Tarmo Uustalu (Ed.)

Mathematics of
Program Construction

8th International Conference, MPC 2006
Kuressaare, Estonia, July 2006
Proceedings

LNCS 4014

@_ Springer

Tarmo Uustalu (Ed.)

Mathematics of
Program Construction

8th International Conference, MPC 2006
Kuressaare, Estonia, July 3-5, 2006
Proceedings

@ Springer

Volume Editor

Tarmo Uustalu

Institute of Cybernetics

Akadeemia tee 21, 12618 Tallinn, Estonia
E-mail: tarmo@cs.ioc.ee

Library of Congress Control Number: 2006927705

CR Subject Classification (1998): F.3, F4, D.2, E.1, D.3
LNCS Sublibrary: SL 1 — Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-35631-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-35631-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11783596 06/3142 543210

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

4014

Lecture Notes in Computer Science

For information about Vols. 1-3960

please contact your bookseller or Springer

Vol. 4063: 1. Gorton, G.T. Heineman, I. Crnkovic, H.W.
Schmidt, J.A. Stafford, C.A. Szyperski, K. Wallnau
(Eds.). Component-Based Software Engineering. XI,
394 pages. 2006.

Vol. 4060: K. Futatsugi, J.-P. Jouannaud, J. Meseguer
(Eds.). Algebra, Meaning and Computation. XXXVIII,
643 pages. 2006.

Vol. 4058: L.M. Batten, R. Safavi-Naini (Eds.), Informa-
tion Security and Privacy. XII, 446 pages. 2006.

Vol. 4056: P. Flocchini, L. Gasieniec (Eds.), Structural
Information and Communication Complexity. X, 357
pages. 2006.

Vol. 4055:J. Lee, J. Shim, S.-g. Lee, C. Bussler, S. Shim
(Eds.). Data Engineering Issues in E-Commerce and Ser-
vices. IX. 290 pages. 2006.

Vol. 4054: A. Horvith, M. Telek (Eds.), Formal Methods
and Stochastic Models for Performance Evaluation. VIII,
239 pages. 2006.

Vol. 4053: M. lkeda, K.D. Ashley, T.-W. Chan (Eds.),
Intelligent Tutoring Systems. XX VI, 821 pages. 2006.
Vol. 4045: D. Barker-Plummer, R. Cox. N. Swoboda
(Eds.), Diagrammatic Representation and Inference. XII,
301 pages. 2006. (Sublibrary LNAI).

Vol. 4044: P. Abrahamsson, M. Marchesi, G. Succi
(Eds.), Extreme Programming and Agile Processes in
Software Engineering. X1I, 230 pages. 2006.

Vol. 4043: A.S. Atzeni, A. Lioy (Eds.), Public Key In-
frastructure. X1, 261 pages. 2006.

Vol. 4041: S.-W. Cheng, C.K. Poon (Eds.). Algorithmic
Aspects in Information and Management. XI. 395 pages.
2006.

Vol. 4040: R. Reulke, U. Eckardt, B. Flach, U. Knauer,
K. Polthier (Eds.), Combinatorial Image Analysis. XII,
482 pages. 2006.

Vol. 4039: M. Morisio (Ed.), Reuse of Off-the-Shelf
Components. XIII, 444 pages. 2006.

Vol. 4038: P. Ciancarini, H. Wiklicky (Eds.), Coordina-
tion Models and Languages. VIII, 299 pages. 2006.
Vol. 4037: R. Gorrieri, H. Wehrheim (Eds.), Formal
Methods for Open Object-Based Distributed Systems.
XVII, 474 pages. 2006.

Vol. 4036: O. H. Ibarra, Z. Dang (Eds.), Developments
in Language Theory. XII, 456 pages. 2006.

Vol. 4034: J. Miinch, M. Vierimaa (Eds.), Product-
Focused Software Process Improvement. XVII, 474
pages. 2006.

Vol. 4033: B. Stiller, P. Reichl, B. Tuffin (Eds.), Per-
formability Has its Price. X. 103 pages. 2006.

Vol. 4031: M. Ali, R. Dapoigny (Eds.), Innovations in
Applied Artificial Intelligence. XXIII, 1353 pages. 2006.
(Sublibrary LNALI).

