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P R E F A C E

he role and practice of mathematics in the world at large is now undergoing a

revolution that is driven largely by computational technology. Calculators and
computer systems provide students and teachers with mathematical power that no
previous generation could have imagined. We read even in daily newspapers of stun-
ning mathematical events like the proof of Fermat’s last theorem, finally completed
since the fourth edition of this text appeared. Surely foday is the most exciting time
in all history to be mathematically alive! So in preparing this new edition of Calculus
with Analytic Geometry, we wanted first of all to bring a sense of this excitement to
the students who will use it.

We also realize that the calculus course is a principal gateway to technical and
professional careers for a still increasing number of students in an ever widening
range of curricula. Wherever we look—in business and government, in science and
technology—almost every aspect of professional work in the world involves mathe-
matics. We therefore have re-thought once again the goal of providing calculus stu-
dents the solid foundation for their subsequent work that they deserve to get from
their calculus textbook.

The text for this edition has been reworked from start to finish. Discussions and
explanations have been rewritten throughout in language that (we hope) today’s
students will find lively and accessible. Seldom-covered topics have been trimmed to
accommodate a leaner calculus course. Historical and biographical notes have been
added to show students the human face of calculus. Graphics calculator and com-
puter lab projects (with Derive, Maple, and Mathematica options) for key sections
throughout the text have been added. Indeed, a new spirit and flavor reflecting the
prevalent interest in graphics calculators and computer systems will be discernible
throughout this edition. Consistent with the graphical emphasis of the current calcu-
lus reform movement, several hundred new computer-generated figures have been
added. Many of these additional figures serve to illustrate a more deliberative and
exploratory approach to problem-solving. Our own teaching experience suggests
that the use of contemporary technology can make calculus more concrete and
accessible to many students.

FIFTH EDITION FEATURES

In preparing this edition, we have benefitted from many valuable comments and
suggestions from users of the first four editions. This revision was so pervasive that
the individual changes are too numerous to be detailed in a preface, but the follow-
ing paragraphs summarize those that may be of widest interest.

Additional Problems This revision incorporates the most substantial addi-
tional of new problems since the first edition was published in 1982. Over 1250 of the
fifth edition’s approximately 6700 problems are new for this edition. Almost all of
these new problems lie in the intermediate range of difficulty, neither highly theo-
retical nor computationally routine. Many of them have a new technology flavor,
suggesting (if not requiring) the use of technology ranging from a graphing calcula-
tor to a computer algebra system.
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xi

New Examples and Computational Details  Throughout we have
rewritten discussions and explanations in language that today’s students will find
more lively and accessible. The extent of this revision in text content is illustrated by
the fact that approximately 20% of the fifth edition’s over 700 in-text examples are
new. Moreover, we have inserted an additional line or two of computational detail in
many of the worked-out examples to make them easier for student readers to follow.
The purpose of these computational changes is to make the computations them-
selves less of a barrier to conceptual understanding.

Project Material Each chapter now contains several supplementary projects—
a total of more than 50, many of them new for this edition. Each project typically
employs some aspect of modern computational technology to illustrate the principal
ideas of the preceding section, and typically contains additional problems intended
for solution with the use of a graphics calculator or computer. Figures and data illus-
trate the use of graphics calculators and computer systems such as Derive, Maple,
and Mathematica. This project material is suitable for use in a computer or calcula-
tor lab conducted in association with a standard calculus course, perhaps meeting
weekly. It can also be used as a basis for graphics calculator or computer assignments
that students will complete outside of class, or for individual study.

Computer Craphics An increased emphasis on graphical visualization
along with numeric and symbolic understanding is provided by the computer-gener-
ated artwork, about 25% of which is new for this edition. Over 550 MATLAB-gener-
ated figures (half of them new for this edition) illustrate the kind of figures that
students using graphics calculators can produce for themselves. Many of these are
included with new graphical problem material. Mathematica-generated color graph-
ics are included to highlight all sections involving three-dimensional material.

