R

FORTRAN PROGRAMMING,
PROGRAMS, AND
SCHEMATIC STORAGE MAPS

FORTRAN PROGRAMMING,
PROGRAMS, AND

SCHEMATIC STORAGE MAPS

Myron G. Mochel
Professor of Mechanical Engineering
Clarkson College of Technology

McGRAW-HILL BOOK COMPANY

New York St. Louis San Francisco Diisseldorf

Johanneéburg Kuala Lumpur London Mexico Montreal
Panama Rio*de Janeiro Singapore Sydney Toronto

New Delhi

PREFACE

This text is an introduction to programming in the FORTRAN language. Its purpose is to
give students, as quickly as possible, enough information to write and debug their ewn programs.
Therefore it contains no information that is not directly related to getting a program on and off
a computer on a closed-shop batch-processed basis. | have not discussed computer operation,
machine language, or assembly language.

Instead, the text material is centered around two methods of presentation that are probably
unique in the field of digital computer instruction: /lustrative programs and schematic storage
maps. These concepts have been used at Clarkson College of Technology since the fall of 1966;
Clarkson freshmen have received instruction in the FORTRAN language since the fall of 1961.
Schematic storage maps have proved particularly helpful, since they afford the student a schematic
understanding of the internal workings of the computer without a knowledge of the complex
electronics involved.

The material is presented in a learning sequence. This sequence may not satisfy everyone's
desires exactly—it represents one way of proceeding. The material is flexible enough to permit
adjustments according to an instructor’s wishes.

The initial phases of learning the FORTRAN language should center around evaluating
mathematical equations. This should be followed by a study of the logic of data manipulation.
Sections 79, 80, and 81 describe methods of number manipulation and Sections 118, 119, and
120 demonstrate how blood types can be matched.

Many programs are based on engineering and scientific applications. They have been chosen
in order to illustrate techniques and problems arising from the use of a computer and the FORTRAN
language. Sections 51 and 52 illustrate in an unusual manner why it is important to understand
the difference between the decimal system and the binary system of numbers=

I wish to thank Dr. Alexander L. Cicchinelli, Assistant Director of Analytical Studies and
Management Analysis of the Central Administration of the State University of New York, and
Professor William H. Lyman, Acting Director of the Clarkson College Computing Center, for their
help and advice.

Myron G. Mochel

CONTENTS

Preface v
SECTION
1 The Digital Computer Program 1
2 Machine Language 1
3 Assembly Language 2
4 Compiler Language 2
5 Communication with a Digital Computer 2
6 The Punched Card Code 3
7 FORTRAN Coding Form 5
8 Method of Introducing New Topics of the FORTRAN Language
9 The C Statement 5
10 END Statements 6
11 Real and Integer Variable Names and Real and Integer Numbers
12 Defining a New Variable 9
13 WRITE Statements 10
14 Statement Numbers 10
15 FORMAT Statements 11
16 Carriage Control 11
17 The F FORMAT Specification 12
18 Blank Column Specification 13
19 The Printout 13
20 The I FORMAT Specification 14
21 READ Statements 14
22 Unconditional GO TO Statements 15
23 The E FORMAT Specification 16
24 Arithmetic Operators with Real Variables and Real Numbers
25 Executable Statements and Declarative Statements 18
26 Flowcharts 18
27 Flowchart with Single-purpose Statements 19
28 Storage and Memory 20
29 Schematic Storage Maps 21
30 Arithmetic Operators with Integer Variables and
Integer Numbers 24
31 Arithmetic Hierarchy without Parentheses 25
32 Another Flowchart with Single-purpose Statements 26
33 Schematic Storage Maps 27
34 Arithmetic Hierarchy with Single Parentheses 28
35 Schematic Storage Map 30
36 Arithmetic Hierarchy with Double-nested Parentheses 32
37 Powers and Roots 34
38 Declaration of a Changed Mode 36
39 Change of Mode across Equal Signs 36
40 Arithmetic IF Statements 37
41 Flowchart with Decision-making Statements 38
42 Schematic Storage Maps 39
43 Format for Writing Words and Characters 42
44 Continuation of a Statement 44
45 Logical IF Statements 44

