ALGORITHMICS
The Spirit of Computing

DAVID HAREL

ALGORITHMICS
The Spirit of Computing

DAVID HAREL

The Weizmann Institute of Science, Rehovot, Israel

Not by might, nor by power, but by my spirit
Zechariah 4: 6

for the spirit of the . . . creature was in the wheels
When those moved, these moved;
and when those stood still, these stood still
Ezekiel 1: 20, 21

ADDISON-WESLEY PUBLISHING COMPANY
Wokingham, England - Reading, Massachusetts - Menlo Park, California
New York - Don Mills, Ontario - Amsterdam - Bonn - Sydney
Singapore - Tokyo - Madrid - Bogota - Santiago - San Juan

© 1987 Addison-Wesley Publishers Limited
© 1987 Addison-Wesley Publishing Company, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without prior written
permission of the publisher.

The programs presented in this book have been included for their instructional
value. They have been tested with care but are not guaranteed for any
particular purpose. The publisher does not offer any warranties or
representations, nor does it accept any liabilities with respect to the programs.

Cover design by John Gibbs from an idea suggested by the author.
Illustrations by Chartwell Illustrators.

Typeset by MCL Computerset Ltd., Ely, Cambs.

Printed in Great Britain by T J Press (Padstow) Ltd., Cornwall.

First printed 1987.
Reprinted 1987.

British Library Cataloguing in Publication Data
Harel, David

Algorithmics : the spirit of computing.

1. Electronic data processing

2. Computers

I. Title

004 QA76

ISBN 0-201-19240-3

Library of Congress Cataloging in Publication Data
Harel, David, 1950-
Algorithmics : the spirit of computing.

Bibliography; p.

Includes index.

1. Electronic data processing. 2. Algorithms.
I. Title.
QA76.H2833 1987 004 86-32038
ISBN 0-201-19240-3

ALGORITHMICS

To my dear parents,
Joyce and Harold Fisch,
for the first 20 years

and to Varda,
for all the rest

Preface

Read this, I pray thee
Isaiah 29: 12

This book tells a story. The story concerns the concepts, ideas, methods
and results fundamental to computer science. It is not specifically about
computer technology, nor is it about computer programming, though
obviously it is heavily influenced by both.

The book is intended to fill a crucial gap in the literature related to
the computer revolution. Scores of excellent books can be found on
computers themselves, with details of their structure, workings and
operation. There are also numerous books about the act of writing programs
for computers in any of a growing number of languages. These books come
at a wide range of levels, some aimed at people with no computer-related
background at all, and some aimed at the most computer-literate profes-
sionals. In addition, there are many books on subjects peripheral to the
technology, such as the social and legal aspects of the revolution, as well
as books describing the relevance of computers to a variety of application
areas. All this comes as no surprise. People are curious about computers,
and want to learn how to put them to use. They are typically interested in
specific kinds of computers, and often for specific purposes too.

Then there are textbooks. Indeed, computer science is a fast-growing
academic discipline, with ever-larger numbers of potential students knock-
ing at the doors of admission offices. Well-established academic disciplines
have a habit of yielding excellent textbooks, and computer science is no
exception. Over the years many comprehensive and clearly written
textbooks have appeared, containing detailed technical accounts of the
subjects deemed appropriate to students of computer science. However,
despite the dizzying speed with which some of the technological innovations
become obsolete and are replaced by new ones, the fundamentals of the
science of computation, and hence many of the basic concepts that are
considered important in a computer science curriculum, change slowly, if
at all. Of course, new technologies and new languages require revisions in
scientific emphasis, which are eventually reflected in the scientific litera-

vii

viii ALGORITHMICS: THE SPIRIT OF COMPUTING

ture. However, by and large, there is almost universal agreement on a core
of fundamental topics that computer science students should be taught.

It would appear that anyone associated with computers ought to be
aware of these topics, and not only those who have decided to spend three
or four years getting a particular kind of academic diploma. Moreover,
given that a revolution is indeed taking place before our very eyes, many
of these topics, and the special ways of thinking that go with them, ought
to be available to the enquiring person even if that person is not directly
associated with a computer at all.