Vol. 4027: H.L. Larsen, G. Pasi, D. Ortiz-Arroyo, T.
Andreasen, H. Christiansen (Eds.), Flexible Query An-
swering Systems. XVIII, 714 pages. 2006. (Sublibrary
LNAI).

Vol. 4026: P. Gibbons, T. Abdelzaher, J. Aspnes, R. Rao
(Eds.), Distributed Computing in Sensor Systems. XIV,
566 pages. 2006.

Vol. 4025: F. Eliassen, A. Montresor (Eds.), Distributed
Applications and Interoperable Systems. XI, 355 pages.
2006.

Vol. 4024: S. Donatelli, P. S. Thiagarajan (Eds.), Petri
Nets and Other Models of Concurrency - ICATPN 2006.
XI, 441 pages. 2006.

Vol. 4021: E. André, L. Dybkjar, W. Minker, H. Neu-
mann, M. Weber (Eds.), Perception and Interactive Tech-
nologies. X1, 217 pages. 2006. (Sublibrary LNAI).

Vol. 4020: A. Bredenfeld, A. Jacoff, I. Noda, Y. Taka-
hashi, RoboCup 2005: Robot Soccer World Cup IX.
XVII, 727 pages. 2006. (Sublibrary LNAI).

Vol. 4018: V. Wade, H. Ashman, B. Smyth (Eds.), Adap-
tive Hypermedia and Adaptive Web-Based Systems.
XVI. 474 pages. 2006.

Vol. 4016: J.X. Yu, M. Kitsuregawa, H.V. Leong (Eds.),
Advances in Web-Age Information Management. XVII,
606 pages. 2006.

Vol. 4014: T. Uustalu (Ed.), Mathematics of Program
Construction. X, 455 pages. 2006.

Vol. 4013: L. Lamontagne, M. Marchand (Eds.), Ad-
vances in Artificial Intelligence. XIII, 564 pages. 2006.
(Sublibrary LNAI).

Vol. 4012: T. Washio, A. Sakurai, K. Nakashima, H.
Takeda, S. Tojo, M. Yokoo (Eds.). New Frontiers in Ar-
tificial Intelligence. XIII, 484 pages. 2006. (Sublibrary
LNAI).

Vol. 4011: Y. Sure, J. Domingue (Eds.), The Semantic
Web: Research and Applications. XIX, 726 pages. 2006.
Vol. 4010: S. Dunne, B. Stoddart (Eds.), Unifying The-
ories of Programming. VIII, 257 pages. 2006.

Vol. 4009: M. Lewenstein, G. Valiente (Eds.), Combina-
torial Pattern Matching. XII, 414 pages. 2006.

Vol. 4007: C. Alvarez, M. Serna (Eds.), Experimental
Algorithms. X1, 329 pages. 2006.

Vol. 4006: L.M. Pinho, M. Gonzilez Harbour (Eds.), Re-
liable Software Technologies — Ada-Europe 2006. XTI,
241 pages. 2006.

Vol. 4005: G. Lugosi, H.U. Simon (Eds.), Learning The-
ory. XI, 656 pages. 2006. (Sublibrary LNAI).

Vol. 4004: S. Vaudenay (Ed.). Advances in Cryptology -
EUROCRYPT 2006. X1V, 613 pages. 2006.

Vol. 4003: Y. Koucheryavy. J. Harju, V.B. Iversen (Eds.),
Next Generation Teletraffic and Wired/Wireless Ad-
vanced Networking. XVI, 582 pages. 2006.

Vol. 4001: E. Dubois, K. Pohl (Eds.), Advanced Infor-
mation Systems Engineering. XVI, 560 pages. 2006.

Vol. 3999: C. Kop, G. Fliedl, H.C. Mayr, E. Métais (Eds.),
Natural Language Processing and Information Systems.
XIII, 227 pages. 2006.

Vol. 3998: T. Calamoneri, 1. Finocchi, G.F. Italiano
(Eds.), Algorithms and Compiexity. XII, 394 pages.
2006.

Vol. 3997: W. Grieskamp, C. Weise (Eds.), Formal Ap-
proaches to Software Testing. XII, 219 pages. 2006.

Vol. 3996: A. Keller, J.-P. Martin-Flatin (Eds.), Self-
Managed Networks, Systems, and Services. X, 185
pages. 2006.

Vol. 3995: G. Miiller (Ed.), Emerging Trends in Infor-
mation and Communication Security. XX, 524 pages.
2006.