17

Vi vontents

SECTION

46 END =, Parameter in a READ Statement 45

47 Flowchart 46

48 Schematic Storage Maps 48

49 Logarithms 50

50 Antilogarithms 51

31 Comparison of the Decimal System and the Binary System 51

52 Decimal and Binary Differences 52

53 Natural Trigonometric Functions 54

54 Trigonometric Arcfunctions 55

55 The Area and Three Angles of a Triangle Given Three Sides 56

56 The Computed GO TO Statement 57

57 Flowchart 58

58 Schematic Storage Map 59

59 The Assigned GO TO Statement 60

60 The STOP Statement and the CALL EXIT Statement 60

61 Flowchart 63

62 Schematic Storage Map 63

63 Counters for Incrementing One Variable 64

64 Schematic Storage Map 65

65 Counters for Incrementing Two Variables in All Possible
Combinations 66

66 A DO Loop 67

67 Schematic Storage Map 68

68 Double-nested DO Loops 69

69 Schematic Storage Map 70

70 Triple-nested DO Loops 71

71 A Beam Deflection Problem 72

72 Subscripted Variables for Summation 73

73 Schematic Storage Maps 74

74 Standard Deviation 75

75 Empirical Equations by the Method of Least Squares/ Linear Fit 76

76 Empirical Equations by the Method of Least Squares/Semilogarithmic
Fit; Linear Abscissa; Logarithmic Ordinate 79

77 Empirical Equations by the Method of Least Squares/Semilogarithmic
Fit; Logarithmic Abscissa; Linear Ordinate 81

78 Empirical Equations by the Method of Least Squares/Full
Logarithmic Fit 82

79 Counting Negative Numbers 84

80 Sum of Positive Numbers and Sum of Negative Numbers 85

81 A Traffic Study 86

82 Integration with Rectangles 87

83 DO Loops with Steps Other than One 88

84 Integration by Simpson’s Rule 90

85 Numerical Differentiation 91

86 A Two-dimensional Array with Various Output
FORMAT Statements 92

87, Schematic Storage Maps 95

88 Schematic Storage Maps When Rearranging Subscripts for
a Matrix 96

89 Changing Subscripts of a Matrix 101

ix Contents

SECTION
90 Sum of the Interior Elements of a Matrix 102
91 A Two-dimensional Array/Finding the Smallest Value
and Its Location 102
92 Average Prices 103
93 The EQUIVALENCE Statement 104
94 The EQUIVALENCE Statement with Subscripted Variables 105
95 The EQUIVALENCE Statement with Subscripted Variables 107
96 A Subprogram 108
97 Schematic Storage Maps 109
98 Another Subprogram and a Schematic Storage Map 110
99 Another Subprogram and a Schematic Storage Map 112
100 Three Subprograms and a Schematic Storage Map 113
101 A Subprogram with Subscripted Variables and Its
Schematic Storage Maps 115
102 Variable Array Dimensions in the Subprogram 119
103 The COMMON Statement 122
104 lIteration 123
105 Iteration 126
106 Iteration 127
107 The Square Root of a Number 129
108 The Subroutine EXP 131
109 The Subroutine ABS 131
110 Functional Statements 132
111 Functional Subprograms 133
112 The A FORMAT Specification 134
113 Double Precision and the D FORMAT 136
114 Double-precision Comparison Using the E FORMAT 137
115 Double-precision Comparison Using the F FORMAT 139
116 Double Precision and the A FORMAT 140
117 The DATA Statement 141
118 Data Manipulation and Schematic Storage Maps 142
119 Data Manipulation and Schematic Storage Maps 145
120 Data Manipulation and a Schematic Storage Map 149
121 Tabulating Specifications 149
122 Intermediate Slashes in a FORMAT Statement 150
123 Carriage Control and Blank Lines 151
124 The E FORMAT Specification with a P Specification 154
125 The IMPLICIT REAL Statement 154
126 The IMPLICIT INTEGER Statement 155
127 Integer Logical Constants and Logical Variables 156
128 Real Logical Constants and Logical Variables 159
129 Selected Problems 160
APPENDIX A Control Cards 187
APPENDIX B Fine Details of FORTRAN 188

Index

189

1 Machine Language

10001000 100010

Section 1

THE DIGITAL COMPUTER PROGRAM

100010001000 1000 10001000 10001000 1000 10001000 10001000 10001000 10001000 10001000 10001000 10001000 1000100010001000100010

A digital computer can do little more than add digits, sense which of two digits is
larger, and move digits around in its storage according to a set of instructions. But a
digital computer is fast, and these basic capabilities can be combined and repeated
fast enough to make a computer respond as if it were capable of division, multiplica-
tion, and other higher operations directly. Integration and differentiation by the
methods taught in introductory calculus are not performed, but definite integrals can
be approximated and derivatives can be evaluated t')y numerical methods involving
only simple arithmetic operations. A digital computer also can be made to respond
as if it were looking up certain handbook information such as logarithms, functions
of angles, and square roots.

To keep up these appearances, a digital computer must follow a sequence of
precise instructions. The sequence of instructions is called a “‘computer program,”
and constructing the sequence is called ‘“‘computer programming.”

There are four basic units and a control unit that essentially go into a digital
computer. Their arrangement is shown schematically in Figure 1.

