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Preface

Transformation groups have played a fundamental role in many areas of math-
ematics such as differential geometry, geometric topology, algebraic topology, al-
gebraic geometry, number theory. One of the basic reasons for their importance
is that symmetries are described by groups (or rather group actions). Indeed, the
existence of group actions makes the spaces under study more interesting, and
properties of groups can also be understood better by studying their actions on
suitable spaces.

Quotients of smooth manifolds by group actions are usually not smooth mani-
folds. On the other hand, if the actions of the groups are proper, then the quotients
are orbifolds.

The notion of V-manifolds was first introduced by Satake in 1956 in the con-
text of locally symmetric spaces and automorphic forms. V-manifolds were rein-
troduced and renamed orbifolds by Thurston near the end of 1978 in connection
with the Thurston geometrization conjecture on the geometry of three dimen-
sional manifolds. Basically, orbifolds are locally quotients of smooth manifolds by
finite groups. Besides arising from transformation groups, many natural spaces in
number theory and algebraic geometry are orbifolds.

An important example of such interaction is given by the action of the mapping
class groups on the Teichmiiller spaces, and the quotients give the moduli spaces
of Riemann surfaces (or algebraic curves) and are orbifolds. One reason for the
importance of this group action is that Riemann surfaces are fundamental objects
in complex analysis, differential and complex geometry, low dimensional topology,
algebraic geometry, number theory, mathematical physics etc., and the Teichmiiller
spaces are moduli spaces of marked Riemann surfaces. These moduli spaces and
their variants have played a fundamental role in algebraic geometry and string
theory. Properties of the moduli spaces can sometimes be understood more easily
through this action on the Teichmiiller spaces.

The moduli spaces of algebraic curves are noncompact and admit a well-known
compactification, called the Deligne-Mumford compactification. An important fact
is that the Deligne-Mumford compactification is also a compact orbifold.

The above discussions show that orbifolds arise naturally from different con-
texts. Recently, orbifolds have also found striking applications in algebraic geom-
etry and string theory such as the McKay correspondence.

To introduce these basic and important concepts to the younger generation,
two consecutive summer schools were organized at the Center of Mathematical
Sciences, Zhejiang University: Transformation Groups and Orbifolds from June



i Preface

30 to July 11, 2008, and Geometry of Teichmiiller Spaces and Moduli Spaces of
Curves from July 14 to July 20, 2008. Experts on topics related to transformation
groups, orbifolds, Teichmiller spaces, mapping class groups, and moduli spaces
of curves were invited to give expository lecture series. This book contains the
expanded lecture notes of some of these lecture series.

We would like to thank the speakers for their hard work in preparing the talks
and writing up the lecture notes, and the referees for carefully reading the lecture
notes and making valuable suggestions and comments. We hope that this book
will convey the lively spirit and freshness of the lectures at the summer schools,
and believe that it will be a valuable source for people who want to learn these
beautiful topics.

Lizhen Ji
Shing-Tung Yau
January 22, 2010

1The last lecture of C.C. Liu is related to the paper Formulae of one-partition and two-
partition Hodge integrals, Geometry & Topology Monagraphs 8 (2006) 105-128. We would like
to thank the editors of the Geometry & Topology Monographs for their permission to allow us
to reprint this paper here.
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Group Cohomology*

Alejandro Adem' and Michele Klaust

Abstract

The topics discussed in these notes include basic properties and definitions of orb-
ifolds, and aspects of their cohomology and K—theory. Connections to group coho-
mology and equivariant algebraic topology appear in the context of orbifolds and
their associated invariants. These notes are based on lectures given by the first
author at the summer school on Transformation Groups and Orbifolds, held at
Hangzhou, China in June/July 2008.

2000 Mathematics Subject Classification: 57R18, 55N32, 20J06, 19L50.
Keywords and Phrases: Orbifolds, group cohomology, twisted K—-theory.

1 Introduction

Orbifolds and their invariants play an important role in mathematics. The study
of basic examples of quotients by Lie groups acting with finite isotropy on smooth
compact manifolds leads to applications of ideas and techniques ranging from
differential geometry and topology to algebraic geometry, group cohomology, ho-
motopy theory and mathematical physics.

