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Preface

A knowledge of mathematical methods is important for an increasing number of
university and college courses, particularly in physics, engineering and chemistry,
but also in more general science. Students embarking on such courses come from
diverse mathematical backgrounds, and their core knowledge varies considerably.
We have therefore decided to write a textbook that assumes knowledge only of
material that can be expected to be familiar to all the current generation of
students starting physical science courses at university. In the United Kingdom
this corresponds to the standard of Mathematics A-level, whereas in the United
States the material assumed is that which would normally be covered at junior
college.

Starting from this level, the first six chapters cover a collection of topics
with which the reader may already be familiar, but which are here extended
and applied to typical problems encountered by first-year university students.
They are aimed at providing a common base of general techniques used in
the development of the remaining chapters. Students who have had additional
preparation, such as Further Mathematics at A-level, will find much of this
material straightforward.

Following these opening chapters, the remainder of the book is intended to
cover at least that mathematical material which an undergraduate in the physical
sciences might encounter up to the end of his or her course. The book is also
appropriate for those beginning graduate study with a mathematical content, and
naturally much of the material forms parts of courses for mathematics students.
Furthermore, the text should provide a useful reference for research workers.

The general aim of the book is to present a topic in three stages. The first
stage is a qualitative introduction, wherever possible from a physical point of
view. The second is a more formal presentation, although we have deliberately
avoided strictly mathematical questions such as the existence of limits, uniform
convergence, the interchanging of integration and summation orders, etc. on the
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PREFACE

grounds that ‘this is the real world; it must behave reasonably’. Finally a worked
example is presented, often drawn from familiar situations in physical science
and engineering. These examples have generally been fully worked, since, in
the authors’ experience, partially worked examples are unpopular with students.
Only in a few cases, where trivial algebraic manipulation is involved, or where
repetition of the main text would result, has an example been left as an exercise
for the reader. Nevertheless, a number of exercises also appear at the end of each
chapter, and these should give the reader ample opportunity to test his or her
understanding. Hints and answers to these exercises are also provided.

With regard to the presentation of the mathematics, it has to be accepted that
many equations (especially partial differential equations) can be written more
compactly by using subscripts, e.g. uy, for a second partial derivative, instead of
the more familiar 0%u/dxdy, and that this certainly saves typographical space.
However, for many students, the labour of mentally unpacking such equations
is sufficiently great that it is not possible to think of an equation’s physical
interpretation at the same time. Consequently, wherever possible we have decided
to write out such expressions in their more obvious but longer form.

During the writing of this book we have received much help and encouragement
from various colleagues at the Cavendish Laboratory, Clare College, Trinity Hall
and Peterhouse. In particular, we would like to thank Peter Scheuer, whose
comments and general enthusiasm proved invaluable in the early stages. For
reading sections of the manuscript, for pointing out misprints and for numerous
useful comments, we thank many of our students and colleagues at the University
of Cambridge. We are especially grateful to Chris Doran, John Huber, Garth
Leder, Tom Korner and, not least, Mike Stobbs, who, sadly, died before the book
was completed. We also extend our thanks to the University of Cambridge and
the Cavendish teaching staff, whose examination questions and lecture hand-outs
have collectively provided the basis for some of the examples included. Of course,
any errors and ambiguities remaining are entirely the responsibility of the authors,
and we would be most grateful to have them brought to our attention.

We are indebted to Dave Green for a great deal of advice concerning typesetting
in ISTEX and to Andrew Lovatt for various other computing tips. Our thanks
also go to Anja Visser and Graga Rocha for enduring many hours of (sometimes
heated) debate. At Cambridge University Press, we are very grateful to our editor
Adam Black for his help and patience and to Alison Woollait for her expert
typesetting of such a complicated text. We also thank our copy-editor Susan
Parkinson for many useful suggestions that have undoubtedly improved the style
of the book.

Finally, on a personal note, KFR wishes to thank his wife Penny, not only for
a long and happy marriage, but also for her support and understanding during
his recent illness — and when things have not gone too well at the bridge table!
MPH is indebted both to Rebecca Morris and to his parents for their tireless
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support and patience, and for their unending supplies of tea. SIB is grateful to
Anthony Gritten for numerous relaxing discussions about J. S. Bach, to Susannah
Ticciati for her patience and understanding, and to Kate Isaak for her calming
late-night e-mails from the USA.

Ken Riley, Michael Hobson and Stephen Bence
Cambridge, 1997
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