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Publisher’s Preface

Kurt Symanzik was certainly one of the most outstanding theoretical
physicists of our time. For thirty years, until his untimely death in 1983,
he helped to shape the present form of quantum field theory and its
application to elementary particle physics. In memoriam of Kurt Symanzik
leading scientists present their most recent results, giving, at the same time, an
overview of the state of the art. :

This collection was originally published in Vol. 97, 1/2 (1985) of
Communications in Mathematical Physics. They range over various inter-
related topics of interest to Kurt Symanzik. We hope that making this
collection available in an accessible and inexpensive way will benefit the

physics community.

" The Publisher



Kurt Symanzik

Kurt Symanzik was born November 23, 1923 in Lyck, East Prussia. He grew up in
Ko6nigsberg, but because of the war he could only begin to study physics at the age
of 23, when he entered the Technical University of Munich. He shortly moved to
Gottingen and became a student of Heisenberg. There Symanzik encountered two
young colleagues, H. Lehmann and W. Zimmermann, with whom he developed
both close friendship and scientific collaboration. This group was later dubbed
the “Feldverein” by W. Pauli, when it had become an important influence in
theoretical physics.

In 1954, Symanzik completed his doctoral thesis, “On the Schwinger func-
tional in quantum field theory.” The deep insights in this work and the technical
skill in their implementation set the scene for a series of classic papers in diverse
fields of theoretical physics; all these papers share conceptual clarity combined.
with overwhelming technical ability. The best known work from the period in
Gottingen was the famous LSZ “‘reduction formula™ to express scattering cross
sections in terms of vacuum expectation values of quantum fields. Today this
formula can be found in most books on elementary particles or quantum fields.

From 1955 to 1962, Symanzik worked in many departments in both the United
States and in Europe, including the Institute for Advanced Study, the University
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of Chicago, Gottingen, Hamburg, Stanford, Princeton, UCLA, and CERN. Two
themes during this period were a study of dispersion relations and the analysis of
how Green’s functions reflect the many-particle structure of quantum fields.

In 1962, Symanzik accepted a professorship at the Courant Institute, where he
remained for 6 years. While there he developed Euclidean quantum field theory,
surely one of his greatest achievements. He recognized. that field theory could be
reduced to the structure of classical statistical mechanics. He proposed that
integral equations, correlation inequalities, Markovian properties, interacting
random paths, and other aspects of classical statistical physics had an inter- .
pretation in quantum field theory. Originally Symanzik was motivated by his
attempt to solve the existence question for scalar quantum fields by this method,
culminating in his 1968 Varenna lectures. Later these ideas led to the reconstruc-
tion theorem for quantum theory from Euclidean fields, and they became an
integral part of constructive field theory. Ultimately this approach made poss:ble
the computations based on high temperature series or computer simulation in
lattice gauge theories based on the renormalization group. Furthermore this point
of view led to the noninteraction theorems for quartic scalar field theories.
Euclidean field thcory today is an indispensible starting point for the study of
many probiems in particle physics.

In 1968, Symanzik returned to Germany as a research Professor at DESY.
Here his interests turned in a different direction, and the Callan-Symanzik
equation was another high point of his career. This renormalization group
equation gave impetus to the discovery of asymptotxcally free quantum field
theories. Symanzik found a first model. Soon thereafier it was recognized that
nonabelian gauge theories are asymptotically free. This was a precondition for the
development of Quantum Chromodynamics, the currently accepted model for
hadronic interactions.

In 1981 the German Physical Society presented Kurt Symanzik the Max
Planck Medal, its highest honor for scientific achievement.

For many colleagues and young scientists, Symanzik was a physicist whom
one visited in order to learn by conversation. His shyness, his penetrating insight,
and his dislike for redundancy in communication often made it difficult to
establish personal contact with him. But those who did get to know him closely
remember not only an extraordinary intellect, but also a loyal and generous friend.
He enjoyed contacts with colleagues and young scientists both at DESY and
elsewhere. It was usual for Symanzik to perform long calculations and to write
long letters to encourage the work of others as well as to explain his own unique
and original insights.

He enjoyed with equal gusto unscientific activities including swimming,
attending ballet and dancing. Friends and colleagues watched with amusement
and affection as he tried to execute dance steps as complicated as the equations
in his papers!

Kurt Symanzik’s last papers were devoted to lattice gauge theory. They show
that he was in full command of his creative force until the end when he died of
cancer on October 25, 1983.

