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Preface to Volume 2

The design and analysis of data structures and computer algorithms
has gained considerable importance in recent years: The concept of
“algorithm” is central in computer science and “efficiency” is central
in the world of money.

This book treats graph algorithms and the theory of NP-completeness
and comprises chapters IV to VI of the three volume series “Data
Structures and Efficient Algorithms”. The material covered in this
book derives its importance from the universal role played by graphs
in many areas of computer science. The other two volumes treat
sorting and searching (chapters I to III) and multi-dimensional
searching and computational geometry (chapters VII to VIII). All
three volumes are organized according to problem areas. In addition,
we have included a chapter (chapter IX) in all three volumes which
gives a paradigm oriented view of the entire series and orders the
material according to algorithmic methods.

In chapter IV we deal with algorithms on graphs. We start out with a
discussion of various methods for representing a graph in a computer,
and of simple algorithms for topological sorting and the transitive
closure problem. The concept of a random graph is also introduced in
these sections. We then turn to methods for graph exploration which
we later refine to depth first and breadth first search. Depth first
search is the basis for connectivity, biconnectivity and planarity
algorithms for undirected graphs, and for an algorithm for strong
connectivity of directed graphs. In the section on planar graphs we
also present the planar separator theorem as well as a shortest path
algorithm for planar graphs. Breadth first search is the basis for
efficient least cost path algorithms and for network flow algorithms.
Several algorithms for unweighted and weighted network flow and
their application to matching and connectivity problems are discussed
in detail. Finally, there is a section on minimum spanning trees.

Chapter V explores the algebraic interpretation of path problems on
graphs. The concept of a path problem over a closed semi-ring is
defined, a general solution is presented, and the connection with
matrix multiplication is established. Then fast algorithms for matrix
multiplication over rings are discussed, transformed to boolean
matrix multiplication, and their implication for special path problems
isinvestigated. Finally, alower bound on the monotone complexity of
boolean matrix multiplication is derived.

Chapter VI covers the theory of NP-completeness. Many efficient
algorithms have been found in the past; nevertheless, a large number



VIII

of problems have not yielded to the attack of algorithm designers. A
particularly important class of such problems is the class of NP-
complete problems. In the first half of the chapter this class is defined,
and many well-known problems are shown to belong to the class. In
the second half of the chapter we discuss methods for solving NP-
complete problems. We first treat branch-and-bound and dynamic
programming and then turn to approximation algorithms. The chap-
ter closes with a short discussion of other complexity classes.

The book covers advanced material and leads the reader to very
recent results and current research. It is intended for a reader who has
some knowledge in algorithm design and analysis. The reader must be
familiar with the fundamental data structures such as queues, stacks,
and linked list structures. This material is covered in chapter I of
volume 1 and also in many other books on computer science.
Knowledge of the material allows the reader to appreciate most of the
book. For some sections more advanced knowledge is required.
Priority queues and balanced trees are used in sections IV.7,IV.8 and
IV.9.1, algorithms for the union — find problem are used in IV.8, and
bucket sort is employed at several places. Information about these
problems can be found in volume 1 but also in many other books about
algorithms and data structures.

The organization of the book is quite simple. There are three chapters
which are numbered using roman numerals. Sections and subsections
of chapters are numbered using arabic numerals. Within each section,
theorems and lemmas are numbered consecutively. Cross references
are made by giving the identifier of the section (or subsection) and the
number of the theorem. The common prefix of the identifiers of origin
and destination of a cross reference may be suppressed, i. €., a cross
reference to section VII.1.2 in section VII.2 can be made by either
referring to section VII.1.2 or to section 1.2.

Each chapter has an extensive list of exercises and a section on
bibliographic remarks. The exercises are of varying degrees of
difficulty. In many cases hints are given, or a reference is provided in
the section on bibliographic remarks.

Most parts of this book were used as course notes either by myself or
by my colleagues N. Blum, Th. Lengauer, and A. Tsakalidis. Their
comments were a big help. I also want to thank H. Alt, O. Fries,
St. Hertel, B. Schmidt, and K. Simon who collaborated with me on
several sections and I want to thank the many students who helped to
improve the presentation by their criticism. Discussions with many
colleagues helped to shape my ideas: B. Becker, J. Berstel, B. Com-
mentz-Walter, H. Edelsbrunner, B. Eisenbarth, Ph. Flajolet,
M. Fontet, G. Gonnet, R. Giittler, G. Hotz, S. Huddleston, 1.
Munro, J. Nievergelt, Th. Ottmann, M. Overmars, M. Paterson, F.
Preparata, A. Rozenberg, M. Stadel, R. E. Tarjan, J. van Leeuwen,
D. Wood, and N. Ziviani.