Books concerned primarily with computers or programming are
intended to fulfil quite different needs. Computers are made of bits and
bytes, and programming is carried out using languages with rigid rules of
grammar and punctuation. Consequently, computer books often suffer
from the ‘bit/byte syndrome’ and programming books from the ‘semicolon
syndrome’. In other words, the reader becomes predominantly involved in
the principles of a particular computer or a particular programming
language (or both). It would seem that things cannot be explained without
first describing, in detail, either a machine or a medium for communicating
with one (or both).

Many advanced textbooks do treat the fundamentals, but by their very
nature they concentrate on specific topics, and do so at an advanced
technical level that is usually unsuitable for the general reader. Even
professional programmers and systems analysts might lack the background
or motivation required to get through books aimed at full-time computer
science students.

Curiously, there appears to be very little written material devoted to
the science of computing and aimed at the technically oriented general
reader as well as the computer professional. This fact is doubly curious in
view of the abundance of precisely this kind of literature in most other
scientific areas, such as physics, biology, chemistry and mathematics, not
to mention humanities and the arts. There appears to be an acute need for
a technically detailed, expository account of the fundamentals of computer
science; one that suffers as little as possible from the bit/byte or semicolon
syndromes and their derivatives, one that transcends the technological and
linguistic whirlpool of specifics, and one that is useful both to a sophisticated
layperson and to a computer expert. It seems that we have all been too busy
with the revolution to be bothered with satisfying such a need.

This book is an attempt in this direction. Its objective is to present
a readable account of some of the most important and basic topics of
computer science, stressing the fundamental and robust nature of the
science in a form that is virtually independent of the details of specific
computers, languages, and formalisms.

* * *

PREFACE ix

This book grew out of a series of lectures given by the author on ‘Galei
Zahal’, one of Israel’s national radio channels, between October 1984 and
January 1985. It is about what shall be called algorithmics in this book —
that is, the study of algorithms. An algorithm is an abstract recipe,
prescribing a process that might be carried out by a human, by a computer,
or by other means. It thus represents a very general concept, with numerous
applications. Its principal interest and use, however, is in those cases where
the process is to be carried out by a computer.

The book can be used as the basis of a one-semester introductory
course in computer science or as a text for a general computer science
literacy course in science and engineering schools. Moreover, it can be used
as supplementary reading in many kinds of computer-related educational
activities, from basic programming courses to advanced graduate or
undergraduate degree programs in computer science. The material covered
herein, while not directly aimed at producing better programmers or system
analysts, can aid people who work with computers by providing an overall
picture of some of the most fundamental issues relevant to their work.

* * *

The preliminary chapters discuss the concept of an algorithmic problem and
the algorithm that solves it, followed by cursory discussions of the structure
of algorithms, the data they manipulate, and the languages in which they
are programmed. With the ground thus set, Part Two of the book turns to
some general methods and paradigms for algorithmic design. This is
followed by two chapters on the analysis of algorithms, treating, respec-
tively, their correctness and efficiency (mainly time efficiency), including
techniques for establishing the former and estimating the latter. Part Three
of the book is devoted to the inherent limitations of effectively executable
algorithms, and hence of the computers that implement them. Certain
precisely defined problems, including important and practical ones, are
shown to be provably not solvable by any computers of reasonable size in
any reasonable amount of time (say, the life time of a person), and never
will be. Worse still, it is shown that some problems are provably not solvable
by computers at all, even with unlimited time! In Part Four of the book the
requirements are relaxed — for example, by employing concurrent activities
or coin tossing, in order to overcome some of these difficulties. Finally, the
relationship of computers to human intelligence is discussed, emphasizing
the ‘soft’ heuristic, or intuitive, nature of the latter, and the problems
involved in relating it to the ‘hard’ scientific subject of algorithmics.

The book is intended to be read sequentially, not to be used as a
reference. Itis organized so that each chapter depends on the previous ones,
but with smooth readability in mind. Most of the material in the preliminary

X ALGORITHMICS: THE SPIRIT OF COMPUTING

Part One should be familiar to people with a background in programming.
Thus, Chapters 1 and 2 and parts of Chapter 3 can be browsed through
superficially by such readers. Starting with Chapter 4, however, the material
becomes increasingly harder as it proceeds, until Chapter 12 is reached,
which is of somewhat lighter nature.