A. Jaffe, H. Lehmann, and G. Mack
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Monte Carlo Simulations
for Quantum Field Theories Involving Fermions

M. Karowski!*, R. Schrader2*, and H. J. Thun?

1 Institut fiir Theoretische Physik. Universitdt Gottingen, Bunsenstrasse 9, D-3400 Gottingen,
- Federal Republic of Germany

2 State University of New York at Stony Brook, Stony Brook, NY 11794, USA

3 Institut fir Theorie der Elementarteilchen, Freie Universitat Berlin, Arnimallee 14,

D-1000 Berlin 33

Abstract. We present a new variant of a Monte Carlo procedure for euclidean
quantum field theories with fermions. On a lattice every term contributing to
the expansion of the fermion determinant is interpreted as a configuration of
self-avoiding oriented closed loops which represent the fermionic vacuum
fluctuations. These loops are related to Symanzik’s polymer description of
euclidean quantum field theory. The method is extended to the determination
of fermionic Green’s functions. We test our method on the Scalapino-Sugar
model in one, two, three, and four dimensions. Good agreement with exactly
known results is found.

1. Introduction

In recent years Monte Carlo simulations for euclidean lattice models have been of
considerable help in improving our understanding of those relativistic quantum
field theories, which are supposed to describe high energy particle physics. This
includes in particular gauge theories. Now any realistic model for particle
interactions includes fermionic fields like quark fields. It is, therefore, important to
simulate systems with fermionic degrees of freedom. There have been several -
proposals to deal with this problem, see e.g. [1-16], or [17-19] for a review.
However, all these methods require extensive computing time and some of them
only work for two-dimensional models or are only approximations from the
beginning: quenched approximation, hopping parameter expansion etc. In
particular for the interesting case of four-dimensional lattices no way has yet been
found to perform Monte Carlo calculations including fermions as efficiently as
they can be done when bosonic fields only are present.

It is the aim of this paper to propose a new numerical method which basically
treats all fields on the same footing during the upgrading procedure. This new way
of treating fermions applies to all lattice models known to the authors and may

*  On leave of absence from Freie Universitit Berlin
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~ easily be combined with the standard methods already used for bosonic fields. We

.

now briefly describe our method, the details of which will be given in the next
sections. To deal with the fermionic degrees of freedom we introduce an aux-
ihiary statistical cnsemble, the elements of which are labelled by a subset of the
set of permutations on the fermionic degrees of freedom. We give a graphical
representation of such an element of the statistical ensemble in terms of self-
avoiding loops and relate it to Symanzik’s polymer description of euclidean
quantum field theory [ 20, 21]. This procedure guarantees that Pauli’s exclusion
principle for the fermions is automatically taken care of. The antisymmetry in the
fermionic degrees of freedom is obtained by equating the Green’s functions of the
physical model with certain (ratios of) Green's functions of the auxiliary statistical
ensemble. This is explained in Sect. 2.

In Sect. 3 we present a local heat bath method for a fermionic action in the form
originally introduced by Kogut and Susskind in a Hamiltonian context {22]. As
just mentioned, each element of the statistical ensemble, which is a certain
permutation, has a graphical representation. The heat bath is local, i.e. most of the
fermionic degrees of freedom are frozen, because we apply localized permutations
which upgrade a given permutation only. locally. The intricate part of- our
procedure is to show that the principle of detailed balance is satisfied. This
combined with the ergodicity of the upgrading ensures that the Gibbs distribution
for the auxiliary statistical ensemble is the unique equilibrium dlstrlbutlon for the
upgrading procedure.

In Sect. 4 we consider the standard, sxmple model introduced by Scalapmo and
Sugar [3], which has often been used to test methods for dealing with fermions
numerically. We compare our Monte Cario results with exact values obtained by
numerical Fourier summation. Finally, Sect. 5 contains some conclusions.

2. Statistical Ensembles for Fermicns

In this section we will discuss the auxiliary statistical ensemble, in terms of which
the fermionic degrees of freedom may be described so as to give the Green's
functions of the physical theory. We begin by recalling the standard formulation of
lattice theories involving fermions. We will restrict our attention to (finite) cubical
lattices in d dimensions. The question of how to choose the right boundary
conditions will not be relevant in this section.

Consider a lattice action of the form

S=S(p".p,9). (2.1)

y* and p denote fermionic fields and arc considered to be Grassmann variables. ¢
stands for all other fields, which are supposed to be bosonic. In all applications so
far, the fermionic fields are defined on the vertices of the lattice. Thus the lattice site-
x may be used to label the fermionic degrees of freedom. The fields ¢ may live on

- . vertices {ordinary Bose fields) or on links (lattice gauge fields). Our method will

also allow for more complicated snuatlons where for example ¢ lives on higher
dimensional cells. .
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For the purpose of explaining our method, we first look- at the simplified

situation, where
(a) the fermionic fields carry no indices (like flavour or colour) other than the

vertex index,

{b) the action is quadratic in the fermionic fields.