In these lecture notes we present some basic definitions and properties of orb-
ifolds emphasizing their connections to algebraic topology and group cohomology.
The language of groupoids provides a convenient mechanism for connecting these
apparently distinct topics, and the global perspective this provides yields useful
insight. In particular techniques from classical transformation groups can be used
to construct interesting examples and formulate calculations in terms of better
understood invariants from algebraic topology, such as cohomology and K-theory.
Plenty of examples are provided both as a source of motivation and as a way to
facilitate the understanding of the theory. We also discuss a stringy product in
orbifold K-theory that was recently introduced in [5], which is motivated by the
Chen—-Ruan product in orbifold cohomology.

*Partially supported by NSERC and NSF.

tDepartment of Mathematics University of British Columbia, Vancouver BC V6T 172,
Canada. E-mail: adem@math.ubc.ca

{Department of Mathematics University of British Columbia, Vancouver BC V6T 1Z2,
Canada. E-mail: michele@math.ubc.ca



2 Alejandro Adem and Michele Klaus

These notes are intended for graduate students interested in the general topic
of orbifolds and their invariants. They reproduce the lectures given at the 2008
Hangzhou Summer School on Orbifolds and Transformation Groups by the first
author. Thus they are not meant to be complete or fully rigorous; rather their
goal is to motivate casual readers to learn more about the subjects discussed here
by consulting the literature; we offer the book [2] and the references therein as
a good place to start. Moreover for these notes this book will be the standard
reference, and we will omit referring to it to avoid repetition.

Both authors would like to thank the organizers of the summer school for
their hospitality, and in particular Lizhen Ji for his wonderful enthusiasm for
mathematics and his encouragement to write up these notes.

2 Classical orbifolds

In this section we give a definition of an orbifold from a geometric point of view
which is close to the original one (see [23] for Satake’s definition of V-manifold).

Definition 2.1. Let X be a topological space and fix n > 0.

(1) An n-dimensional orbifold chart on X is given by a connected open subset
Uc R", a finite group G of effective smooth automorphisms of U, and a
map ¢ : U — X such that ¢ is G-invariant and induces an homeomorphism
of U/G onto an open subset U C X.

(2) An embedding A : (U,G,p) — (V,H,) between two charts is a smooth
embedding A : U — V such that Pod=op.

(3) An orbifold atlas on X is a family U = {([7 ,G,cp)} of charts which cover

X and are locally compatible: given two charts ([7 .G, ) with U = o(U)
and (‘7, H,¢) with V = ¢(V), and a point z € U NV, there exists an open
neighborhood W C U NV of z and a chart (W,K , @) with q&(W) =W
and such that there are two embeddings A : (W,K,$) — (V,H,y) and
p:(W,K,¢) = (U,G, ).

(4) An atlas il refines another atlas 20 if for every chart in  there exists an

embedding into some chart of 20. Two orbifold atlases are equivalent if they
have a common refinement.

Definition 2.2. A (classical) orbifold X of dimension n is a paracompact Haus-

dorff space X equipped with an equivalence class [U{] of n-dimensional orbifold
atlases.

Remark. We collect here some technical facts about orbifolds that are supposed
to give a better understanding of the above definition:

(1) For every chart iﬁ ,G, ) of an orbifold X, the group G acts freely on a dense
open subset of U.

(2) By local smoothness, every orbifold has an atlas consisting of linear charts
(R™, G, ) where G C O(n) (see [9]).
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(3) An embedding A : (U,G,¢) — (V,H,1) between two charts induces an
injection A: G — H.

(4) Every atlas is contained in a unique maximal one and two atlases are equiv-
alent if and only if they are contained in the same maximal one.

(5) If all the G-actions of an atlas are free, then X is an honest manifold.

Given the remarks above, we can think of an orbifold as a “space with isolated
singularities”; a notion that we make more precise with the next two definitions:

Definition 2.3. Let z € X with X = (X, ) an orbifold. The local group at x is
the group G; = {g € G|gu = u} where (U,G, ) is any local chart with ¢(u) = z.
The group G, is well defined up to conjugation. For an orbifold X = (X, ) its
singular set is the subspace X(X) = {z € X|G, # 0}. A point in (%) is a singular
point of the orbifold X.

Let us now turn our attention to the notion of a map between two orbifolds
(which turns out to be a more subtle concept that one might expect, as we will
see later). We give a first definition in the current geometric setting:

Definition 2.4. Let X = (X,U) and P = (Y,V) be two orbifolds. A map f :
X — Y is a smooth map_between orbifolds if for any point z € X there are charts
(U G, cp) around z and (V, H, ¢) around f(z), with the property that f maps o(U)
into w(V) and can be lifted to a smooth map f U — V with ¢ f fo. Two
orbifolds are diffeomorphic if there are smooth maps f: X - Y andg:Y — X
with fg = Idy and gf = Idx.