Arithmetic unit

Input unit

4

Styare . N ‘
ey UGS Output unit

\

] 3

\

Control unit

}

FIGURE 1

200020

Section 2

MACHINE LANGUAGE

200020

The most primitive language for programming a digital computer is the machine
language. It is an entirely numeric language; no alphabetic characters are used to
make up instructions, and it requires the programmer to have a.detailed knowledge of
the construction of the computer. Machine language is the only language understood

2 FORTRAN Programming, Programs, and Schematic Storage Maps

or interpreted by a computer without translation, but it is too detailed for program-
mers to work with effectively.

300030

Section 3
ASSEMBLY LANGUAGE

300030

A digital computer usually can be programmed in assembly language as well as in
machine language. Assembly language uses alphabetic and numeric characters to
make up the instructions. The alphabetic characters make the assembly language
easier for a programmer to learn and retain, but it is still quite detailed. When an
assembly language program is written, the computer must translate it, or assemble
it, into the machine language. Both machine language and assembly language are
complex and time-consuming to use; they are used primarily by the ‘“professional

programmer” for tasks which cannot be accomplished by programs written in a
compiler language.

400040

Section 4
COMPILER LANGUAGE

400040

A compiler uses a few English words combined with punctuation characters and the
familiar algebraic symbols to instruct or program a computer. Compiler languages,
such as FORTRAN, ALGOL, and COBOL, have been developed and designed so that
they can be easily learned and used by people who are not particularly interested in
the details of the logic and design of the computer. When a compiler language pro-
gram is written, the computer must translate it, or compile it, into machine language.
The engineer, scientist, economist, businessman, or someone with only an occasional
problem to solve on a computer will usually program the computer in a compiler
language. This text deals with the FORTRAN compiler Ianguage and refers to the
programmer’s compiler language as the ‘““source program.”

500050

Section 5
COMMUNICATION WITH A DIGITAL COMPUTER

500050

The source program written on a sheet of paper by a programmer is not in a form
which can be communicated directly into a computer. Similarly, a solution of a com-
putational problem in a computer’s storage is not in a form easily comprehended by a
programmer.

3 The Punched Card Code

In this text, our communication with a digital computer essentially follows the
sequence below.

FORTRAN = TRANSLATOR = MACHINE
v
LANGUAGE

LANGUAGE

Peripheral devices of some sort are needed to take care of input and output.
Devices commonly used for these purposes are (1) a typewriter, (2) punched paper
tape, (3) punched cards, (4) magnetic tape, and (5) magnetic discs. Output from a
computer also can be put directly onto a sheet of paper by a printer.

Whichever type of input/output device is used, a computer is said to “read”
when it takes information into its storage and is said to “write” when it relays the
contents of some section of its storage to an external device.

This text considers a computer that will read a source program and data into
its storage by interpreting the holes in punched cards and will write by printing a line
on a sheet of paper to relay information from its storage to the user.

6000600060006000600060006000600060006000600060006000600060006000600060006000€ JO06000600060006000600060006000600060

Section 6
THE PUNCHED CARD CODE

600060

A card is organized with 80 vertical columns across the card and 12 horizontal rows
down the card. Figure 2 shows a blank (i.e., unpunched) card on which the columns
are numbered 1 to 80 and 10 of the 12 rows are numberedO to 9. The position of the
two unnumbered rows at the top of the card is apparent in Figure 3. Each column
can contain the punched hole representation for any one of the FORTRAN charac-
ters, i.e., letters, digits, arithmetic operators, and punctuation symbols.

c o

st

atemrst (5

woeen |2

y\

L
FORTRAN STATEMENT

2

N

Y
s

IRRR

'
l1212

M222

]JJ]JdP»]]])!J!JJJ]’IJJJJ 3333333333333333333335333333333333331333333333(33333333
lilbftﬁlill1444‘444‘441u44144'44l11'444!4‘c£‘ld46446‘4!~ fagastiaastetaaliaeaaane,
R Rt L S R R T R Rt R e IR

185 38€E: e

i:'71717.171?7717?1111'1111111II’Y?Y?:'%‘]HIHM7771'/717‘17”17?)‘1’!17777'371%

foliaaee

R R R TR RN TR R R R R R O R R R R R R R I R R R R T R R R

HIIIB'JIHIIIBBOHJU“L"JL’UUD'J"-J cu000000G0000000G0000000000000000000000000C5 Uﬂﬂﬂﬂl
‘
1

."45"'9‘.?“"' 39028,

llllllIIl!IIIllllIlIIIIIIIIXIIIIlIIIII|III]IIIIIIIH)IIlIIIIlIIIIIIlII

2122222222022022222022

|
J

SEESGEEGE IO EEEC e CabC00: Z66C3 00t G0EF P GOb60FFE 06755060073 3335848

8278888308888 83 8888068868038 0R0ISC 88080 EBBEBERBOT CBITELIBE AL3000

53315

FIGURE 2

A BLANK CARD

Figure 3 is a card that has been punched by a keypunch machine. A keypunch
machine punches a one-, two-, or three-hole code into a column of the card and simul-
taneously prints the character corresponding to the code on the top edge of the card.