It is easy to extend our method to situations, where these restrictions are
removed and at the end of the section we will briefly indicate how this is done. With
these restrictions the action S may be decomposed as

S, @)=Sy", ., 0)+ Sx(d). (2.2)

where
Sew . d)= T p (DALY . (2.3)

X,y € Lattice
Here the matrix A = A(¢) = { A,(#)} with complex valued entries is indexed by the
vertices of the lattice and is a functional of the bosonic ficlds 4, and Sy(¢) is that part
of the action which does not involve fermionic fields. The “partition” function of
the theory is therefore
Zeg=ldpdyp*dye 5. . (2.4)
The integration over the fermionic fields is in the sense of Berezin [23], and d¢
describes the integration over the bosonic fields ¢. By
(X>=Z;4 [dpdy*dpXe ° (2.5)
we denote the expectation value in this model. If we perform the fermionic
integration first, Eq. (2.4) may be written as
Zp=[dpdet A(g)e 2@, (2.6)

To obtain Green’s functions involving fermionic fields, we consider the typical
example (p(v)yp*(u)). For given u, v let A" denote the matrix given by
Ay if x#u and y#v.
A%P=31  if x=u and y=v, (2.7
0 otherwise .
Then we have
. Id(ﬁ det 4™ v)(¢)e* Se(¢)
Mt S
<‘P(l)w (u)> Id¢detA(¢)e ~Ssiéy
Of course, det 4“* is (up to a sign) equal to the determinant of the submatrix of 4
obtained by deleting the «'® row and v™ column. More generally, any (higher order)
Green’s function in the fermionic fields may be obtained in this way from

determinants of suitable submatrices. Formulas (2.6) and (2.8) are obtained from
Berezin’s integration theory, by using the standard formula

detA= Y sgn(m)[1 Agrey» 9.

(2.8)

where 7 runs through the set of all permutations of lattice points.
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Let us now neglect the ¢ dependence for a moment. Each term on the right-
hand side of (2.9), which is labelled by n, may be given a graphical presentation as
follows. If n(x) % x, we draw an oriented straight line in the lattice from the point x
to the point n(x). By definition its length is 1. Now every permutation may be
written as a product of (nontrivial) cyclic permutations

T=m, ... 7, (2.10)

and this description is unique up to the ordering of the cyclic factors n,, 1 <r<s. If
/, denotes the order of n, (such that /,=2 if n, is a transposition), we have

s

sgn(m)= ﬂ (—ty-+t, (2.11)

Using this graphical presentation cach cyclic permutation 7, corresponds to a
closed oriented polygonal loop %, of length /.. These loops %,,...,.%, are
nonintersecting in the sense that each vertex in the lattice is the endpoint of at most
one oriented straight line and in that case it is also the starting peint of exactly onc
fine.

Conversely to cach such family of nonintersecting oriented polygonal loops
corresponds a unique  and hence a unique contribution to det 4 in the sense of Eq.
(2.9). Note that we only need to consider those n which are contained in the set

C(A)= {n: ]—[A,m,#O}. (2.12)
X

{

{

Similarly, the only nonvanishing contributions to det 4" are among those = for
which n(u) =v. By deleting the particular straight line going from u to v, each such
contribution to det A" can be gmphncally described by a set of nonintersecting
loops plus an additional “propagator”, i.e. an open polygonal line, going from ¢ to
u, which is nonselfintersecting and not intersecting the other loops in the sense just
described.

Itisimportant to note that this nonintersecting property is a local property, i.e.
it is only necessary to test all vertices individually to see whether a given set of
polygonal loops correspond to a permutation 7 or not.