Vol. 3994: V.N. Alexandrov, G.D. van Albada, PM.A.
Sloot, J. Dongarra (Eds.), Computational Science —
ICCS 2006, Part IV. XXXV. 1096 pages. 2006.

Vol. 3993: V.N. Alexandrov, G.D. van Albada, PM.A.
Sloot, J. Dongarra (Eds.), Computational Science —
ICCS 2006, Part III. XXX VI, 1136 pages. 2006.

Vol. 3992: V.N. Alexandrov, G.D. van Albada, PM.A.
Sloot, J. Dongarra (Eds.), Computational Science —
ICCS 2006, Part I1. XXXV, 1122 pages. 2006.

Vol. 3991: V.N. Alexandrov, G.D. van Albada, PM.A.
Sloot, J. Dongarra (Eds.), Computational Science —
ICCS 2006, Part I. LXXXI, 1096 pages. 2006.

Vol. 3990: J. C. Beck, B.M. Smith (Eds.), Integration
of Al and OR Techniques in Constraint Programming
for Combinatorial Optimization Problems. X, 301 pages.
2006.

Vol. 3989: J. Zhou, M. Yung, F. Bao, Applied Cryptog-
raphy and Network Security. XTIV, 488 pages. 2006.

Vol. 3987: M. Hazas, J. Krumm, T. Strang (Eds.),
Location- and Context-Awareness. X, 289 pages. 2006.

Vol. 3986: K. Stplen, W.H. Winsborough, F. Martinelli,
F. Massacci (Eds.), Trust Management. XIV, 474 pages.
2006.

Vol. 3984: M. Gavrilova, O. Gervasi, V. Kumar, C.J. K.
Tan, D. Taniar, A. Lagana, Y. Mun, H. Choo (Eds.), Com-
putational Science and Its Applications - ICCSA 2006,
Part V. XXV, 1045 pages. 2006.

Vol. 3983: M. Gavrilova, O. Gervasi, V. Kumar, C.J. K.
Tan, D. Taniar, A. Lagana. Y. Mun, H. Choo (Eds.), Com-
putational Science and Its Applications - ICCSA 2006.
Part IV. XX VI, 1191 pages. 2006.

Vol. 3982: M. Gavrilova, O. Gervasi, V. Kumar, C.J. K.
Tan, D. Taniar, A. Lagana, Y. Mun, H. Choo (Eds.), Com-
putational Science and Its Applications - ICCSA 2006,
Part II1. XXV, 1243 pages. 2006.

Vol. 3981: M. Gavrilova, O. Gervasi, V. Kumar, C.J. K.
Tan, D. Taniar, A. Lagana, Y. Mun, H. Choo (Eds.), Com-
putational Science and Its Applications - ICCSA 2006,
Part I1. XX VI, 1255 pages. 2006.

Vol. 3980: M. Gavrilova, O. Gervasi, V. Kumar, C.J. K.
Tan, D. Taniar, A. Lagana, Y. Mun, H. Choo (Eds.), Com-
putational Science and Its Applications - ICCSA 2006,
Part I. LXXV, 1199 pages. 2006.

Vol. 3979: T.S. Huang, N. Sebe, M.S. Lew, V. Pavlovic,
M. Kélsch, A. Galata, B. Kisacanin (Eds.), Computer
Vision in Human-Computer Interaction. XII, 121 pages.
2006.

Vol. 3978: B. Hnich, M. Carlsson, F. Fages. F. Rossi
(Eds.), Recent Advances in Constraints. VIII, 179 pages.
2006. (Sublibrary LNAI).

Vol.3977: N. Fuhr, M. Lalmas, S. Malik, G. Kazai (Eds.),
Advances in XML Information Retrieval and Evaluation.
XII, 556 pages. 2006.

Vol. 3976: F. Boavida, T. Plagemann, B. Stiller, C. West-
phal, E. Monteiro (Eds.), Networking 2006. Networking
Technologies, Services, and Protocols: Performance of
Computer and Communication Networks; Mobile and
Wireless Communications Systems. XX VI, 1276 pages.
2006.

Vol. 3975: S. Mehrotra, D.D. Zeng, H. Chen, B. Thu-
raisingham, F.-Y. Wang (Eds.), Intelligence and Security
Informatics. XXII, 772 pages. 2006.