** Certain sections contain relatively technical material and can be
skipped by the reader without too much loss of continuity. They are set
in smaller type and are enclosed between asterisks. It is recommended,
however, that even those sections be skimmed, at least to get a superficial
idea of their contents. **

Whenever appropriate, brief discussions of the research topics that are
of current interest to computer scientists are included. The text is followed
by a section of detailed bibliographic notes for each chapter, with
‘backward’ pointers connecting the discussions in the text with the relevant
literature.

It is hoped that this book will facilitate communication between the
various groups of people who are actively involved in the computer
revolution, and between them and those who, for the time being, are
observers only.

David Harel
Pittsburgh
February 1987

Write the vision, and make it plain upon tablets,
that he' who reads it may run

Habakkuk 2: 2

fRelying on no less an authority than The Bible itself, the masculine forms ‘he’, ‘him’, ‘his’,
etc., will be used whenever the more precise, but far more awkward, forms ‘she/he’, ‘her/him’,
‘hers/his’, etc., are intended.

Acknowledgements

Therefore will I give thanks to thee
Psalm 18: 50

Parts of this book were written while I was visiting Digital Equipment
Corporation’s Systems Research Center in Palo Alto in the Summer of
1985 and Carnegie-Mellon University’s Computer Science Department for
the 1986/7 academic year. I would like to express my deepest gratitude for
these opportunities to work on the book undisturbed.

T. Yuval, Managing Editor of the Broadcast University programs on
the Israeli radio channel ‘Galei Zahal’, deserves special thanks for
convincing me to prepare the lecture series out of which this book grew.

I am indebted to my colleagues at the Weizmann Institute, A. Pnueli,
A. Shamir and S. Ullman, for discussions related to the material appearing
herein. It is amazing how one’s whole approach can benefit from being
surrounded by researchers of such calibre.

I am most grateful to M. Ben-Ari, S. D. Brookes, A. Fiat and M.
Vardi, as well as to the three anonymous reviewers commissioned by
Addison-Wesley, who read significant parts of the manuscript, identified
errors, and provided helpful and insightful feedback. I would also like to
thank the following people, who all took time to read and comment on parts
of the manuscript: H. Berliner, A. K. Chandra, N. Dershowitz, A. Heydon,
C. A. R. Hoare, Z. Reisel, E. Roberts, S. Safra, D. Sherman, R. Sherman,
B. Simons, D. Sleator, D. Tygar, P. Wegner and L. Zuck. In addition,
collective thanks go to the many people I have pestered recently with
questions pertaining to the bibliography.

I would like to thank Y. Barbut for his superb graphical work on the
figures, and S. Fliegelman and C. Weintraub for helping me to struggle with
the task of TEXing the draft manuscript. I am grateful to Addison-Wesley’s
S. Troth and A. King for being such effective sponsoring editors, and to
D. Myson-Etherington for the endless hours she has devotedly spent on the
project throughout its production.

As usual, my wife Varda and our children, Sarit, Hadas, Efrat and
Yair, put up with everything in the best imaginable way, and provided the
warm and loving environment that is so important for such an endeavour.

X1

Table of Contents

Declare the things that are to come hereafter

Isaiah 41: 23
Preface vii
Acknowledgements X1
PART ONE PRELIMINARIES
1. Introduction and Historical Review
OR What's It All About? 3
2. Algorithms and Data
OR Getting It Done 19
3. Programming Languages
OR Getting It Done by Computer 50
PART TWO METHODS AND ANALYSIS
4. Algorithmic Methods
OR Getting It Done Methodically 79
S. The Correctness of Algorithms
OR Getting It Done Right 91

6. The Efficiency of Algorithms
OR Getting It Done Cheaply 119

xiii

Xiv ALGORITHMICS: THE SPIRIT OF COMPUTING

PART THREE LIMITATIONS AND ROBUSTNESS

7. Inefficiency and Intractability
OR You Can’t Always Get It Done Cheaply

8. Noncomputability and Undecidability
OR Sometimes You Can’t Get It Done at All!

9. Algorithmic Universality and Its Robustness
OR The Simplest Machines that Get It Done

PART FOUR RELAXING THE RULES

10. Parallelism and Concurrency
OR Getting It Done by Cooperating

11. Probabilistic Algorithms
OR Getting It Done by Tossing Coins

12. Algorithmics and Intelligence
OR Are They Better at It than Us?

Postscript
Bibliographic Notes

Index

151

184

210

257

302

333

355

357

405

PART ONE

PRELIMINARIES

Now, these are the foundations
IT Chronicles 3: 3

1

Introduction and
Historical Review

OR
What’s It All About?