In most applications the matrix 4 will have the following additional property:
A is said 1o be local, if A,, =0 unless dist(x, y)< 1. In the context of our graphical
presentation this means that all loops are built out of links. Also the
nonintersecting property stated above is now the usual nonintersecting property
of curves. Forlocal 4, we say n e 4(A) is a “dimer” if = is cyclic of order 2. n is said
to contain a dimer if at least one of its cyclic factors =, is of order two. Now for local
A, the number |6(A4)] of elements in %(A) is bounded above by
(2d + ))tvetume of latiice) Oy the other hand, since the density of states for the dimer

problein is explicitly known for d =2 at zero temperature [24-27], it is easy to
2

‘:.-G
obtain the we' Hound 2*M™2 on |4(A4)| (x:exp - =1.791..., G=Catalan’s
n

=0.915... ) ,il 4 issuch that A, 40 whenever dist(x. y) £ 1. Indeed, this follows by

/
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considering the subset of ¥(A) consisting of those 7 with dimers only which point
in directions parallel to a given plane. In Sect. 3 we will also give a discussion on
how to compute |¢(A)}] numerically for the case of such a local 4.

The graphical presentation we have given for general (constant) matrix 4 is
related to Symanzik’s polymer presentation [20, 217, see also [28, 291, as foilows.
For simplicity, let 4 be of the special form

A=14T, (2.13)
with I, =0 and I, small. Then
det 4 =exp[trinA]

=exp[ 3 (;I—i—trf"’]. (2.14)

=1 n

Since
trli= 3 I D, (2.15)
XfyeoayXn

each term of the right-hand side of (2.15) can be viewed graphicaily as an oriented
polyganal loop of length n. In this formulation, however, there is no
nonintersecting condition, i.e. each vertex may be the endpoint of more than one
oriented straight line. The converse holds also in this case: To each such loop of
length n corresponds a unique contribution to trl™ via (2.15). The Taylor
expansion of the exponent in Eq. (2.14) then gives a combinatorial description (and
proof) of how these terms in (2.14)+(2.15), each of which is presented by one
oriented loop, combine to the set of terms in (2.9), each of which is presented by a
family of nonintersecting oriented loops. A similar graphically equivalent
description may be given for the Green’s functions, e.g. {p(¥)p™* (¥)>.

We now turn to a construction of the statistical ensemble. Let the matrix |4 be
given by

%A|xy:|Axyi > ’ (216)
and consider the permanent of |A],
Per(Ah= ¥ T[TlAlnwn- (2.17)
ne€(A) x .

Now %(A) may be viewed as a Gibbs statistical ensemble with energies given by
E(r, A)= TE(m, )=~ Tin(Alyr)., (2.18)
such that the permanent becomes the corresponding partition function
Per(jA}) = neém exp[ — E(n, A)]. (2.19)
If we denote by

_ 1 —Ex,
X= Bor(ii} . gx(n) .e B4 (2.20)
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averages in this statistical ensemble, we have the following relation for the
determinant of A

detA= 3 sgn(n, A)e =4
= Per(|4]) - sgn(4), (2.21)

where sgn(m, A) is defined on €(A4) by

AX” X
sgn(m, A)=sgn(n)- ]']-IZ—‘—)I, (2.22)
x xm(x)!

To obtain the Green’s function {y(v)y *(u)) we have to determine [cf. Eq. (2.8)]
det 4% = Per(|A“ V) - sgn(A%“V), @)

where now the configurations of €(A4™ ™) have to be taken into account.

We remark that the following modificatfon of this construction leads to the
theory of the noninteracting polymer gas: Take A to be local with A,,=1 and
A,,=const for dist(x, y) = 1. The statistical ensemble is defined to be the subset of
%(A) consisting of all n’s without dimers. In fact, the numerical results in [42] were
obtained by a corresponding modification of the upgrading procedure, to be

explained in Sect. 3.
Let us return to the case, where bosonic ficlds ¢ are present. Again we define

%(A) by (2.12), where the condition [ A4,,,,#+0 is now understood in the sense of

functionals. Also in (2.18) we set E (7, A(#))=co for any value of ¢ for which
A nx(#)=0. We are now in a position to describe the auxiliary statistical ensemble
and express physical Green’s functions as expectation values in this theory. In fact,
the thermal average values are now

X=Z '1d¢ %:(,4) X(m, p)e 5@ Em. A¢) (2.24)
with .
Z={d¢ %A)e“s"“’"”“”"“’_”. (2.25)

The set of configurations is now the product €(A4) times the set of the usual bosonic
configurations. Consider first an observable F which only depends on ¢. Then

_ [dgF(¢)det A(g)e 5=
FO) =" ot A
fd¢ S F(¢)sgn(n, A(p))e 52~ Ex.44)
ne¥€(A)
fdo 3 Sgn(n,A(¢))e—sn(¢)—i(n,m¢»
ne€(A)

=F- sgn(A)/sgn(A) . (2.26)
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We note a crucial property of this relation, which will allow us to perform local
upgrading procedures both.for the fermionic and the bosonic part: E(n, A(@)) is a
sum of local terms E (n, A(#)) in the sense that for local theories the latter will
depend only on the form of # near x and on the field configurations of ¢ which live
near x. ~

Next we turn to fermionic Green’s functions. For the two-point function we
obtain as a generalization of Eq. (2.23) [see Eq. (2.8)]

oo (s SEAAT)

p)y ™ (W) = s (2.27)
Analogously higher order Green’s functions may be obtained by augmenting the
statistical ensemble appropriately.

