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Preface

Since Berry’s introduction of the adiabatic geometrical phase, a large number
of articles have appeared on the theoretical foundations, physical applica-
tions, and experimental manifestations of geometric phases. Although there
are by now several review articles on geometric phases, there have been no
comprehensive books or monographs on the subject. The present volume is
intended to fill this gap in the literature. It is aimed at a diverse audience of
advanced undergraduate as well as graduate students of physics and chem-
istry.

Due to their general nature, geometric phases have found applications in
several different areas of physics and chemistry. Their theoretical basis has
been shown to be related to the most basic concepts of modern mathematics.
These make a complete treatment of the subject in a single volume a quite
impossible task. We have included in this book an introductory part which
offers an elementary discussion of the basic concepts and is based on our
graduate level courses and summer school lectures. In the later part of the
book we present more advanced subjects on the mathematical foundations of
the geometric phase and the applications of the geometric phase in molecular
and condensed matter physics. In the preparation of this book priority was
given to the clarity of the exposition. We have also made every attempt to
make the book as self-contained as possible.

A student with a good understanding of basic quantum mechanics should
be able to learn the contents of the book at a reasonable pace. Although
we have not assumed a knowledge of differential geometry, familiarity with
manifolds and differential forms will certainly facilitate a quick reading. Read-
ers with limited mathematical background should consult Appendix A. Here
we offer a discussion of the most basic mathematical concepts together with
worked examples. Appendix B provides an overview of the point group theory
needed to understand many of the molecular examples of geometric phases.

Chapter 1 includes an introduction to the importance of geometric phases
as well as a short historical survey of the developments which led to their
discovery. Chapter 2 introduces Berry’s adiabatic geometrical phase. This is
followed by a discussion of the topological phase of Aharonov and Bohm.
Chapter 3 is devoted to a detailed treatment of the quantum dynamics of a
magnetic dipole in a precessing magnetic field. This is used as the motivation
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for the introduction of the non-adiabatic geometric phase of Aharonov and
Anandan in Chap. 4. This chapter also discusses the connections between
the geometric phase and the theory of fiber bundles. Chapter 5 offers a more
detailed introduction to fiber bundles and gauge theories. Chapter 6 includes
a thorough discussion of different holonomy interpretations of the geomet-
ric phase and their relation to universal classifying bundles and connections.
Chapter 7 treats the non-Abelian generalization of the ordinary geometrical
phase. Chapters 8 and 9 discuss the emergence and importance of the Abelian
and non-Abelian geometric phases in molecular physics. Chapters 10 and 11
provide a wealth of experimental examples in which the geometric phase has
been detected and for which knowledge of the geometric phase greatly en-
hances understanding. The final three chapters survey various manifestations
and applications of the geometric phase in condensed matter systems.
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1. Introduction

Today quantum mechanics forms an important part of our understanding of
physical phenomena. Its consequences both at the fundamental and practical
levels have intrigued mathematicians, physicists, chemists, and even philoso-
phers for the past seven decades. A quantum system is usually described in
terms of certain vector spaces and linear operators acting on these spaces.
The vector spaces and their operators represent the states and the observables
of the quantum system. The dynamics of a quantum system is determined
by dynamical differential equations, the Schrodinger or the Heisenberg equa-
tions, which involve a linear operator called the Hamiltonian.

The Hamiltonian operator yields the energy levels and more importantly
describes the evolution of the states of the physical system in time. Standard
textbooks on quantum mechanics discuss almost exclusively the properties
of quantum systems whose Hamiltonian does not depend on time. In many
practical situations, however, the physical parameters which occur in the ex-
pression for the Hamiltonian are determined by time-dependent external or
environmental factors. The study of time-dependent Hamiltonians is therefore
very important in modeling real physical systems. One of the most interest-
ing aspects of a quantum system with a time-dependent Hamiltonian is the
occurrence of the geometric phase.

The geometric phase had been ignored in quantum physics for more than
half a century. It had not been forgotten, but was thought to be unimportant.
In 1928, Fock [82] showed that such a phase could be set to unity by a redef-
inition of the phase of the initial wave function. Although Fock’s proof was
limited to non-cyclic evolutions only, his conclusion was generally accepted
until around 1980 when Mead and Truhlar [167] and Berry {31] reconsidered
cyclic evolutions.

A cyclic evolution is an evolution in which the initial quantum state
evolves periodically in time. For a pure cyclic state, this means that the
state operator returns to the initial operator after each period while the cor-
responding state vector evolves into a vector which agrees with the initial
vector only up to a phase factor. This phase factor contains, in addition to
the usual dynamical phase, a purely geometric part which does not depend
on the duration of the evolution.
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Cyclic evolutions play an important role in the description of quantum
systems in a periodically changing environment. The environment can be
either classical such as a magnetic dipole in a precessing external magnetic
field, or quantal such as an electron in the changing quantal environment of
the collective motion of a molecule.

In 1956 Pancharatnam [208] discovered an analog of the quantum geomet-
ric phase in polarization optics. Three years later Y. Aharonov and D. Bohm
published their findings on the significance of the electromagnetic vector po-
tential in quantum mechanics [8]. They showed how the presence of a vector
potential that did not produce an electric or magnetic field in the configu-
ration space of free electrons could influence their interference pattern. The
change in the interference pattern is due to the so-called Aharonov-Bohm
phases which are special examples of the geometric phase. The Aharonov-
Bohm phases received much attention in the 1960s, but it was not until the
1980s that the importance of the geometric phase was fully recognized.

