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Preface

This volume contains the proceedings of the 8th International Conference on
Mathematics of Program Construction, MPC 2006, held at Kuressaare, Estonia,
July 3-5, 2006, colocated with the 11th International Conference on Algebraic
Methodology and Software Technology, AMAST 2006, July 5-8, 2006.

The MPC conferences aim to promote the development of mathematical prin-
ciples and techniques that are demonstrably useful and usable in the process of
constructing computer programs. Topics of interest range from algorithmics to
support for program construction in programming languages and systems.

The previous MPCs were held at Twente, The Netherlands (1989, LNCS
375), Oxford, UK (1992, LNCS 669), Kloster Irsee, Germany (1995, LNCS 947),
Marstrand, Sweden (1998, LNCS 1422), Ponte de Lima, Portugal (2000, LNCS
1837), Dagstuhl, Germany (2002, LNCS 2386) and Stirling, UK (2004, LNCS
3125, colocated with AMAST 2004).

MPC 2006 received 45 submissions. Each submission was reviewed by four
Programme Committee members or additional referees. The committee decided
to accept 22 papers. In addition, the programme included three invited talks by
Robin Cockett (University of Calgary, Canada), Olivier Danvy (Aarhus Univer-
sitet, Denmark) and Oege de Moor (University of Oxford, UK).

The review process and compilation of the proceedings were greatly helped
by Andrei Voronkov’s EasyChair system that I can only recommend to every
programme chair.

MPC 2006 had one satellite workshop, the Workshop on Mathematically
Structured Functional Programming, MSFP 2006, organized as a “small” work-
shop of the FP6 IST coordination action TYPES. This took place July 2, 2006.

Tallinn, April 2006 Tarmo Uustalu
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What Is a Good Process Semantics?
(Extended Abstract)

Robin Cockett

Dept. of Computer Science, University of Calgary,
2500 University Drive NW, Calgary, Alb. T2N 1N4, Canada
robin@cpsc.ucalgary.ca

Abstract. Current mathematical tools for understanding processes pre-
dominantly support process modeling. In particular, they faithully repre-
sent all the things that can go wrong (deadlock, livelock, etc.). However,
for the development of good programming abstractions in concurrent
(and other) setting it is important to focus on formal systems in which
things do not go wrong. So what are the formal models of processes
where nothing goes wrong?

For those involved in trying to understand the mathematics of program construc-
tion the new challenge is to understand the mathematics of concurrent programs.
The era of simple input/output computation has been completely superseded by
an expectation of connectivity from which there is no return.

After some four decades of intense effort to provide a good calculus of processes,
Robin Milner’s 7-calculus [5, 6] and its variants have emerged as a core paradigm.
The m-calculus evolved directly from CCS and may be regarded as a response to
the desire to pass information between processes beyond the mere fact of com-
munication. To achieve this it was necessary to introduce the notion of a channel
along which information could be passed and this involved solving the syntactic
scope and substitution issues inherent in interaction along such channels.

A considerable portion of the theoretical effort which went into these ideas was
inspired by operational considerations. In particular, the underlying paradigm
for equality hinged on behavioural equivalence and the notion of bisimulation.
The preoccupation with how the solution of these local technical issues lead to a
coherent global notion of equality based on bisimulation seemed to an observer,
such as myself, to be in tension with the desire to understand the structure of
processes.

Of course, equality given through operational considerations as embodied
in notions of bisimulation is a crucial sanity check: without it the production
of an operational system is impossible. However, these operational considera-
tions do not of themselves lead to a well-clothed mathematical understanding
of processes. In particular, they do not directly inform us of what the manipu-
lations of processes should be or how these manipulations should be organized.
To make progress on this front it is necessary to turn to algebraic rather than
operational sources for guidance.

T. Uustalu (Ed.): MPC 2006, LNCS 4014, pp. 1-3, 2006.
(© Springer-Verlag Berlin Heidelberg 2006



2 R. Cockett

The A-calculus [1] is a basis for simple input/output computations and the
model of reduction in this calculus undoubtedly provided inspiration for re-
duction of the m-calculus. However, the A-calculus transcended being a mere
mechanism to model computation and became intimately connected into math-
ematics when the Curry-Howard-Lambek isomorphism was established. Terms
of the typed A-calculus correspond precisely to proofs of propositions which, in
turn, form a cartesian closed category.

Lambek’s contribution to this was the categorical end, but it was also really
much broader: for it was categorical proof theory itself [4]. He understood that
the cut-elimination process is the operational semantics of composition. Fur-
thermore he realized that there is a correspondence between proof theories and
categorical doctrines. While one of Lambek’s motivation was to use the reduc-
tion processes from proof theory to throw light on categorical coherence issues,
his observation opened up a connection through which ideas could flow in both
directions. Examples of categorical doctrines occur throughout mathematics and
they can (and have) been used as a rich source from which to develop a deeper
understanding of the corresponding proof theories.

So what is the categorical proof theory of processes? I will argue that it is,
in fact, an old and thorny friend: multiplicative additive linear logic. This is a
thorn friend as the coherence issues of this logic are still the subject of active
research [7]. Indeed, at this time, it is not clear that the definitive view of even
these most basic issue has yet emerged. Equality of proofs, however, is known
to be decidable [3]and one way to show this is to use a term logic reminiscent of
the m-calculus. These ideas go right back to Bellin and Scott’s early work [2].