Vol. 3973: J. Wang. Z. Yi,].M. Zurada, B.-L. Lu, H. Yin
(Eds.), Advances in Neural Networks - ISNN 2006, Part
M. XXIX, 1402 pages. 2006.

Vol. 3972: J. Wang, Z. Yi,].M. Zurada, B.-L. Lu, H. Yin
(Eds.), Advances in Neural Networks - ISNN 2006, Part
I1. XXVII, 1444 pages. 2006.

Vol. 3971: J. Wang, Z.. Yi, J.M. Zurada, B.-L.. Lu, H. Yin
(Eds.), Advances in Neural Networks - ISNN 2006, Part
. LXVII, 1442 pages. 2006.

Vol. 3970: T. Braun, G. Carle, S. Fahmy. Y. Koucheryavy
(Eds.), Wired/Wireless Internet Communications. XIV,
350 pages. 2006.

Vol. 3969: @. Ytrehus (Ed.), Coding and Cryptography.
X1, 443 pages. 2006.

Vol. 3968: K.P. Fishkin, B. Schiele, P. Nixon, A. Quigley
(Eds.). Pervasive Computing. XV, 402 pages. 2006.
Vol. 3967: D. Grigoriev. J. Harrison, E.A. Hirsch (Eds.),
Computer Science — Theory and Applications. XVI, 684
pages. 2006.

Vol. 3966: Q. Wang. D. Pfahl. D.M. Raffo. P. Wernick
(Eds.), Software Process Change. XIV, 356 pages. 2006.

Vol. 3965: M. Bernardo, A. Cimatti (Eds.), Formal Meth-
ods for Hardware Verification. VII, 243 pages. 2006.

Vol. 3964: M. U. Uyar, A.Y. Duale, M.A. Fecko (Eds.),
Testing of Communicating Systems. XI, 373 pages.
2006.

Vol. 3963: O. Dikenelli, M.-P. Gleizes, A. Ricci (Eds.).
Engineering Societies in the Agents World VI. XII. 303
pages. 2006. (Sublibrary LNAI).

Vol. 3962: W. 1sselsteijn, Y. de Kort, C. Midden, B.

Eggen, E. van den Hoven (Eds.), Persuasive Technology.
XII, 216 pages. 2006.

Preface

This volume contains the proceedings of the 8th International Conference on
Mathematics of Program Construction, MPC 2006, held at Kuressaare, Estonia,
July 3-5, 2006, colocated with the 11th International Conference on Algebraic
Methodology and Software Technology, AMAST 2006, July 5-8, 2006.

The MPC conferences aim to promote the development of mathematical prin-
ciples and techniques that are demonstrably useful and usable in the process of
constructing computer programs. Topics of interest range from algorithmics to
support for program construction in programming languages and systems.

The previous MPCs were held at Twente, The Netherlands (1989, LNCS
375), Oxford, UK (1992, LNCS 669), Kloster Irsee, Germany (1995, LNCS 947),
Marstrand, Sweden (1998, LNCS 1422), Ponte de Lima, Portugal (2000, LNCS
1837), Dagstuhl, Germany (2002, LNCS 2386) and Stirling, UK (2004, LNCS
3125, colocated with AMAST 2004).

MPC 2006 received 45 submissions. Each submission was reviewed by four
Programme Committee members or additional referees. The committee decided
to accept 22 papers. In addition, the programme included three invited talks by
Robin Cockett (University of Calgary, Canada), Olivier Danvy (Aarhus Univer-
sitet, Denmark) and Oege de Moor (University of Oxford, UK).

The review process and compilation of the proceedings were greatly helped
by Andrei Voronkov’s EasyChair system that I can only recommend to every
programme chair.

MPC 2006 had one satellite workshop, the Workshop on Mathematically
Structured Functional Programming, MSFP 2006, organized as a “small” work-
shop of the FP6 IST coordination action TYPES. This took place July 2, 2006.