The geometric phase in molecular systems appeared first in an implicit
manner in the study of the £ ® e Jahn-Teller problem by Longuet-Higgins
et al. [159] and by Herzberg and Longuet-Higgins [105]. They noticed that
an electronic wave function that could be taken as real in all nuclear con-
figurations behaved as a double-valued function that changed sign when the
nuclear coordinates traversed a loop encircling a crossing point of the energy
levels (potential energy surfaces) in the nuclear coordinate space.

The first concrete derivation of a geometric phase and the corresponding
gauge potential was carried out in 1978 by Mead and Truhlar {167]. They
considered the chemical reaction H + Hy — Hs + H, which could be viewed
as a wave packet motion from one minimum of the potential energy surface
of the Hy system to another. Hjy is an example of an F ® e Jahn-Teller
system, and the electronic wave function undergoes the sign changes found
by Longuet-Higgins and his collaborators. Mead and Truhlar argued that the
double-valuedness of the wave function caused by these sign changes could
be avoided by including a vector potential in the electronic Hamiltonian.

This amounts to an improvement of the standard molecular Born-Oppen-
heimer approximation [48]. The latter is based on the observation that one can
divide the motion of the constituents of a molecule into two “parts”: the fast
motion of the electrons and the slow collective rotations and vibrations of the
molecule as a whole. One first investigates the dynamics of the fast variables
while keeping the slow variables fixed, and then determines the dynamics of
the slow variables. This means that in the Born-Oppenheimer approximation
one treats the fast and the slow motions as two separate parts that do not
influence each other. If, on the other hand, one does not consider the nuclear
coordinates as fixed parameters but as quantum observables whose values
change slowly in time, then the gauge potential underlying the geometric
phase emerges naturally from the Born-Oppenheimer method.
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Conceptually simpler than the gauge theory of the Born-Oppenheimer
method is the investigation of quantum systems whose Hamiltonian depends
on a set of slowly changing parameters. This was carried out in 1984 in a
beautiful paper by Berry [31] who considered quite general quantum systems
in a slowly changing classical environment. In this paper Berry derived the
same gauge potential and the geometric phase that Mead and Truhlar had
obtained from the Born-Oppenheimer method for the molecule. He further
showed that indeed the celebrated Aharonov-Bohm phase was a special case
of a geometric phase.

Berry’s derivation of the adiabatic geometric phase — also known as the
Berry phase — made use of the quantum adiabatic approximation which was
only relevant for slowly changing Hamiltonians. However, it is easy to show
that for a Hamiltonian with changing eigenvectors the adiabatic approxima-
tion of the dynamics of a cyclic evolution cannot be exact. Therefore Berry’s
phase could only be an approximation of the true quantum geometric phase.
The latter was introduced for general unitary cyclic evolutions by Aharonov
and Anandan in 1987 |7] and subsequently generalized to arbitrary (not nec-
essarily unitary or cyclic) evolutions by Samuel and Bhandari [224)].

Soon after the publication of Berry’s paper, a number of experiments were
performed to observe geometric phases. Among these are the nuclear mag-
netic resonance experiment by Suter et al. [239] and the nuclear quadrupole
resonance experiment by Tycko [254]. A manifestation of the geometric phase
in polarization optics was also observed in an experiment by Tomita and
Chiao (250]. Today, there are many publications on various experimental
studies of geometric phases in molecular physics. In particular, the geometric
phase effect in the F ® e problem was recently verified in a very convincing
way by high-resolution spectroscopy of Naz and Liz [122,259).

Geometric phases also play an important role in the study of condensed
matter systems. One of the earliest results in this direction is due to Zak [281]
who noticed that certain non-integrable phases of the Bloch wave function
could be identified as a geometric phase. This was later related to the polar-
ization of crystal insulators [124] and used to develop a practical method of
calculating piezoelectric and ferroelectric properties [219]. Geometric phases
in Bloch waves can also affect the semiclassical dynamics of electrons in metals
and semiconductors [141,237] and have important applications in the theory
of the anomalous Hall effect [119]. More spectacularly, the quantized Hall con-
ductance discovered in two-dimensional electron systems can be identified as
a manifestation of certain geometric phases [23,201,247]. Adiabatic particle
transport in Bloch bands and mesoscopic systems [245] may be most directly
understood in terms of geometric phases as well. Some other applications of
the geometric phase in condensed matter physics include a first-principles
calculation of spin waves [198, 202], the dynamics of quantized vortices {249],
and fractional statistics [18].
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The fact that the geometric phase has important observable consequences
in many areas of physics and chemistry is not the only reason why it has at-
tracted so much attention. The geometric phase is also one of the most beau-
tiful examples of what Wigner once called “the unreasonable effectiveness of
mathematics in the natural sciences.”

Immediately after Berry’s introduction of the adiabatic geometric phase,
Simon [230] noticed that it could be interpreted as the holonomy of a fiber
bundle and that Berry’s gauge potential played the role of a connection on this
fiber bundle. It was this relation to the beautiful mathematics of fiber bundles
that caused the geometric phase to become a fashion in mathematical physics.
When the theory of fiber bundles was established and when the mathematics
of the universal classifying bundles and connections was developed, no one
could imagine that these would be directly related to a quantum mechanical
phase factor which could be measured in say an interference experiment. The
universal connection is the “natural” mathematical object which classifies the
geometric structures on arbitrary (finite-dimensional) principal fiber bundles.
It is incredible that this mathematical entity is exactly the gauge potential
whose integral over a closed path of states gives the Aharonov-Anandan
phase with Berry’s gauge potential as its limiting case [44, 184], and that this
connection is related to Mead’s vector potential which was discovered in the
study of molecular structure.