Recalled the proof theoretic systems for typed A-calculi are powerful enough to
secure good termination properties. However, these formal properties are bought
at a cost to expressiveness and consequently programmability. It is still open, for
example, whether the loss of expressiveness due to the imposed type discipline
can be successfully arranged in a manner to satisfy a significant programming
community.

To make the proof theory for concurrent processes usable as a language in
which reasonable concurrent problems can be programmed it is necessary to
add datatypes and value passing. Datatypes, in the process world, correspond
to protocols. The resulting type systems for the proof theory of linear logic
do actually secure all the good properties one wants: progressiveness, deadlock
freedom, and livelock freedom.

Unfortunately I do not claim to know (yet) how to turn this into something
which approaches a practical programming language! This is still seems a distant
goal. However, the motivation for formally based languages to support concur-
rent computation, when compared to that for simple input/output computations,
is much greater. This simply because so much more can go wrong. Furthermore,
the paradigms for expressing concurrent computation are still relatively crude
and this means there is much to be gained, even for todays programs, from
studying the mathematical structure of these formal systems.
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Abstract. First-order programs are desired in a variety of settings and
for a variety of reasons. Their coming into existence in first-order form
may be unplanned or it could be the deliberate result of a form of “firs-
tification” such as closure conversion, (super)combinator conversion, or
defunctionalization. In the latter case, they are higher-order programs in
disguise, just as iterative programs with accumulators are often recursive
programs in disguise.

This talk is about Reynolds’s defunctionalization [1,2]. Over the last
few years, we have observed that a number of existing first-order pro-
grams turn out to be in the range of defunctionalization, and therefore
they directly correspond to higher-order programs, even though they
were designed independently of any higher-order representation. Not all
first-order programs, however, are in defunctionalized form.

The goal of this talk is to refine our earlier characterization of what it
means to be in defunctionalized form [3], and to investigate how one can
tease a first-order program into defunctionalized form. On the way, we
present a variety of independently known programs that are in (or can
be teased into) defunctionalized form, and we exhibit their functional
counterpart—a process we refer to as ‘refunctionalization’ since it is a
left inverse of defunctionalization.
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Abstract. We give an introduction to aspect-oriented programming
from the viewpoint of data refinement. Some data refinements are conve-
niently expressed via aspects. Unlike traditional programming language
features for data refinement, aspects conceptually transform run-time
events, not compile-time programs.

1 Introduction

Data refinement is a powerful tool in program construction: we start with an
existing module, adding some new variables related to the existing ones via a
coupling invariant, and possibly adding new operations as well. Next we refine
each of the existing operations so that the coupling invariant is maintained.
Finally, if any existing variables have become redundant, they are removed [1].

The idea is pervasive, and it is no surprise, therefore, that numerous re-
searchers have attempted to capture it in a set of programming language features.
An early example of this trend can be found in the work of Bob Paige, who ad-
vocated the use of a program transformation system to achieve the desired effect
[2]. The idea was again raised by David Gries and Dennis Volpano in their design
of the transform in the Polya programming language [3]. Very recently, Annie
Liu and her coworkers [4] breathed new life into this line of work by updating it
to the context of object-oriented programming.

All these systems are very powerful, and they are complete in that all data
refinements can be expressed, at least in principle. In another community, a set
of programming language features has been proposed that is less powerful, but
still suitable for direct expression of simple data refinements. These features are
collectively known under the name of ‘aspects’ [5].

In this talk, we shall examine some examples of data refinement expressed as
aspects. Conceptually aspects transform run-time computations, unlike the above
systems, which are all based on the idea of compile-time transformation. For ef-
ficiency, aspect compilers do as much transformation as possible at compile-time
[6], but that is an implementation technique, not the semantics. We argue that to
write reusable data refinements, which are independent of the syntactic details of
the program being refined, the run-time view offered by aspects is preferable.
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2 Data Refinement

Consider an interface in Java for bags (multisets) of integers; an example of
such an interface is shown in Figure 1. It includes an operation that returns an
iterator over the elements of a bag; the order of such an iteration is not further
specified.

interface Bag {
void add(int i);
void remove(int i);
java.util.Iterator iterator ();

Fig. 1. Bag interface in Java

Now suppose we wish to augment this interface, and all classes that implement
it, with an operation that returns the average of the bag of integers. A naive
implementation would be to re-calculate the average each time, but that requires
time proportional to the size of the bag.

To achieve a contant-time implementation of average, we introduce two new
variables via data refinement, namely sum and size. The coupling invariant is
that sum holds the sum of the abstract bag, and size the number of elements.

1 public aspect Average {
2 private int Bag.sum;
3 private int Bag.size;
4 public float Bag.average() {
5 return (size == 0 7 ((float)sum) / ((float)size) : 0);
6
7 after(Bag b,int i) returning|() :
8 execution(void Bag.add(int)) &&
9 this(b) &&
10 args(i)
11 {
12 b.sum += i;
13 b.size +=1;
14
15 after(Bag b,int i) returning() :
16 execution(void Bag.remove(int)) &&
17 this(b) &&
18 args(i)
19 {
20 b.sum —=i;
21 b.size —= 1;
22 }
23}

Fig. 2. Aspect for data refinement