Tallinn, April 2006 Tarmo Uustalu

Conference Organization

Programme Chair

Tarmo Uustalu (Institute of Cybernetics, Estonia)

Programme Committee

Roland Backhouse (University of Nottingham, UK)

Eerke Boiten (University of Kent, UK)

Venanzio Capretta (University of Ottawa, Canada)
Sharon Curtis (Oxford Brookes University, UK)

Jules Desharnais (Université de Laval, Canada)

Jeremy Gibbons (University of Oxford, UK)

Lindsay Groves (Victoria University of Wellington, New Zealand)
William Harrison (University of Missouri, USA)

Ian J. Hayes (University of Queensland, Australia)

Johan Jeuring (Universiteit Utrecht, The Netherlands)
Dexter Kozen (Cornell University, USA)

Christian Lengauer (Universitat Passau, Germany)
Lambert Meertens (Kestrel Institute, USA)

Shin-Cheng Mu (Academia Sinica, Taiwan)

Bernhard Moller (Universitat Augsburg, Germany)

José Nuno Oliveira (Universidade do Minho, Portugal)
Alberto Pardo (Universidad de la Repiblica, Uruguay)
Ross Paterson (City University London, UK)

Ingrid Rewitzky (University of Stellenbosch, South Africa)
Varmo Vene (University of Tartu, Estonia)

Additional Referees

José Bacelar Almeida Tyng-Ruey Chuang Colin Fidge

lan Bayley Michael Clalen Sergei Gorlatch
Yves Bertot Robert Colvin Jonathan Grattage
Marc Bezem Phil Cook Dan Grundy

Ana Bove Silvia Crafa E. C. R. Hehner
Carlos Camarao Alcino Cunha John Hughes
David Carrington Ellie D’'Hondt Peter Hofner

Manuel Chakravarty Andreas Dolzmann Benjamin Kelly

VIII Organization
Shriram Krishnamurthi
Peeter Laud

Carlos Luna

Ralf Lammel

Clare Martin

Larissa Meinicke
Diethard Michaelis

Till Mossakowski
Héarmel Nestra

Milad Niqui

John O’Donnell

Bruno C. d. S. Oliveira
Jorge Sousa Pinto
Fermin Reig

Gunter Ritter

Eike Ritter

Ando Saabas

Lutz Schroder

Organizing Committee

Olha Shkaravska
Graeme Smith

Kim Solin

Barney Stratford
Georg Struth

Femke van Raamsdonk
Joost Visser

Da-Wei Wang

Meng Wang

Juhan Ernits, Monika Perkmann, Ando Saabas, Olha Shkaravska, Kristi Uustalu,

Tarmo Uustalu (Institute of Cybernetics, Estonia).

Host Institution

Institute of Cybernetics at Tallinn University of Technology, Estonia.

Sponsors

National Centers of Excellence Programme of the Estonian Ministry of

Education and Research.

Table of Contents

Invited Talks

What Is a Good Process Semantics?
Robin Cockett 1

Refunctionalization at Work

Olivier Danvy 4
Aspects and Data Refinement

Pavel Avgustinov, Eric Bodden, Elnar Hajiyev, Oege de Moor,

Neil Ongkingco, Damien Sereni, Ganesh Sittampalam,

JULEETY TTBOLE o v vy swsms sorme s moses §5s @ HIME o as BasEs 5 @86 6EE 5
Contributed Papers
Towards Generic Programming with Sized Types

Andreas Abel 10
Relational Semantics for Higher-Order Programs

Kamal Aboul-Hosn, Dexter Kozen, 29
Proofs of Randomized Algorithms in CoQ

Philippe Audebaud, Christine Paulin-Mohring 49
Exercises in Quantifier Manipulation

Roland Backhouse, Diethard Michaelis 69
Improving Saddleback Search: A Lesson in Algorithm Design

Richard 8. Bid: 1o« snies sormnsns smies snins s9nusms s6ams s06me: 53 82
Loopless Functional Algorithms

Richard S. Bird 90
Compositional Reasoning for Pointer Structures

Yifeng Chen, JJW. Sanders 115

Progress in Deriving Concurrent Programs: Emphasizing the Role
of Stable Guards
Brijesh Dongol, Arjan J. Mootj i . 140

X Table of Contents

Fission for Program Comprehension
Jeremy Gibbons 162

“Scrap Your Boilerplate” Revolutions

Ralf Hinze, Andres LOR . ..ot 180
Generic Views on Data Types

Stefan Holdermans, Johan Jeuring, Andres Loh, Alerey Rodriguez ... 209
Recursion Schemes for Dynamic Programming

Jevgeni Kabanov, Varmo Vene...... 235
Bimonadic Semantics for Basic Pattern Matching Calculi