The remainder of this section is devoted to a brief outline of the modifications
necessary to cover the cases that

(a") the fermionic fields carry indices ¢ which may include the vertex index x
and internal degrees of freedom and

(b)) higher order interactions in the fermionic fields are present.

In the case (a’), whicl. is important for treating e.g. non-abelian lattice gauge
theories, A is a matrix A4,,. And %(A) is now defined to be the set of all
permutations = of the ¢’s for which [ 4,,,)(#)+0. Again there is a graphical

n

representation which now is in d’ dimensions (d'>d) with the extra (d'—d)
dimensions being used to describe the additional degrees of freedom.

As for the case (b”) assume the action contains an extra term which is of fourth
order in the fermionic fields

Sitp*,p. 9= ;Z QW (0)Begrn WONP(X). (2.28)

Let #=(,1,,...,1,) (0<k) be a decomposition of the set of all ¢’s into a subset /
and ordered sets I, (1 </ < k) containing two elements each. Then

[dp* dpe SFv' w01 =it v.0)

k
= Z Sgn(n) I—Il Agn(g)(¢) /HI Bp’g”x(p‘)n(o")(¢)‘ (229)
ee = )

L4
@.e=1

The auxiliary statistical ensemble is now labelled by 7, # € ¥(4, B), and the states
representing the bosonic fields ¢, where

k
(g(A’ By= { (7. j)’ 1’_Il Aeﬂ(e) /I_—Il Bm)’n(o)ﬂ(a‘)#o} . (2'30)
e (Q-é'i:’/
Also the energies (2.18) ar¢ replaced by
k

E(n,],A(¢),B(¢))=—QZI I} A4 (0)] — {Zl In|Byyrnie@®)l - (231)

(9,9’—)=11
Again a graphical presentation may be obtained. It is obvious how to extend this
procedure to interactions of order higher than four.
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Another strategy would work for local and translation invariant B’s. One can
introduce an intermediate boson ¢(g, %) and replace (2.28) by

SHw™, v, 0,4)
= Z[(P(Qs M)Beo'xx’(p(le %’) + p +(Q)‘P(x)(Bw’mt' + Be'qu)(P(Qla K,)] > (2'32)

which again turns out to be an action of case (a’).

3. The Heat Bath Method

In this section we explain our heat bath method for the determination of fermion
determinants for the case of free massive fermions.

There exist different iormulations for fermions on a lattice, e.g. the Wilson [30],
Kogut-Susskind [31-36]. and Dirac-Kahler [37-39] versions. For the purpose of
this paper the second version is the most adequate one. Thus we use it to exemplify
our heat bath method in spite of its shortcoming, namely numerical results are
reliable only for sufficiently heavy fermions. More precisely, the statistical errors
obscure the measurements if the hopping parameter k=1/(2am) (a=lattice
spacing, m =fermion mass) exceeds 0.6, 0.25, 0.15 for Susskind fermions in 2, 3, and
4 dimensions, respectively. In a forthcoming publication we shall extend our
method to the case of Wilson fermions, where there is no such restriction on the
mass. :

We consider a hypercubic lattice in d dimensions with lattice points

d
X= Y xa, o 3.1
labelled by integer components, x,=0,1,2,...,L—1, and {a,} orthogonal vectors

parallel to the lattice axes, a, - a, = a?3,,. The naive lattice version of the euclidean
free fermion action reads

S=3 v (x)(7,0,+mp(x) (3.2
with central differences, ie. *

0,09 = 5 Lo(x + )~ p(x—a,)].
The Susskind formulation is most easily obtained by the transformation [35, 36]
p(x)- ”Ifll Yaw(X); (3.3a)
the y-matrices then become proportional to the unit matrix, albeit x-dependent,
rer =T (- 11, (3.3b)

It is then sufficient to consider only one component of a full Dirac fermion at each
lattice site, and the matrix which appears in Eq. {2.3) takes the form

1
(7,"7,4 + m)x. y =’)"‘(x) :2; [5l+|“.y - 6:'— -,..y] +m6x.y . (3'4)