»

4 FORTRAN Programming, Programs, and Schematic Storage Maps
FLCLEFCHICKLENCFGRSTUVINN Z LIEZ4SE7ES +-/B)=(, '8 N\
ell.lli 111 | | N | B
e LTI FORTRAN STATERENT entrcarion
-Tﬁ?ﬂ'ﬁmmIWMiﬁuununnmu:uluuu Vo000 0N000B0 00000
':1)'!!‘ll\l*Hﬂ‘l!!li‘“ll!’i"lIN.‘115!"'"1‘2'!lll!ll)‘ti?lll“ll SRR IR R UDIEU R L R RIIURTER RN
Rl AR R Rt RN R Rl FEERRR R R RN AR R R R RRR RERREREYS
1_1121 zzzzlzzzzzzzlzzzzzzzzzznzlzzzzzzzzzzzzznzzznzznunzzzznnzznznzz}u
:i;lz3!31:z31|3133Jnln::1:33:333zl:z:1:11:3:nannllnxunannnxununnn
4}-l:!;:uAu:luuuAluuuu4uu|4uuuu4uluuu4uuuuuuuutuuuu
\ 568
! ielsescc6csMeccesccMocc65666c6666M6c66666M6666MiS66666F6566666666666665666666¢
ﬁ)lulylrnn.'11v|1111771|11:111111n1vlr1n117111111111711J11111111;17711:11171117|
z‘.n,aam.nlvzsaaunluuuuluuuannu:huuslanllllllluusuuanuunnuuu
Wb T D S AT D LTV
e S
FIGURE 3 A KEYPUNCHED CARD
® ® #
FORTRAN CODING FORM
Progrom =
Coded By Date
Checked By Identification Page of
R) l” 1 wl -
seiatTe] FORTRAN STATEMENT
' S+t/‘ 10 5 20 25 30 1 40 4y) 35 60 3] - 70 7
4 1 I 1 1 I | 1 i i 1 I 1 1
v 1 i 1 1 1 L 1 1 | ! L 1 1
i 1 1 1 1 1 1 1 1 1 1 1 1 = b S
4 1 1 L 1 1 1 1 1 1 1] 1 1
...... 1 | !] I 1 L 1 ! 1 1 1 - 1
1 1 1 1 1 ! 1 - 1 1 1 1 1 T W)
1 I 1 1 1 I ! i 1 1 Lo 1 a1 4
‘ 1} 1 1 1 1 1 1 I I 1 L 1 P
¥ 1 1 1 1 ! 1 ! 1 1 ! 1 L 1
b i 1 1 1 1 1 L 1 1 -~ L L - 1 — -
+ 1 1 1 - | 1 1 1 1 1 1 1 - 1 1
b ' L 1 1 1 1 1 1 1 s 1 L - PRl | = | [
-ty it 1 L ! 1 L ' 4 Lo 1 L b b
— o 1 1 1 1 1 1 1 | L » § L. - 1 -l .
....... 1 1 1 1 1 1 1 1 1 1 I . L i
+ 4 - 1 1 1 1 1 1 1 1 I 1) T —— 4)
'{i I) BN 1 ! 1 1 i 1 1 = 1 i - . . 1
. L - 1 1 L 1 1 1 1 1 1 = i 1 s 1 —a
- _I! - 1 1 - 1 1 1 1 1 1 1 . | S— | ; PN S
i’ N 1 1 -1 1 1 ! 1 1 1 a 1 g e L 1
__‘All a— . sl DUSES] (S 1 | 1 1 - 1 PRSI ES T i PGNP DU S |
FIGURE 4 FORTRAN CODING FORM

5 The C Statement (lllustrative Program Number 1)

Each letter of the alphabet has a unique representation made up of two holes; each

of the numbers O to 9 is represented by one hole; and mathematical operators and
punctuation symbols are coded by one, two, or three holes.

7000700070007000700070007000700070007000 700070007000 700070007000 7000 700070007000 7000700070007000 700070007000 700070

Section 7
FORTRAN CODING FORM

700070007000700070007000700070007000700070007000700070007000700070007000G70007000700070007000700070007000 7000700070

Atter a source program has been written on a sheet of paper, it must be transferred
character by character, line for line, onto keypunched cards before it can be read and
interpreted by the computer. The computer receives information according to the
keypunched holes. The printing on the card is not readable by the computer.