Wolfram Kahl, Jacques Carette, Xiaoheng Ji 253
Nondeterministic Folds

Clare E. Martin, Sharon A. Curtisuiiiiienennnnenen.. 274
A Datastructure for Iterated Powers

Ralph Mattheso e 299
Continuous Action System Refinement

Larissa Meinicke, Ian J. Hayesuiiiiiuinininennnann. 316
The Linear Algebra of UTP

Bernhard MOIlero 338
The Shadow Knows: Refinement of Ignorance in Sequential Programs

Carroll Morgam 359
Swapping Arguments and Results of Recursive Functions

Akimasa Morihata, Kazuhiko Kakehi, Zhenjiang Hu,

Masolo Takeichi : svsms sus o smsonsss 55553 0500505 IRIME SR 1550 379
Refinement Algebra with Operators for Enabledness and Termination

Kim Solin, Joakim von Wright 397
Constructing Rewrite-Based Decision Procedures for Embeddings
and Termination

Georg SUrubly ss sms sscms spisEs sasms s me s a ms sMsEE FEFRFeHE FHEEE v s 416
Quantum Predicative Programming

Anya Tafliovich, Eric C.R. Hehner...............c..cuiiiiin.. 433

Author IndexX e 455

What Is a Good Process Semantics?
(Extended Abstract)

Robin Cockett

Dept. of Computer Science, University of Calgary,
2500 University Drive NW, Calgary, Alb. T2N 1N4, Canada
robin@cpsc.ucalgary.ca

Abstract. Current mathematical tools for understanding processes pre-
dominantly support process modeling. In particular, they faithully repre-
sent all the things that can go wrong (deadlock, livelock, etc.). However,
for the development of good programming abstractions in concurrent
(and other) setting it is important to focus on formal systems in which
things do not go wrong. So what are the formal models of processes
where nothing goes wrong?

For those involved in trying to understand the mathematics of program construc-
tion the new challenge is to understand the mathematics of concurrent programs.
The era of simple input/output computation has been completely superseded by
an expectation of connectivity from which there is no return.

After some four decades of intense effort to provide a good calculus of processes,
Robin Milner’s 7-calculus [5, 6] and its variants have emerged as a core paradigm.
The m-calculus evolved directly from CCS and may be regarded as a response to
the desire to pass information between processes beyond the mere fact of com-
munication. To achieve this it was necessary to introduce the notion of a channel
along which information could be passed and this involved solving the syntactic
scope and substitution issues inherent in interaction along such channels.

A considerable portion of the theoretical effort which went into these ideas was
inspired by operational considerations. In particular, the underlying paradigm
for equality hinged on behavioural equivalence and the notion of bisimulation.
The preoccupation with how the solution of these local technical issues lead to a
coherent global notion of equality based on bisimulation seemed to an observer,
such as myself, to be in tension with the desire to understand the structure of
processes.

Of course, equality given through operational considerations as embodied
in notions of bisimulation is a crucial sanity check: without it the production
of an operational system is impossible. However, these operational considera-
tions do not of themselves lead to a well-clothed mathematical understanding
of processes. In particular, they do not directly inform us of what the manipu-
lations of processes should be or how these manipulations should be organized.
To make progress on this front it is necessary to turn to algebraic rather than
operational sources for guidance.

T. Uustalu (Ed.): MPC 2006, LNCS 4014, pp. 1-3, 2006.
(© Springer-Verlag Berlin Heidelberg 2006

2 R. Cockett

The A-calculus [1] is a basis for simple input/output computations and the
model of reduction in this calculus undoubtedly provided inspiration for re-
duction of the m-calculus. However, the A-calculus transcended being a mere
mechanism to model computation and became intimately connected into math-
ematics when the Curry-Howard-Lambek isomorphism was established. Terms
of the typed A-calculus correspond precisely to proofs of propositions which, in
turn, form a cartesian closed category.

Lambek’s contribution to this was the categorical end, but it was also really
much broader: for it was categorical proof theory itself [4]. He understood that
the cut-elimination process is the operational semantics of composition. Fur-
thermore he realized that there is a correspondence between proof theories and
categorical doctrines. While one of Lambek’s motivation was to use the reduc-
tion processes from proof theory to throw light on categorical coherence issues,
his observation opened up a connection through which ideas could flow in both
directions. Examples of categorical doctrines occur throughout mathematics and
they can (and have) been used as a rich source from which to develop a deeper
understanding of the corresponding proof theories.