IX

The drawings and the proof reading were done by my student Hans
Rohnert. He did a fantastic job. Of course, all remaining errors are
my sole responsibility. Thanks to him, there should not be too many
left. The typescript was prepared by Christel Korten-Michels, Mar-
tina Horn, Marianne Weis and Doris Schindler under sometimes
hectic conditions. I thank them all.

Saarbriicken, April 1984 Kurt Mehlhorn
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IV. Algorithms on Graphs

In this chapter we treat efficient algorithms for many basic problems
on graphs: topological sorting and transitive closure, connectivity
and biconnectivity, least cost paths, least cost spanning trees, net-
work flow problems and matching problems and planarity testing.

Most of these algorithms require methods for the systematic exploration
of a graph. We will introduce such a method in section 4 and then spe-

cialize it to breadth first and depth first search.

IV. 1. Graphs and their Representation in a Computer

A directed graph G = (V,E) consists of a set V= {1,2,...,1V|} of nodes
and a set E € V X V of edges. A pair (v,w) € E is called an edge from
v to w. Throughout this chapter we set n = |V| and e = |E]|.

Two methods for storing a graph are customary.

a) Adjacency matrix: A graph G = (V,E) is represented by a |V| x [|V]

(a, with

boolean matrix A 1j)1Si,j5n

& =
_ {1 if (i,j) € E
0] if (i,j) € E

The storage requirement of this representation is clearly @(nz).

b) Adjacency lists: A graph G = (V,E) is represented by n linear lists.
The i-th list contains all nodes j with (i,j) € E. The headers of the
n lists are stored in an array. The storage requirement of this repre-

sentation is O(n + e). The lists are not necessarily in sorted order.

2 S0
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The above example shows a graph, and its representation by adjacency

matrix and adjacency lists.

Since O < e < n2 we conclude that the adjacency list represention is
often much smaller than the adjacency matrix representation and never
much larger. Since most graphs which come up in applications are sparse,
i.e. e £ n2, this is an important point to remember. Even more impor-
tant is the fact that the choice of the representation can have a
drastic influence on the time complexity of graph algorithms. We will
see in this chapter that many graph problems can be solved in linear
time O(n + e) if the adjacency list representation is used. However,

any algorithm using the matrix representation must have running time
Q(nz). For this reason we will always use the adjacency lists except

when explicitely stated otherwise (chapter V).

In more detail, the adjacency list representation is based on the

following declarations:

type node = record name : [1 ..n];

.
-

next : * node

end



and

ADLHEAD : array [1 ..n] of t node

Array ADLHEAD contains the heads of the adjacency lists. The el-

ements of the adjacency lists are of type node, each element represent-
ing an edge. In some cases these elements will contain additional in-
formation, e.g. the length of an edge, a pointer to the reverse edge in

an undirected graph, ...

We need some more definitions. Let G = (V,E) be a digraph. A path from
v tow, v, w € V, is a sequence Var VqreeerVy of nodes such that
Vo = vV, vy =W and (vi,vi+1) € E for O £ i < k; k is the length of the

path. Note that there is always the path of length zero from v to v.
A path is simple if vy * vj for 0 < i < j < k. A cycle is a path from
v to v. If, in addition, the path is simple then the cycle is simple.
A graph is acyclic if it contains no non-trivial cycle. Let T < E. We
write v ;* w iff there is a path from v to w using only edges in T.

The indegree of a node v is the number od edges ending in v,

indegG(V) = | {w; (w,v) € E}|. Similarly, the outdegree of v is the num-
ber of edges starting in v, outdegG(v) = | {w; (v,w)€ E}|.

A digraph G' = (V',E') is a subgraph of G = (V,E) if V' c V and E' < E.
If G = (V,E) is a digraph and V' < V then the subgraph induced by V!

is (V',EN(V'xV')). G - V' denotes the subgraph induced by V - V'. If

V' = {v} is a singleton then we write G - v instead of G - vl .

A digraph A = (V,T) is a directed forest if A is acyclic and;Uﬁquhﬁ <1
for all v € V. A node v with indegA(v) = 0 is called a root of the
forest. Note that a directed forest has at least one root. If A = (v, T)
is a directed tree then |T| = |V| - 1. Also, there is a unique path

from the root r to any node v of a directed tree. Finally, if v is any
node of a directed tree then the subtee Av rooted at v is the subgraph
induced by the descendants of v, i.e. AV is the subgraph induced by

{wiv =% w}.
T

Let G = (V,E) be a digraph. A directed forest A = (V,T) with T < E is
called a spanning forest of G. If A is a tree then it is called a

spanning tree of G.