Figure 4 is a standard FORTRAN coding form used for convenience in writing
a program on a sheet of paper. The column numbers printed on the coding form in
Figure 4 correspond to column numbers printed on the keypunched card in Figure 3.

Each line of the coding form represents one instruction or statement of the
source program. Each line or statement on the coding form is keypunched, column
for column, onto a separate card.

800080

Section 8
METHOD OF INTRODUCING NEW TOPICS OF THE FORTRAN LANGUAGE

800080

To thoroughly understand a language it is necessary to be familiar with the rules of
grammar of the language. As each new rule of grammar or punctuation is introduced,
there will be an explanation and an illustration.

All illustrations center around a series of illustrative programs. Each illustrative
program is headed by a C card stating the “Illustrative Program Number (IPN)."”

900090009000900090009000900090009000900090009000900030009000900090009000900090009000900090009000300090009000900090

Section 9
THE C STATEMENT (ILLUSTRATIVE PROGRAM NUMBER 1)

900090009000900090009000900090009000900090003000900090009000900090009000900090009000900090009000900090003000900090

The first statement of a source program has C in column 1. The C stands for “‘com-
ment” and instructs the computer that the rest of the card, columns 2 through 80,
contains a comment to the programmer or reader. Often, many C cards are included
in a program to provide more introductory information. It is a good practice to include
comment cards at the beginning of programs for identification purposes. When a
program is lengthy, comment cards in the middle of the program will help the pro-
grammer and reader follow the program easily.

6

FORTRAN Pr

ogramming, Programs, and Schematic Storage Maps

Figure 5 shows seven cards that represent a very simple program. The first six
cards demonstrate a variety of ways to convey a C message as long as the C is in

column 1.

FlME“?lV[F‘R;];N‘AWWHLER 1 l I {\W

ARDR LR AR
I KATIVE FROGKR&M NUMEER 1
1} LiE Bl T l
ﬁ ILHJ. TRATIVE FROCRAM HUMEER 1
| | ALl | I | AL l
T[T USTRATIVE FPROCKAF FCREER 1
- AR |
' TFOFIER 1 ; ‘l
LAN LR T} J
LLUSTRATIVE FRECKAN HUREER 1
_ 1 11 n
] 1§ FPRTRAN STATEMENT Sncdron
ﬂﬂﬂ"'ﬂﬂlﬂlll||nlﬂllll'lll||lllIIiTTiIllllIlll'lIIlillllllllllllllllillﬂﬂl
‘l!'1””‘1‘I|SIIHYI|I.‘I7V”nll73)‘Z’")“”"”u]!l".!tlﬂﬂlluﬂulllllll!lUHN!5IN)I)I“IIIIHMH'IVI“WHYIUVII!IIHVI’!I
|Il|||IIIlll|ll]||l|||||||||l|||l||l||ll||!I||I||Il|¥|||ll||l||l||||||1|'1
222202222222212222222222022211252222222222222222222222222222222222022222222

| BEERRI | B
i |

NRRRINER]
g ||

‘Msse‘;uu.
\

1.&«@9‘.&97

l}llllll4I0l4llll‘lllllllllllltlllll‘lllllllllbllAlll4!(41‘4!1!11““5‘4

wiEEGEESSEESEEBGESEBBGIEEEEGE‘SGEEEEﬁiiﬁﬂi5655565Bi556SEEEFﬁEEBGEBEEiESEEmGEEEEGE
, | |)

3.11.313111133313313331333J!JJJJ11333]]3Jl]]3]33331113313333]1]3333313 J
IRER RN RN

IRRRRRER

)717]7117ll11l177:711111177117lll1111)7]777]171717771]7111177)7

BBOOCHBEBEO BB BB LEBBBBBRBB 030800 00BEALEBB000000088000888888¢

(ERENET]
asalqgls592[92I99sassselq1999999999955959s95sss999nsﬂssgnvsyssmmﬁnvssssA/J
91 TR, RO/ BT SRR IR (/] RN RN :RENPTN VI T TG U A8 I S AL

TR R W R DN IR

) 88BIL7

FIGURE 5 KEYPUNCHED CARDS THAT REPRESENT A VERY SIMPLE PROGRAM

0001

The END card is explained in the next section.
The usual form is to start the message in column 7, as shown in the first line

of the output of IPN 1 shown below.

C ILLUSTRATIVE PROGRAM NUMBER 1
C ILLUSTRATIVE PROGRAM NUMBER 1
c ILLUSTRATIVE PROGRAM NUMBER 1
C TLLUSTRATIVE PROGRAM NUMBER 1
C ILLUSTRATIVE PROGRAM NUMBER 1
CILLUSTRATIVE PROGRAM NUMBER 1

END

The four-digit number to the left of a statement (C statements excluded) is
automatically printed on the output sheet by the computer. This is a convenient
and automatic way for a programmer to refer to lines of printout.