So what is the categorical proof theory of processes? I will argue that it is,
in fact, an old and thorny friend: multiplicative additive linear logic. This is a
thorn friend as the coherence issues of this logic are still the subject of active
research [7]. Indeed, at this time, it is not clear that the definitive view of even
these most basic issue has yet emerged. Equality of proofs, however, is known
to be decidable [3]and one way to show this is to use a term logic reminiscent of
the m-calculus. These ideas go right back to Bellin and Scott’s early work [2].

Recalled the proof theoretic systems for typed A-calculi are powerful enough to
secure good termination properties. However, these formal properties are bought
at a cost to expressiveness and consequently programmability. It is still open, for
example, whether the loss of expressiveness due to the imposed type discipline
can be successfully arranged in a manner to satisfy a significant programming
community.

To make the proof theory for concurrent processes usable as a language in
which reasonable concurrent problems can be programmed it is necessary to
add datatypes and value passing. Datatypes, in the process world, correspond
to protocols. The resulting type systems for the proof theory of linear logic
do actually secure all the good properties one wants: progressiveness, deadlock
freedom, and livelock freedom.

Unfortunately I do not claim to know (yet) how to turn this into something
which approaches a practical programming language! This is still seems a distant
goal. However, the motivation for formally based languages to support concur-
rent computation, when compared to that for simple input/output computations,
is much greater. This simply because so much more can go wrong. Furthermore,
the paradigms for expressing concurrent computation are still relatively crude
and this means there is much to be gained, even for todays programs, from
studying the mathematical structure of these formal systems.

What Is a Good Process Semantics? 3

References

o1

. Barendregt, H. P.: The Lambda Calculus: Its Syntax and Semantics. Revised edn.

Vol. 103 of Studies in Logic and the Foundations of Mathematics. North-Holland
(1984)

Bellin, G., Scott, P. J.: On the pi-calculus and linear logic. Theor. Comput. Sci.
135(1) (1994) 11-65

. Cockett, J. R. B., Pastro, C.: A language for multiplicative-additive linear logic.

In Proc. of 10th Conf. on Category Theory and Computer Science, CTCS 2004.
Vol. 122 of Electron. Notes in Theor. Comput. Sci. Elsevier (2005) 23-65.
Lambek, J.: Deductive systems and categories II. Proc. of Conf. on Category Theory,
Homology Theory and Their Applications, Vol. 1. Vol. 87 of Lect. Notes in Math.
Springer-Verlag (1969) 76-122

Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes I. Inform. and
Comput. 100(1) (1992) 1-40

Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes II. Inform. and
Comput. 100(1) (1992) 41-77

. van Glabbeek, R. J., Hughes, D. J. D.: Proof nets for unit-free multiplicative-additive

linear logic. ACM Trans. on Comput. Logic 6(4) (2005) 784-842

Refunctionalization at Work

Olivier Danvy

BRICS,
Department of Computer Science, University of Aarhus,
IT-parken, Aabogade 34, DK-8200 Aarhus N, Denmark
danvy@brics.dk

Abstract. First-order programs are desired in a variety of settings and
for a variety of reasons. Their coming into existence in first-order form
may be unplanned or it could be the deliberate result of a form of “firs-
tification” such as closure conversion, (super)combinator conversion, or
defunctionalization. In the latter case, they are higher-order programs in
disguise, just as iterative programs with accumulators are often recursive
programs in disguise.

This talk is about Reynolds’s defunctionalization [1,2]. Over the last
few years, we have observed that a number of existing first-order pro-
grams turn out to be in the range of defunctionalization, and therefore
they directly correspond to higher-order programs, even though they
were designed independently of any higher-order representation. Not all
first-order programs, however, are in defunctionalized form.

The goal of this talk is to refine our earlier characterization of what it
means to be in defunctionalized form [3], and to investigate how one can
tease a first-order program into defunctionalized form. On the way, we
present a variety of independently known programs that are in (or can
be teased into) defunctionalized form, and we exhibit their functional
counterpart—a process we refer to as ‘refunctionalization’ since it is a
left inverse of defunctionalization.

