successive generations, so that population growth occurs in discrete
steps. Examples are provided by many temperate zone arthropod
species, with one short-lived adult generation each year. Periodical
cicadas, with adults emerging once every 7 or 13 or 17 years, are an
extreme example.

In these circumstances, the appropriate models are difference
equations relating the population in generation ¢+1, N, ;, to that in
generation ¢, N, In contrast to section 2.2, time is now a discrete
variable.

2.3.1  Density independent growth

The difference equation analogue of eq. (2.1) is the simple linear
equation
Ny = AN, (2.5)

Here A (conventionally misnamed the ‘finite rate of increase’) is the
multiplicative growth factor per generation; the ‘compound interest’
growth rate is* r=1In A. Equation (2.5) describes unbounded
exponential growth for A>1 (r>0), exponential decline to extinction
if A<1 (r<o).

2.3.2 Density dependent growth

More generally, and more realistically, we will have a density dependent
relation of the form

Nya=FWN), (2.6)
where F(N) is some nonlinear function of N. A fairly complete catalogue

* Throughout this volume, we follow the conventional practice of using In to
denote natural logarithms (to the base e), and log to denote logarithms to the
base 10.
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