100010001000100010001000100010001000100010001000100010001000 100010001000 1000 10001000100010001000100010001000100010

Section 10
END STATEMENTS (IPN 1)

lOOnIOOOlﬂ)(1000]07”1000IOOOIQPOIOOO]OOU10001000lOOOIOOOIOOOJOOOIOOOIOOOIOOOlOOO1000IOOOIOOO]000100010001000100010
\

An END statement must appear at the end of a program. It is the only way that the
computer knows that the compiling of the source program is complete. See Illustra-

tive Program Number 1.

7 Real and Integer Variable Names and Real and integer Numbers (IPN 2 and IPN 3)

110011

Section 11
REAL AND INTEGER VARIABLE NAMES AND REAL AND INTEGER NUMBERS
(IPN 2 and IPN 3)

110011

A

XYZ
R235
H3X7B9

—6.
350
108.3
2869.25

J
KALL
134568
MAN

35
108
2869

Programs contain variables, and these variables must be assigned names.. The name
of a variable consists of from one to six characters, where the characters can be
either letters or digits. The first character of a name, however, must be a letter.

When the first letter of a variable’s name is either |, J, K, L, M, or N, the variable
is called an “integer variable.” Any numerical value assigned to an integer variable
name will be an integer: it will not contain a decimal point. Integer variables and inte-
ger numbers are sometimes referred toas “‘fixed-point variables” and *‘fixed-point num-
bers.” When the first letter of the name of a variable is any letter other than [, J, K,
L, M, or N, the variable is called a ‘‘real variable.” Any numerical value assigned to a
-real variable will contain a decimal point. Real variables and real numbers are some-
times referred to as “floating-point variables' and “floating-point numbers.”

These two rules can be overridden by the programmer’s including specific
declarations to the contrary; these declarations will be considered later (Section 38).

Examples of real variable names are

HIGH

RESLTI1
RESLT2
RESLT3

Examples of real numbers are

860.086
—~74.3695
26385.4
5016.2

Examples of integer variable names are

N5X6Z
LRESL1

LRESL2
LRESL3

Examples of integer numbers are

860
74

26385

5016

In Illustrative Program Number 2 the variables A, BATE, SYSTEM, XA394,
ZSY3AA, RESULT, and DEF23 are real variables. Any numbers assigned to these
variables must have decimal points.

8 FORTRAN Programming, Programs, and Schematic Storage Maps

0001
0002
0003
0004
0005
0006
0007

0008
0009
o010
0011
0012

0013
0014
0015
0016
0017

oois

10.

-20.6378

378.287

252.897

[aEaNaNalal [alasNsNalaslasNaNalaNaNaNaNal

cOoOODOOCOO0OOCOOOOO0O

13
407
9638
36275

[aNaNakal

3.5

In lllustrative Program Number 3 the variables 1Q, JATE, KSYSTE, LA394,
M5Y3AA, NET, and JDEF23 are integer variables. Any numbers assigned to these
variables must not have decimal points.
In Illustrative Programs Numbers 2 and 3 (as well as all programs) four-digit
numbers are shown to the left of each statement. The computer automatically prints
these numbers on the output sheet. The information following the END statement
represents the result of the WRITE statements of the program.

ILLUSTRATIVE PROGRAM NUMBER 2

THIS PROGRAM PRINTS OUT CERTAIN PROGRAMMED INFORMATION.

ANY SENTENCES, SUCH AS THIS ONE, THAT START WITH A C IN

COLUMN ONE ARE FOR INFORMATION ONLY.

ONLY REAL VARIABLES AND REAL NUMBERS ARE USED

IN THIS PROGRAM.

THE SEVEN STATEMENTS BELOW DEFINE NEW VARIABLES.

THE VARIABLES A, BATE, SYSTEM, XA394, 25Y3AA,

RESULT AND DEF23 ARE REAL VARIABLES.

THE NUMBERS TO THE LEFT, 0001, 0002, 0003 ETC. ARE

ASSIGNED BY THE COMPUTER.

THE NUMBERS 10., -20.6378, 3.5, 378.287, -0.583

AND 125.39 ARE REAL NUMBERS.

A = 10.

BATE = -20.6378

SYSTEM = 3.5

XA396¢ = 378.287

I5Y3AA = -0.583

RESULT = A + BATE

DEF23 = XA394 - 125.39

THE FIVE WRITE STATEMENTS BELOW ASK THE COMPUTER TO PRINT DUT THE
NUMERICAL VALUES THAT CORRESPOND TO THE VARIABLIS' NAMES.

IN THE FIVE WRITE STATEMENTS, THE FIRST NUMBER WITHIN THE
PARENTHESES IS A DEVICE NUMBER.