Historical Material Historical and biographical chapter openings offer stu-
dents a sense of the development of our subject by real, live human beings. Both
authors are fond of the history of mathematics and believe that it can favorably
influence both our teaching and students’ learning of mathematics. For this reason
numerous historical comments appear in the text itself.

Introductory Chapters Chapters 1 and 2 have been streamlined for a lean-
er and quicker start on calculus. Chapter 1 concentrates on functions and graphs. It
includes two sections cataloging the elementary functions of calculus and provides a
foundation for an early emphasis on transcendental functions. Chapter 1 concludes
with a section addressing the question “What is calculus?” Chapter 2, on limits,
begins with a section on tangent lines to motivate the official introduction of limits
in Section 2.2. Trigonometric limits are treated throughout Chapter 2 in order to
encourage a richer and more visual introduction to the limit concept.

Differentiation Chapters The sequence of topics in Chapters 3 and 4 varies
a bit from the most traditional order. We attempt to build student confidence by
introducing topics more nearly in order of increasing difficulty. The chain rule
appears quite early (in Section 3.3) and we cover the basic techniques for differenti-
ating algebraic functions before discussing maxima and minima in Sections 3.5 and
3.6. The appearance of inverse functions is delayed until Chapter 7. Section 3.7 treats
the derivatives of all six trigonometric functions. Implicit differentiation and related
rates are combined in a single section (Section 3.8). The mean value theorem and its
applications are deferred to Chapter 4. Sections 4.4 on the first derivative test and
4.6 on higher derivatives and concavity have been simplified and streamlined. A
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great deal of new graphic material has been added in the curve-sketching sections
that conclude Chapter 4.

Integration Chapters New and simpler examples have been inserted
throughout Chapters 5 and 6. Antiderivatives (formerly at the end of Chapter 4)
now begin Chapter 5. Section 5.4 (Riemann sums) has been simplified greatly, with
upper and lower sums eliminated and endpoint and midpoint sums emphasized
instead. Many instructors now believe that the first applications of integration ought
not be confined to the standard area and volume computations; Section 6.5 is an
optional section that introduces separable differential equations. To eliminate
redundancy, the material on centroids and the theorems of Pappus is delayed to
Chapter 14 (Multiple Integrals), where it can be treated in a more natural context.

Early Transcendentals Functions Options An “early transcendental
functions” version of this book is also available. In the present version, the flexible
organization of Chapter 7 offers a variety of options to those instructors who favor
an earlier treatment of transcendental functions. Section 7.1 begins with the “high
school” approach to exponential functions, followed by the idea of a logarithm as
“the power to which the base a must be raised to get the number x.” On this basis,
Section 7.1 carries out a low-key review of the laws of exponents and of logarithms,
and investigates informally the differentiation of exponential and logarithmic func-
tions. This section on the elementary differential calculus of exponentials and loga-
rithms can be covered any time after Section 3.3 (on the chain rule). If this is done,
then Section 7.2—based on the definition of the logarithm as an integral—can be
covered any time after the integral has been defined in Chapter 5 (along with as
much of the remainder of Chapter 7 as the instructor desires). The remaining tran-
scendental functions—inverse trigonometric and hyperbolic—are now treated in
Chapter 8, which includes also indeterminate forms and I’'Hopital’s rule (much ear-
lier than in the third edition).

Thus the text offers a variety of ways to accommodate a course syllabus that
includes exponential functions early in differential calculus, and/or logarithmic func-
tions early in integral calculus.

Streamlining Techniques of Integration  Chapter 9 is organized to
accommodate those instructors who feel that methods of formal integration now
require less emphasis, in view of modern techniques for both numerical and symbol-
icintegration. Integration by parts (Section 9.3) now precedes trigonometric integrals
(Section 9.4). The method of partial fractions appears in Section 9.5, and trigonomet-
ric substitutions and integrals involving quadratic polynomials follow in Sections 9.6
and 9.7. Improper integrals appear in Section 9.8, and the more specialized rational-
izing substitutions have been relegated to the Chapter 9 Miscellaneous Problems.
This rearrangement of Chapter 9 makes it more convenient to stop wherever the
instructor desires.