A way to construct orbifolds is to take the quotient of a manifold by some
nice group action. Let M be a smooth manifold and G a compact Lie group acting
smoothly, effectively and almost freely on M (i.e. with finite isotropy). For each
element x € M there is a chart U =& R™ of M around z which is G, invariant. The
triples (U, Gz, 7 : U — U/G;) are the orbifold charts.

Definition 2.5. A quotient orbifold is an orbifold given as the quotient of a
smooth, effective, almost free action of a compact Lie group G on a smooth mani-
fold M. If the group G is finite, the associated orbifold is called a global quotient.

Remark. If a compact Lie group G acts smoothly and almost freely on a manifold
M, then we have a group extension:

1-2Gog— G—Gesy—1

where Gy is finite and Gesy acts effectively. Even though M/G = M /Gy, the
original G-action does not give a classical orbifold. This will be one of the mo-
tivations for a more general definition of an orbifold, not involving the effective
condition (see Definition 5.15).

3 Examples of orbifolds

(a) Consider a finite subgroup G C GL,(Z); it acts smoothly on the torus X =
R™/Z™ giving rise to a so called toroidal orbifold X — X/G (see (3] for a discussion
of their properties). Many important examples are of this form.
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e The matrix —1 € GL4(Z) defines a Z/2-action given by 7(21, 22, 23,24) =
(z7', 251, 231, 20 1). The quotient T*/G is the Kummer surface and it has sixteen

isolated singularities.

e The group Z/4 acts on C3 via 7(z1, 22, 23) = (—21,122,123). There is a lattice
M c C3 on which the action has the form:

-1 -1 -1 -1
T(a1>a2aa3>a4:a5;a6)=(a1 Qg ,84,Q3 ,06,0C5 )

This gives rise to a Z/4-action on T® which has 16 isolated fixed points and [’11'6] Z/2
consists of 16 copies of T2. This example arises in the work of Vafa and Witten
and has also been studied by Joyce who has shown that it has 5 different desin-
gularizations (see [16]).

e The action of (Z/2)? on T® defined on generators by:

-1 -1 —1 —1
Ux(zx,zz,z3,24,zs,ze)=(21 3%9 323 32 ,Zs»zs)

-1 -1 -1 -1
0'2(21,22,.23,24,25,26)Z(Zl 129 3 23,%4,%5 ,2¢ )

defines a toroidal orbifold T¢/(Z/2)? with {£1}® as the set of fixed points and

(T8)<o1> = (T6)<92> = T2 x {£1}*. Joyce showed that in contrast to the previous
example, this orbifold has many desingularizations (see [16]).

(b) There are also beautiful examples defined using algebraic equations. Let Y
be the degree 5 hypersurface of CP* defined by the equation:

28+ 2+ 25+ 25 + 25 + pzozi202324 = 0
where ¢ is a generic constant. The group G = (Z/5)% acts on Y via:

e1(20, 21, 22, 23, 24) = (Az0, 21, 22, 23, A" 24)
e2(z0, 21, 22, 23, 24) = (20, A21, 22, 23, A" 24)

e3(2o0, 21, 22, 23, 24) = (20, 21, Az2, 23, A" 24)

where A is a fifth root of the unity and the e;’s are the obvious generators of G.
The quotient Y/G is the very popular mirror quintic.

(c) Another family of examples arises from the natural action of the permutation
group S, on the product M™ = M x --- x M of n copies of a smooth manifold M.
The quotient space SP™(M) = M"™/S, is called the symmetric product and is of
great interest in algebraic geometry and topology.

(d) Yet another family of important examples arises from quotient singularities
of the form C"/G for a subgroup G C GL,(C). They have the structure of an
algebraic variety arising from the algebra of G-invariant polynomials in C™. They
appear in the context of the McKay correspondence (see [22]).
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(e) For a choice of n + 1 coprime integers ag, ..., a,; the circle group S* acts on
§2nt+l c Cn*! a5 follows:

A(20y -3 2n) = (A% 20, ..., A% 2,,)

for every A € S!. Since the integers are coprime, the action is effective and
the quotient orbifold WP(ay, ..., an) = §?"*1/8? is called the weighted projective
space. The case WP(1,2) has the shape of a teardrop. The WP’s are examples of
orbifolds which are NOT global quotients.