THE SECOND NUMBER IS A FORMAT STATEMENT NUMBER.

WRITE(3, 1) A ‘

WRITE(3, 13) BATE, SYSTEM

WRITE(3, 407) XA394, Z5Y3AA, RESULT

WRITE(3, 9638) DEF23, A, SYSTEM, I5Y3AA

WRITE (3, 36275) RESULT, A, DEF23, SYSTEM, BATE

THE STATEMENTS BELOW ARE FORMAT STATEMENTS AND ARE LABELED WITH
A NUMBER.

FOLLOWING THE LEFT PARENTHESIS OF EACH FORMAT STATEMENT

IS THE CARRIAGE CONTROL. THIS, IN TURN, IS

FOLLOWED BY FORMAT SPECIFICATIONS.

FOLLOWING THE CARRIAGE CONTROL N THE FIRST FOUR FORMAT STATEMENTS
BELOW ARE FORMAT SPECIFICATIONS. THESE ARE F SPECIFICATIONS.

IN THE FORMAT STATEMENT 36275, A BLANK COLUMN SYMBOL FOLLOWS THE
CARRIAGE CONTROL.

FOLLOWING EACH F THERE IS A NUMBER CONTAINING A DECIMAL POINT.
THE DIGITS TO THE LEFT OF THE DECIMAL POINT ESTABLISH THE TOTAL
NUMBER OF COLUMNS RESERVED FOR THE NUMERICAL VALUE.

THE NUMBER FO THE RIGHT OF THE DECIMAL POINT ESTABLISHES HOW MANY
PLACES THERE ARE AFTER THE DECIMAL POINT.

FORMAT (1X, F8.0)

FORMAT(*0*, F10.%, F6.1)

FORMAT (*-%, 2F12.3, F13.4)

FORMAT (°*1°%, 4F9.3)

FORMAT (*+%, 45X, S5F11.4)

SEE SECTION 18 FOR AN EXPLANATION OF 45X

THE FOLLOWING STATEMENT MUST APPEAR AT THE END OF ALL FORTRAN
PROGRAMS.

FOR A DISCUSSION OF THE PRINTOUT SEE SECTION 19.

END

-0.583 ~10.6378

10.000

3.500 -0.583 -10.6378 10.0000 252.8969 3.5000

-20.6378

9 Defining a New Variable (IPN 2 and IPN 3)

c ILLUSTRATIVE PROGRAM NUMBER 3
c THIS PROGRAM PRINTS OUT CERTAIN PROGRAMMED INFORMATION.
C THE STATEMENTS BELOW INTRODUCE INTEGER VARTABLES.
c THE VARIABLES I, JATE, KSYSTE, LA394, MS5Y3AA, NET AND JDEF23 ARE
G INTEGER VARIABLES.
¢ THE NUMBERS 10, -21, 3, -378, 2 AND 125 ARE INTEGER NUMBERS.
0001 IQ = 10
0002 JATE = =21
0003 KSYSTE =3
0004 LA394 = -378
0005 M5Y3AA = 2
0006 NET = I + JATE
0007 JDEF23 = LA394 - 125
c THE STATEMENTS BELOW ASK THE COMPUTER TO PRINT OUT THE NUMERICAL
C VALUES THAT CORRESPOND TO THE VARIABLE NAMES.
0008 WRITE (3, 5) IQ
0009 WRITE (3, 43) JATE, KSYSTE
0010 WRITE (3, 705) LA394, M5Y3AA, JATE
0011 WRITE (3, 8326) NET, MS5Y3AA, JDEF23, IQ
0012 WRITE (3, 564983) JDEF23, JATE, LA394, NET, KSYSTE
d THE FORMAT SPECIFICATIONS BELOW ARE 1 SPECIFICATIONSw
0013 5 FORMAT (1X, I5)
0014 43 FORMAT (°*0°', 15, 8)
0015 705 FORMAT (°-*, 16, 2110)
0016 8326 FORMAT (°*1°, 217, 219)
0017 54983 FORMAT (*+°, 38X, S5I9)
0018 END
10
-21 3
-378 2 -21
-21 2 -503 10 -503 -21 -378 -21 3

120012

Section 12
DEFINING A NEW VARIABLE (IPN 2 and IPN 3)

120012

A common way to define a new variable is by means of an equation, where the new
variable is to the left of the equation. In the equation

ANGLE 3 = X + 3.

the new variable is ANGLE3, and the variable X had to be previously defined or intro-
duced. Note that all three terms are real.
In the equation

INDEX = J + M45 — KX7

the new variable is INDEX, and the variables J, M45, and KX7 had to be previously
defined or introduced. Note that all four terms are integers.