Vectors The major reorganization for the fifth edition is a response to numer-
ous user suggestions to combine the treatments of two-dimensional vectors and
three-dimensional vectors, which appeared in separate chapters of the fourth edition.
In this reorganization we have also amalgamated the treatments of polar curves and
parametric curves, which also appeared in separate chapters in the fourth edition. As
a consequence, the contents of three chapters in the fourth edition have been effi-
ciently combined in two chapters of this revision—Chapter 10 on Polar Coordinates
and Plane Curves, and Chapter 12 on Vectors, Curves, and Surfaces in Space.



Preface

xiii

Infinite Series After the usual introduction to convergence of infinite
sequences and series in Sections 11.2 and 11.3, a combined treatment of Taylor poly-
nomials and Taylor series appears in Section 11.4. This makes it possible for the
instructor to experiment with a much briefer treatment of infinite series, but still
offer exposure to the Taylor series that are so important for applications.

Differential Equations ~ Many calculus instructors now believe that differen-
tial equations should be seen as early and as often as possible. The very simplest dif-
ferential equations (of the form dy/dx = f(x)) appear in a subsection at the end of
Section 5.2 (Antiderivatives). Section 6.5 illustrates applications of integration to
the solution of separable differential equations. Section 9.5 includes applications of
the method of partial fractions to population problems and the logistic equation. In
such ways we have distributed enough of the spirit and flavor of differential equa-
tions throughout the text that it seemed expeditious to eliminate the (former) final
chapter devoted solely to differential equations. But those who so desire can arrange
with the publisher to obtain for supplemental use appropriate sections of Edwards
and Penney, Differential Equations: Computing and Modeling (Englewood Cliffs,
N.J.: Prentice Hall, 1996).

Linear Algebra Notation and Terminology = An innovation for the fifth
edition is the inclusion (for optional coverage) of matrix terminology and notation
in the multivariable portion of the text—for example, in the treatment of quadric
surfaces in Chapter 12 and of directional derivatives and the multivariable chain
rule in Chapter 13. These subsections will enhance the understanding of multivari-
able concepts for those students who are familiar with matrix notation at the level of
the definition of the product of two matrices.

MAINTAINING TRADITIONAL STRENGTHS

While many new features have been added, five related objectives remained in con-
stant view: concreteness, readability, motivation, applicability, and accuracy.

Vv CONCRETENESS The power of calculus is impressive in its precise answers
to realistic questions and problems. In the necessary conceptual development of
the subject, we keep in sight the central question: How does one actually com-
pute it? We place special emphasis on concrete examples, applications, and prob-
lems that serve both to highlight the development of the theory and to
demonstrate the remarkable versatility of calculus in the investigation of impor-
tant scientific questions.

VY READABILITY Difficulties in learning mathematics often are complicated by
language difficulties. Our writing style stems from the belief that crisp exposition,
both intuitive and precise, makes mathematics more accessible—and hence more
readily learned—with no loss of rigor. We hope our language is clear and attractive
to students and that they can and actually will read it, thereby enabling the instruc-
tor to concentrate class time on the less routine aspects of teaching calculus.

¥ MOTIVATION Our exposition is centered around examples of the use of cal-
culus to solve real problems of interest to real people. In selecting such problems
for examples and exercises, we took the view that stimulating interest and moti-
vating effective study go hand in hand. We attempt to make it clear to students
how the knowledge gained with each new concept or technique will be worth the



Preface

effort expended. In theoretical discussions, especially, we try to provide an intu-
itive picture of the goal before we set off in pursuit of it.

v APPLICATIONS Its diverse applications are what attract many students to
calculus, and realistic applications provide valuable motivation and reinforce-
ment for all students. This book is well-known for the broad range of applications
that we include, but it is neither necessary nor desirable that the course cover all
of the applications in the book. Each section or subsection that may be omitted
without loss of continuity is marked with an asterisk. This provides flexibility for
each instructor to determine his or her own flavor and emphasis.