4 Orbifolds and manifolds

Similarly to the case of manifolds, we can construct a tangent bundle over an
orbifold. The tangent bundle of an orbifold carries the following properties remi-
niscent of the manifold structure:

Proposition 4.1. The tangent bundle TX = (T X,TY) of an n-dimensional orb-
ifold has the structure of a 2n-dimensional orbifold and the projection p : TX — X
defines a smooth map of orbifolds with fibers p~!(z) = T:U /Gs.

Remark. The tangent bundle is an important object because it allows us to define
some of the manifold structures over orbifolds. We can construct for example the
dual bundle T*X of TX, the frame bundle Fr(X) and the exterior power A T*X.
In this way we can also define Riemannian metrics, almost complex structures,
orientability, differential forms and De Rham cohomology.

The objects above satisfy, among others, the following properties:

Proposition 4.2. The orbifold De Rham cohomology with real coefficients depends
only on the underlying space, i.e Hp(X,R) = H*(X,R). If X is an orientable
orbifold, then Hp,p(X) is a Poincaré duality algebra, in particular for a proper,
almost free action of a compact Lie group G on a smooth manifold M, the De
Rham cohomology of the quotient orbifold satisfies Poincaré duality.

This in particular says that De Rham cohomology is not the most appropriate
for orbifolds since, in the case of a group action on a manifold for example, it only
carries information about the quotient, forgetting the group action giving rise to
it. Another interesting result is:

Theorem 4.3. For a given orbifold X, its frame bundle Fr(X) is a smooth mani-
fold with a smooth, effective and almost free O(n)-action. In this way X is naturally
isomorphic to the resulting quotient orbifold Fr(X)/O(n).

Remark. The theorem above says in particular that every classical orbifold is a
quotient orbifold. The manifold and the group action from which we can obtain a
given orbifold are not unique.
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5 Orbifolds and groupoids

We now set some categorical notions which will be used to re-define and generalize
the concept of an orbifold. Our work will be justified by Theorem 5.14 (see [21]).

Definition 5.1. A groupoid is a small category in which every morphism is an
isomorphism.

Definition 5.2. A topological groupoid & is a groupoid whose sets of objects Go
and arrows G; are endowed with a topology in such a way that the five following
maps are continuous:

(1) s: Gy — Go, where s(g) is the source of g,

(2) t: G1 — Gy, where t(g) is the target of g,

(3) m: Gisx:G1 = {(h,g) € G1 x G1|s(h) =t(g9)} — G1, where m(h,g) = hog
is the composition,

(4) u: Gp — Gy, where u(z) is the identity of z,

(5) i: Gy — G, where i(g) is the inverse of g.

Definition 5.3. A Lie groupoid & is a topological groupoid where Gg and G, are
smooth manifolds with s,¢ smooth submersions and m,u and ¢ smooth maps.

Example 5.4. Let G be Lie group acting smoothly from the left on a smooth
manifold M. One defines a Lie groupoid G x M by setting (G x M)¢ = M and
(Gx M); = G x M. The source map s : G x M — M is the projection, the
target map £ : G x M — M is the action and the composition is defined by the
product in the group G: if (g,z) € G x M and (¢’,2') € G x M are such that
S(g,ﬂl‘) =z =gz = t(glvm’) then (g,:v) ° (glvwl) = (gg/vzl)'

Definition 5.5. Let & be a Lie groupoid. For a point z € Gy the set of all arrows
from z to z form group denoted by G, and called the isotropy group at z. The
set ts~1(z) of targets or arrows out of z is called the orbit of x. The orbit space
|&] of & is the quotient space of G under the relation: z ~ y iff z and y are in
the same orbit, i.e. iff there is an arrow going from z to y.

Remark. Since G = s~!(z) Nt~!(z) and s and ¢ are submersions, we have that
G, is a Lie group.

Before establishing the connection between orbifolds and groupoids, we need
more definitions:

Definition 5.6. Let & be a Lie groupoid.

(1) & is proper if (s,t) : G1 — Gy x G is proper (recall that a map is proper if
the pre-image of every compact is compact),

(2) & is a foliation groupoid if each isotropy group is discrete,

(3) & is étale if s and t are local diffeomorphisms. In this case we define the
dimension of & as follow: dim(®) = dim(Go) = dim(G1).

We remark immediately that every étale groupoid is a foliation groupoid.
Furthermore if & is a proper foliation groupoid, then all the isotropy groups are