An undirected graph (or simply graph) is a digraph G = (V,E) with a
symmetric relation E, i.e. (v,w) € E iff (w,v) € E. In a graph the in-
degree of a node is always equal to its outdegree and is simply called

the degree of the node. An undirected graph is called acyclic if it

contains no simple cycles of length at least three (Note that an "un-
directed" edge between v and w always gives rise to a simple cycle,

namely v,w,v). An acyclic undirected graph is called an undirected forest.

IV. 2. Topological Sorting and the Representation Problem

A topological sort of a digraph G = (V,E) is a mapping ord:V - {1,...,n}
such that for all edges (v,w) € E we have ord(v) < ord(w). Clearly, if
a graph G has a topological sort then G is acyclic. The converse is
also true and is easily proved by induction on the number of nodes. So
suppose, G = (V,E) is acyclic. If n = |V| = 1 then G has a topological
sort. If n > 1 then G must have a node v with indegree 0. (Such a node
can be found by starting at an arbitrary node w and walking back edges.
Since the graph is acyclic no node is entered twice in this process,
and hence the process terminates. It terminates in a node with inde-
gree O). Deleting v leaves us with an acyclic graph G' with one less

node. G' has a topological sort and so coes G.

Actually, the argument given above, describes an algorithm for com-

puting the mapping ord.

(1) chrrent < G; COUNT <« O;

(2) while chrrent has at least one node with no predecessor
(3) do let v be a node with no predecessor;

(4) COUNT < COUNT + 1;

(5) ORD[ V] < COUNT;

(6) chrrent - chrrent v

(7)  od;

(8) if Gourrent IS nonempty

(9) then cyclic else acyclic fi

The correctness of this algorithm is immediate from the preceding dis-
cussion. With respect to complexity the crucial lines are lines (3)
and (6). How do we find a node with indegree O efficiently in line (3)?
A brute force h d

approach would be a complete search of graph chrrent'
Since such a search would take time at least Q(n) the entire algorithm

would be Q(nz) at best.



A better approach is to look at the interdependence of lines (3) and
(6). In line (6) node v and all edges leaving v are deleted. Exactly
the indegrees of the other endpoints are changed. This suggeststo use
an array INDEG[1.. n] to store the current indegree of all nodes. Array
INDEG is updated in line (6). In line (3) we need to know one node with
indegree 0O; the indegree of a node can only become zero in line (6) and
it is easy to detect that fact there. It is therefore wise to keep all

nodes with indegree O in G in a set ZEROINDEG.

current

The following refinement of our algorithm makes use of the variables

INDEG: array [1..n] of integer and ZEROINDEG: subset of V. The graph

chrrent is not stored explicitely. Rather it is the subgraph of G in-

duced by the nodes which have not received a number ord yet. ZEROINDEG

contains the points of zero indegree in G and INDEG contains the
current

current® Initially chrrent = G and so INDEG

should be initialized to the indegrees in G. This can be done efficient-

indegree of all nodes in G
ly by traversing all adjacency lists.

Algorithm: Topological sort

(1.1) COUNT = 0;

(1.2) ZEROINDEG <« @; for all i € V do INDEG[i] « O od;
(1.3) for all i € Vv

(1.4) do for all j € V with (i,j) € E

(1.5) gg INDEG[j] <« INDEG[j] + 1
(1.6) od
(1.7)  od;

(1.8) for all i € V
(1.9) do if INDEG[i] = O then add i to ZEROINDEG fi

(1.10) od;

(2) while ZEROINDEG # §

(3.1) do let v be any node in ZEROINDEG;
(3.2) delete v from ZEROINDEG;

(4) COUNT <« COUNT + 1;

(5) ORD[v] < COUNT;

(6.1) for all w € V with (v,w) € E
(6.2) do INDEG[w] <« INDEG[w] - 1;

(6.3) if INDEG[w] = O



(6.4) then add w to ZEROINDEG fi
(6.5) od

(7) od;

(8) if COUNT < n

(9) then Halt ("graph is cyclic") else Halt ("graph is acyclic") fi

~

It remains to specify an implementation for set ZEROINDEG. On this set

the following operations are performed: Insertion, deletion

of an unspecified element, and test for emptiness. In chapter I

we saw that implementing ZEROINDEG by a stack or by a queue will allow

us to execute each one of these operations in time O(1). We prefer the

stack for its simplicity and higher efficiency, so ZEROINDEG is a stack

of elements of V (stack of [1.. nl).