INustrative Program Number 2 contains the statement A = 10. Since this is
the first time that the variable A is presented, and since A is to the left of the equals
sign, a new variable is defined. This programming statement specifies that the real
variable A is equal to the real number 10.

Likewise, BATE is defined as —20.6378, SYSTEM is defined as 3.5, XA394 is
defined as 378.287, and Z5Y3AA is defined as —0.583. RESULT, however, is defined

10

FORTRAN Programming, Programs, and Schematic Storage Maps

in terms of the variables A and BATE, which have previously been defined. The vari-
able DEF23 is defined in terms of the variable XA394 (previously defined) and the
real number 125.39.

lllustrative Program Number 3 defines the integer variables 1Q, JATE, KSYSTE,
LA394, M5Y3AA, NET, and JDEF23.

130013

Section 13
WRITE STATEMENTS (IPN 2)

130013

A WRITE statement is for output purposes. It consists of the word “WRITE" followed
by a pair of parentheses containing two numbers separated by a comma. The first
of the two numbers identifies the device or machine to be used for the output. The
second number identifies the FORMAT statement to be- followed for the output
arrangement. This will be discussed later (Section 15).

The following statement is an example:

WRITE(3,47)X,SUM1,J,JSUM1

This statement tells the computer to write numerical values for the real variables X
and SUM1 and numerical values for the integer variables J and JSUM1. The above
values are to be forthcoming on device 3 (in this text device 3 will be a printer),
according to the FORMAT statement number 47.

Illustrative Program Number 2 has five WRITE statements. In aII instances,
device number 3 identifies a printer as the output device. In the five WRITE state-
ments the FORMAT statements to be used are, in order, 1, 13,407, 9638, and 36275.

Following the right-hand parenthesis, in each instance, is the name of one or
more variables. The computer is instructed to print the numerical value that corre-
sponds to each variable name.

140014

Section 14
STATEMENT NUMBERS (IPN 2).)

140014

A statement is numbered when it is referred to elsewhere in the program. This num-
ber is arbitrary and can be in any of the columns 1 through 5.

In Illustrative Program Number 2, five-statements have been numbered as
follows: 1, 13, 407, 9638, and 36275. All these statements have been previously
referred to in the WRITE statements.

To the left of column 1 appears a series of four-digit numbers, such as 0001
and 0002. These numbers identify selected lines of the printout and are listed by
the computer. These numbers are automatically assigned by the computer.

11 Carriage Control (IPN 2)

150015001500 150015001500 15001500150015001500150015001500150015001500150015001500150015001500 150015001500 15001500 1%

Section 15
FORMAT STATEMENTS (IPN 2)

1500 15001500 15001500 1500 1500 1500 150034

A FORMAT statement is used to establish the detailed arrangement of input or output
information or data. Such a statement consists of a statement number and the word
“FORMAT."” This is followed by a left parenthesis, carriage control, FORMAT specifi-
cations, and a right parenthesis, as shown below.

21 FORMAT(-',F8.2,F12.3)

The carriage control '—' is discussed in Section 16, and the two FORMAT specifica-
tions, F8.2 and F12.3, are discussed in Section 17.

160016001600160016001600160016001600 16001600 1600 160016001600 1600 1600 1600 1600 1600 1600 160016001600 160016001600160016

Section 16
CARRIAGE CONTROL (IPN 2)

1600160016001600160016001600 16001600 16001600160016001600 1600 1600 1600 1600 1600 160016001600 1600 160016001600 1600160016

In a WRITE statement, the first column of the output is for carriage control, i.e., the
amount of advance of the output paper. The printer (device number 3 in this text) is
basically a carriage roll (platen) that feeds the printout paper during the printing
process. The amount of advance of the paper is determined by the carriage control.

One line of output information contains 133 columns internally and 132
columns externally (columns 2 through 133). Column 1 is internal only and is for the
carriage control only.

The designation for carriage control appears in FORMAT statements as
follows:

ablank = advance one line and print
0 (zero) = advance two lines and print
—(minus) = advance three lines and print
1 (one) = advance to the top of the next page of output and print
+ (plus) = advance zero lines and print

Let us analyze the carriage control of the five FORMAT statements of Illustra-
tive Program Number 2.

The carriage control of statement 1 is 1X followed by a comma. The 1X tells
the computer to leave the first column of the output blank. This, in turn, instructs
the carriage control to advance the printout paper one line and then print.

The carriage control of statement 13 is 'O’ followed by a comma. This tells
the computer to put a zero, internally, in the first column of the output. This, in turn,
instructs the carriage control to advance the printout paper two lines and print.

The carriage control of statement 407 is '—' followed by a comma. This tells
the computer to put a minus sign, internally, in the first column of the output. This,
in turn, instructs the carriage control to advance the printout paper three lines and
print.