Though thy beginning was small,
yet thy end will be very great
Job 8: 7

Computers are amazing machines. They seem to be able to do anything.
They fly aircraft and spaceships, and control power stations and hazardous
chemical plants. Companies can no longer be run without them, and a
growing number of sophisticated medical procedures cannot be performed
in their absence. They serve lawyers and judges who seek judicial
precedents in scores of documented trials, and help scientists in performing
immensely complicated and involved mathematical computations. They
route and control millions of telephone calls in networks that span
continents, and are used for map reading, typesetting, graphical picture
processing and integrated circuit design. They can relieve us of many boring
chores, such as keeping a meticulous track of home expenses, and at the
same time provide us with exciting alternatives, such as realistic computer
games or computerized music. Also, computers of today are hard at work
helping design the even more powerful computers of tomorrow.

In short, computers are awesome and fascinating, but at the same time
indispensable. For many of us they are also intimidating, and for others
threatening. Whatever the case, we cannot afford to be indifferent to them.
They are here to stay, and the remarkable growth in their rate of

3

4 ALGORITHMICS: THE SPIRIT OF COMPUTING

if this bit
is 1, flip
flip this bit \‘ zero this bit \ this bit
01011 01011 01011
+ if this bit
flip this bit \ zero this bit \‘+ is 1, ﬂip\ +
this bit 3
01001 01001 01011
01101 01001 11011
Flipping Zeroing Testing

Figure 1.1 Operations on bits.

performance and range of applications shows no signs of coming to a halt.

It is all the more remarkable, therefore, that the digital computer,
even the most modern and complex one, can be thought of as merely a large
collection of switches. These switches, or bits as they are called in technical
jargon, are not ‘flipped’ by the user, but are special, internal switches that
are ‘flipped’ by the computer itself. Each bit can be in one of two positions,
or, to put it another way, can take on one of two values, 0 or 1. Typically,
the value of a bit is determined by some electronic characteristic, such as
whether a certain point has a positive or negative charge.

Any computer can directly execute only a small number of extremely
trivial operations, like flipping, zeroing, or testing a bit. Flipping changes
the bit’s value, zeroing makes sure that the bit ends up in the 0 position,
and testing does one thing if the bit is already in the 0 position, and another
if it is not (see Figure 1.1). Different computers differ in their size (i.e.,
the number of available bits), in the types of elementary operations they
can perform, in the speed in which these operations are performed, in the
physical media that embody the bits and their internal organization, and,
significantly, in their external environment. This last item means that two
computers, which are otherwise identical, might seem very different to an
observer: one might be similar in appearance to a television set with a
keyboard, and the other might be buried under the dials and knobs of an
automatic knitting machine. In a sense, such peripheral but highly visible
objects are far less important as components of the computer than the bits
and their internal arrangement. It is the bits that ‘sense’ the external stimuli
arriving from the outside world via buttons, levers, keys on a keyboard,
electronic communication lines, and even microphones and cameras. It is
the bits that ‘decide’ how to react to these stimuli, ultimately causing other

INTRODUCTION AND HISTORICAL REVIEW)

stimuli to be sent back outside via displays, screens, printers, and even
loudspeakers, beepers, levers and cranks.

How do they do it? What is it that spans the immense distance between
such trivial operations on bits and the incredible feats that computers are
capable of? The answer lies in the central concepts treated in this book:
the process, and the algorithm that controls it and causes it to take place.

Some Gastronomy

Imagine a kitchen, containing a supply of ingredients, an array of baking
utensils, an oven, a (human) baker, etc. Baking a delicious raisin cake is
a process that is carried out from the ingredients, by the baker, with the
aid of the oven, and, most significantly, according to the recipe. The
ingredients are the inputs to the process, the cake is its output, and the
recipe is the algorithm. In other words, the algorithm prescribes the
activities that constitute the process. The recipes, or algorithms, relevant
to a set of processes under discussion are often gathered under the general
term software, whereas the utensils and oven are generally called hardware.
The baker, in this case, can also be considered part of the hardware (see
Figure 1.2).

In analogy with the simplicity of the bit operations that a computer

ingredients

(software) (hardware)

oven
recipe utensils
baker

Figure 1.2 Baking a cake.