Finally, we have to explain lines (1.4) and (6.1) in more detail. They
are realized by stepping through the adjacency list corresponding to

nodes i and w respectively and take time proportional to the outdegree
of those nodes. A detailed program for lines (1.4) and (1.5) is given

by (p is of type tnode):

p < ADJHEAD[i];
while p # nil
do j <« pt.name;
INDEG[Jj] <« INDEG[j] + 1 ;
p <« pt.next
od
We are now in a position to determine the performance of our algorithm
for topological sorting. Line (1) takes time 0(1), lines (1.2) and
lines (1.8) - (1.10) take O(n). Execution of (1.4) and (1.5) for a fixed
i takes time O(outdegG (1)) and hence lines (1.3) - (1.7) take time
O(n + e). Altogether, initialization takes time O(n + e).

The main loop is executed O(n) times and hence the total time spent in
lines (3.1), (3.2), (4) and (5) is O(n). For a fixed v, lines (6.1) - (6.4)
take time O(outdegG (v)). Since every node v is deleted from ZEROINDEG
at most once total running time of that loop is O(n + e). This shows
that the running time of the entire algorithm is O(n + e).



Theorem 1: A topological sort of digraph G = (V,E) can be computed in

linear time O(n + e).
Proof: By the discussion above. o

Next we will show that getting the graph as a matrix will doom any

algorithm to inefficiency.

Theorem 2: Any algorithm for topological sorting which gets the di-

graph as an adjacency matrix has running time Q(nz).

Proof: Consider the behaviour of any such algorithm on the empty graph,
i.e. on the all zero matrix. Suppose there is a pair i,j of nodes,

i # j, such that the algorithm neither inspects aij nor a.,. Then we
could change both entries to one and the algorithm would still return
with a topological sort. However, the graph is cyclic after adding
edges (i,j) and (j,i). This shows that the algorithm has to inspect at
least half of the entries of the matrix and hence has running time
2(n?). o

We saw that a topological sort of an acyclic graph can be computed in
linear time. Given the mapping ord: Vv - {1,...,|VI|} it is then easy to
reorder the adjacency lists in increasing order as follows: Generate
all pairs {(ord(v), ord(w)); (v,w) € E} and sort them by bucket sort
according to the second component and then according to the first com-
ponent. This takes time O(n + e) and generates the adjacency lists in

sorted order.

IV. 3. Transitive Closure of Acyclic Digraphs

Let G = (V,E) be a digraph. Digraph G* = (V,E*) is the reflexive, tran-
sitive closure of G if (v,w) € E* if and only if there is a path from
v to w in G. In this section we present an algorithm for computing the
transitive closure of an acyclic digraph; the algorithm is extended to
general digraphs in section 6. We will assume that the acyclic digraph
is topologically sorted, i.e. (i,j) € E implies i < j and that the ad-
jacency lists are sorted in increasing order. We saw in the previous

section that this can be achieved in linear time O(n + e).

The idea for the algorithm is very simple. We step through the nodes of



G in decreasing order. Suppose that we consider node i. Then for every

j > i we have already computed the set of nodes reachable from j,

REACH[j] = {k; j-=*k}. Then
REACH[i] = {i} U (U{REACH[Jj] ; (i,J) € E})

This suggests to step through the nodes j with (i,j) € E and to compute
the union of the sets REACH[j]. We will see that this is a costly proc-
ess. It can be improved somewhat as follows. We step through nodes

j with (i,Jj) € E in increasing order. When edge (i,Jj) is encountered,
we will first test whether j € REACH[i] already. If this is the case
then there must be a node h # j with i » h -»* j and hence REACH[h] >
REACH[Jj] and thus we do not have to add REACH[Jj] to REACH[il]. This ob-
servation will lead to considerable savings in many cases. Here is the

complete algorithm.

(1) BREACH <« @; -— BREACH is a bitvektor
(2) for i from n downto 1

(3) do REACH[i] « BREACH « {i} -- REACH[i] is a linear list
(4) for all j with (i,j) € E =-- in increasing order!!
(5) do if j € BREACH

(6) then for all k € REACH[]]

(7) do if k € BREACH

(8) then add k to BREACH and REACH[i]

(9) fi

(10) od

(1) fi

(12) od;

(13) for all k € REACH[il]

(14) do delete k from BREACH

(15)  od

(16) od

There is one subtle point about this algorithm, the two faces of set
REACH[i]. REACH[i] is kept as a linear list and as a bitvektor BREACH.
We initialize both of them to {i} in time O(1) in line (3). Note that
BREACH is empty prior to the first execution of the loop and that this is en-
sured for later executions by lines (13) to (15).In lines (4)-(12) we step
through the directdescendants of i in increasing order. Remember that the
adjacency lists are sorted. The tests in line (5) and (7) take time O(1) since BREACH