v ACCURACY Our coverage of calculus is complete (although we hope it is
somewhat less than encyclopedic). Still more than its predecessors, this edition
was subjected to a comprehensive reviewing process to help ensure accuracy. For
example, essentially every problem answer appearing in the Answers section at
the back of the book in this edition has been verified using Mathematica. With
regard to the selection and sequence of mathematical topics, our approach is tra-
ditional. But close examination of the treatment of standard topics may betray
our own participation in the current movement to revitalize the teaching of cal-
culus. We continue to favor an intuitive approach that emphasizes both conceptu-
al understanding and care in the formulation of definitions and key concepts of
calculus. Some proofs that may be omitted at the discretion of the instructor are
placed at the ends of sections and others are deferred to the book’s appendices.
In this way we leave ample room for variation in seeking the proper balance
between rigor and intuition.

SUPPLEMENTARY MATERIAL

A variety of electronic and printed supplements are provided by the publisher,
including a WWW site that consitutes an on-line calculator/computer guide for cal-
culus. This web site at www.prenhall.com/edwards is designed to assist calculus
students as they work on the book’s projects using graphing calculators and com-
puter algebra systems such as Derive, Maple, Mathematica, and MATLAB. The
authors will maintain and expand this site to provide calculus students with new and
evolving supplementary materials on a continuing basis, and to explore the use of
emerging technology for new channels of communication and more active learning
experiences.

Answers to most of the odd-numbered problems appear in the back of the book.
Solutions to most problems (other than those odd-numbered ones for which an
answer alone is sufficient) are available in the Instructor’s Solutions Manual. A sub-
set of that manual, containing solutions to problems numbered 1,4,7,10, .. .is avail-
able as a Student Solutions Manual. A collection of some 1700 additional problems
suitable for use as test questions, the Calculus Test Item File, is available (in both
electronic and hard-copy form) for use by instructors. Finally, an Instructor’s Edition
including section-by-section teaching outlines and suggestions is available to those
who are using this book to teach calculus.
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C H A P T E R

FUNCTIONS AND GRAPHS

René Descartes (1596—1650)

he seventeenth-century French

scholar René Descartes is per-
haps better remembered today as a
philosopher than as a mathemati-
cian. But most of us are familiar
with the “Cartesian plane” in which
the location of a point P is specified
by its coordinates (x, y).

As a schoolboy Descartes was
often permitted to sleep late
because of allegedly poor health.
He claimed that he always thought
most clearly about philosophy,
science, and mathematics while
lying comfortably in bed on cold
mornings. After graduating from
college, where he studied law
(apparently with little enthusi-
asm), Descartes traveled with
various armies for a number of
years, but more as a gentleman
soldier than as a professional mil-
itary man.

After finally settling down
(in Holland), Descartes pub-
lished, in 1637, his famous philo-
sophical treatise Discourse on the
Method (of Reasoning Well and
Seeking Truth in the Sciences).
One of three appendices to this
work sets forth his new “analyt-
ic” approach to geometry. His
principal idea (published almost
simultaneously by his countryman
Pierre de Fermat) was the corre-
spondence between an equation
and its graph, generally a curve
in the plane. The equation could
be used to study the curve and
vice versa.

Suppose that we want to solve
the equation f(x) = 0. Its solu-
tions are the intersection points of
the graph of y = f(x) with the x-
axis, so an accurate picture of the

curve shows the number and
approximate locations of the
solutions of the equation. For
instance, the graph

y=x3—3x2+1

has three x-intercepts, showing
that the equation

x3=3x*2+1=0

has three real solutions—one
between —1 and 0, one between 0
and 1, and one between 2 and 3. A
modern graphics calculator or
computer graphing program can
approximate these solutions more
accurately by magnifying the
regions in which they are located.
For instance, the magnified center
region shows that the correspond-
ing solution is x = 0.65.
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