References

1. Reynolds, J. C.: Definitional interpreters for higher-order programming languages.
In: Proc. of 25th ACM Nat. Conf. ACM Press (1972) 717-740 // Reprinted in
Higher-Order and Symb. Comput. 11(4) (1998) 363-397

2. Reynolds, J. C.: Definitional interpreters revisited. Higher-Order and Symb. Com-
put. 11(4) (1998) 355-361

3. Danvy, O., Nielsen, L. R.: Defunctionalization at work. In Proc. of 3rd Int. ACM
SIGPLAN Conf. on Principles and Practice of Declarative Programming PPDP’01.
ACM Press (2001) 162-174

T. Uustalu (Ed.): MPC 2006, LNCS 4014, p. 4, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Aspects and Data Refinement
(Extended Abstract)

Pavel Avgustinov!, Eric Bodden?, Elnar Hajiyev', Oege de Moor!,
Neil Ongkingco', Damien Sereni!, Ganesh Sittampalam!, and Julian Tibble!

1 Oxford University Computing Laboratory,
Wolfson Building, Parks Road, Oxford OX1 3QD, United Kingdom
2 School of Computer Science, McGill University,
Montréal, Québec H3A 2A7, Canada

Abstract. We give an introduction to aspect-oriented programming
from the viewpoint of data refinement. Some data refinements are conve-
niently expressed via aspects. Unlike traditional programming language
features for data refinement, aspects conceptually transform run-time
events, not compile-time programs.

1 Introduction

Data refinement is a powerful tool in program construction: we start with an
existing module, adding some new variables related to the existing ones via a
coupling invariant, and possibly adding new operations as well. Next we refine
each of the existing operations so that the coupling invariant is maintained.
Finally, if any existing variables have become redundant, they are removed [1].

The idea is pervasive, and it is no surprise, therefore, that numerous re-
searchers have attempted to capture it in a set of programming language features.
An early example of this trend can be found in the work of Bob Paige, who ad-
vocated the use of a program transformation system to achieve the desired effect
[2]. The idea was again raised by David Gries and Dennis Volpano in their design
of the transform in the Polya programming language [3]. Very recently, Annie
Liu and her coworkers [4] breathed new life into this line of work by updating it
to the context of object-oriented programming.

All these systems are very powerful, and they are complete in that all data
refinements can be expressed, at least in principle. In another community, a set
of programming language features has been proposed that is less powerful, but
still suitable for direct expression of simple data refinements. These features are
collectively known under the name of ‘aspects’ [5].

In this talk, we shall examine some examples of data refinement expressed as
aspects. Conceptually aspects transform run-time computations, unlike the above
systems, which are all based on the idea of compile-time transformation. For ef-
ficiency, aspect compilers do as much transformation as possible at compile-time
[6], but that is an implementation technique, not the semantics. We argue that to
write reusable data refinements, which are independent of the syntactic details of
the program being refined, the run-time view offered by aspects is preferable.

T. Uustalu (Ed.): MPC 2006, LNCS 4014, pp. 5-9, 2006.
© Springer-Verlag Berlin Heidelberg 2006

6 P. Avgustinov et al.

2 Data Refinement

Consider an interface in Java for bags (multisets) of integers; an example of
such an interface is shown in Figure 1. It includes an operation that returns an
iterator over the elements of a bag; the order of such an iteration is not further
specified.

interface Bag {
void add(int i);
void remove(int i);
java.util.Iterator iterator ();

Fig. 1. Bag interface in Java

Now suppose we wish to augment this interface, and all classes that implement
it, with an operation that returns the average of the bag of integers. A naive
implementation would be to re-calculate the average each time, but that requires
time proportional to the size of the bag.

To achieve a contant-time implementation of average, we introduce two new
variables via data refinement, namely sum and size. The coupling invariant is
that sum holds the sum of the abstract bag, and size the number of elements.

1 public aspect Average {
2 private int Bag.sum;
3 private int Bag.size;
4 public float Bag.average() {
5 return (size == 0 7 ((float)sum) / ((float)size) : 0);
6
7 after(Bag b,int i) returning|() :
8 execution(void Bag.add(int)) &&
9 this(b) &&
10 args(i)
11 {
12 b.sum += i;
13 b.size +=1;
14
15 after(Bag b,int i) returning() :
16 execution(void Bag.remove(int)) &&
17 this(b) &&
18 args(i)
19 {
20 b.sum —=i;
21 b.size —= 1;
22 }
23}

Fig. 2. Aspect for data refinement

